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Bifurcation of sharp boundary S=1 multipole equilibria

Ross L. Spencer®

Department of Physics, University of Wisconsin-Madison, Medison, Wisconsin 53706

(Received 11 October 1979; accepted 9 May 1980)

The bifurcation of sharp boundary magnetohydrodynamic equilibria in linear multipoles of arbitrary
order is studied using the hodograph method. In the low pressure limit, simple formulae are obtained for
the shapes of multipole cusp equilibria. In the high pressure limit the equilibria are found to bifurcate;
two different equilibria may exist for the same values of the external parameters. It is conjectured that a
similar bifurcation will be encountered in the calculation of diffuse multipole equilibria at high beta.

I. INTRODUCTION

The multipole geometry for thermonuclear plasma
confinement has received renewed interest in the last
few years because of its suitability for use with ad-
vanced fuels.!'?> This renewed interest has consisted,
in part, of theoretical efforts to understand the equil-
ibrium and stability at high beta of such devices.>** A
way of studying equilibrium at high beta that has been
used extensively in the study of tokamaks is to assume
that the plasma is confined only by surface currents
that act to exclude the magnetic field from the plasma;
that is, the equilibrium is assumed to be a g=1 sharp
boundary equilibrium, An advantage of such a formula-
tion of the equilibrium problem is that when it is ap-
plied in a linear geometry, i.e., in a geometry with
two Cartesian dimensions, the hodograph method of
fluid mechanics can be applied.’®* The use of this
method for solving magnetohydrodynamic equilibrium
problems extends from the early work of Berkowitz
et al.”’® on cusp equilibria, through several sharp
boundary tokamak-related studies,’!* some of whichuse
variations of the usual hodograph method,'2"!® to the
work of Fried et al.'” on surface magnetic field config~
urations and that of Shercliff'® on cusp and divertor
equilibria. Here, an extension of the cusp work of
Berkowitz et al. and Shercliff to sharp boundary equil-
ibria of nth-order linear multipoles without conducting
walls is presented.

Cusp equilibria of the kind shownin Fig. 1 and closed
equilibriaof the kind shown in Fig. 2 are studied. Inorder
to determine a closed equilibrium, the multipole ordern,
the fluid pressure, the wire currents and positions, anda
quantity y related to the total axial current flowing on
the fluid surface must be specified, It is found that
closed equilibria, if they exist at all, exist for values
of the pressure in an interval whose endpoints are de-
termined by the other four parameters. This interval
never includes zero pressure, At low pressures it is
found that the same parameters also uniquely deter-
mine a multipole cusp equilibrium, but as the pressure
is increased, holding the other parameters fixed, the
situation becomes more complicated. Sometimes there
are closed and cusp equilibria with the same parameter
values, and sometimes there are two cusp equilibria

2)present address: Los Alamos Scientific Laboratory, Univer-
sity of California, Los Alamos, N. M. 87545,
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with the same parameter values. Thus, in the transi-
tionbetween cusp and closed equilibria, bifurcationis en-
countered. These high pressure cusp equilibria and
the closed equilibria all have regions of bad curvature
on their boundaries and are hence unstable.'® An un-
derstanding of these equilibria and the nature of their
bifurcation is the object of this paper.

Il. CLOSED EQUILIBRIA

Here, closed equilibria like the one shown in Fig. 1
are discussed. Consider # infinitely long straight
wires, equally spaced around a circle of radius a, and
each carrying a current /. The wires and the vacuum
regions associated with them are imbedded in a simple
sharp boundary z-pinch equilibrium of circular cross
section. Such an equilibrium is completely character-
ized by specifying n,I,a, the fluid pressure p, and a
quantity y defined by

x=lf/n1, 1)

where [, is the total axial current flowing on the fluid
surface. It is convenient to define a quantity b by

b=2uep)?. @

Since the equilibrium has a sharp boundary with no
magnetic field inside, b is the magnetic field strength
at the vacuum-fluid interface, Pressure balance and
the expression for the magnetic field of a current
carrying cylinder are used to obtain #,, the radius of
the vacuum region about each wire, and 7,, the radius
of the outer fluid surface:

¥, = wl/2mb (3)
ro=n(X+1)r, . 4)

Equilibria of this type do not exist for arbitrary
choices of the determining parameters. They exist if,
and only if, (i) the outer fluid boundary does not inter-
sect an inner fluid boundary, i.e.,

7 >1’1"”“ b4 (5)

and (ii) two inner fluid boundaries do not intersect,
i.e.,
v, <asin(n/n). (6)

The inequalities (5) and (6) can be arranged to give a
necessary and sufficient condition for the existence of
a closed equilibrium

[sina/m)]"t <y <[n{x +1)-1], (N
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FIG. 1. The free boundary and some field lines of a sharp
boundary =1 octupole cusp equilibrium are shown. The con-
ducting fiuid is indicated by the cross hatching.

where
y=2nab/ u,l. (8)

This condition cannot be satisfied for any value of y if
x is too small; closed equilibria exist only if

1 1
x>;(sin(n/n)+1)— 1. ®

For the case of an octupole (z =4), y must be greater
than -0.396. Note that the flux between the wire and
the inner fluid surface, although infinite, is propor-
tional to I. Hence, keeping 7 fixed corresponds to con-
servation of this infinite flux, Similarly, outside the
fluid column, flux conservation corresponds to fixed
I;, or equivalently, fixed y.

The more complicated cusp equilibria and their
transition to the closed equilibria discussed here are
now considered.

FIG. 2. The free boundary and some field lines of a sharp
boundary g=1 octupole closed equilibrium are shown. The
conducting fluid is indicated by the cross hatching.
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l1l. CUSP EQUILIBRIA
A. The hodograph method

In order to find the cusp equilibria, a conformal
mapping technique invented by Helmholtz® is used. Con-
sider the sector of the x-y plane shown in Fig. 3. By
symmetry, such a sector is the only portion of the
plane that need be studied. The letters A-F are used
to refer to important points in the sector. The two
Cartesian coordinates, x and y, are combined to form
one complex variable

z=x+iy. (10)

The magnetic field components, B, and B, are com-
bined to form a complex magnetic field variable

w=B, ~1B,. (11)
A complex magnetic potential is defined by

F=¢+i), (12)
where ¢ is the real magnetic potential, i.e.,

B=Vg, (13)
and where ¢ is the flux function related to B by

9 9
B,=a—f), B,=- 2L (14)

These three complex quantities are related by

éf‘:

P (15)

Since the equilibrium is assumed to be a sharp
boundary equilibrium with no field in the fluid, the only
magnetic field in the problem is the vacuum field.
Since B, and B, in vacuum, each satisfy Laplace’s
equation, any analytic function w(z) automatically des-
cribes a vacuum magnetic field; the function w(z) that
solves the problem is determined by the boundary con-
ditions., The boundary conditions are that ¢ is constant
on any conducting surface, that near a wire, or far
away from the currents, the magnetic field is that of an
infinitely long straight wire carrying the appropriate

s
Y Z - plane
7 Z= x+iy

't

X

FIG. 3. A sector of the z plane for a low pressure octupole
cusp equilibrium with x=0 is shown.
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current, and that at the surface of the free boundary

IB|=(2p,p)"2. (16)
This would be a simple boundary value problem except
that the position of the fluid boundary is unknown,
Hence, the usual technique of conformally mapping the
F plane to the 2z plane cannot be applied. Helmholtz’s
technique relies instead on Eq. (15). Using analysis
and physical intuition, the images of the z plane sector
in the complex F and w planes are constructed. The
F and w plane images are mapped conformally to each
other to give w(F), and Eq. (15) is then integrated to
obtain F(z), solving the problem.

B. General solution

In order to determine a cusp equilibrium, it is nec-
essary, as in Sec. II, to specify n,1,a,p (or b), and y.
For a cusp equilibrium, the definition of y is

x=2Upg~Icp)/1, (17)
where I, is the total axial current flowing in the free
boundary between points D and E in Fig. 3, and where
I.p is that flowing between points C and D. Note that the
current in adjacent free boundary segments flows in
opposite directions, Here, as in Sec, II, I held constant
corresponds to flux conservation between the wire and
the fluid, and y held constant corresponds to flux con-
servation between the fluid and infinity. Figure 3 illu-
strates a sector of an octupole cusp with y=0,

The problem is solved by mapping both the F plane,
shown in Fig, 4, and the w plane, shown in Fig, 5, to
the intermediate X plane, shown in Fig, 6. The func-
tions that affect these mappings are

=.E.Q.{. _Z. -1
F(\) 5 [W(X‘fl)COSh A
_z'. ()\2_ 1)1/2+(,rz_1)1/2 v
o ln( X+7 _(72—1)“2>
+X+2+§€7-T-ln(72—1)], (18)
At F plane
v Fe+iy

Ft

FIG. 4. The F-plane image of the z-plane sector of Fig. 3 is
shown.

1693 Phys. Fluids, Vol. 23, No. 8, August 1980

I
|
[
|
I
I
|
|
|
I
l

FIG. 5. The w-plane image of the z-plane sector of Fig. 3 is
shown.

w(r)=~1ib [(r2 =12+ (W2 = 1)V

(}\2_1)1/2+(,},2_1)1/2 v -1
x( Nty '(72_1)“2)] '

where b is defined in Eq. (2). The quantity » is associ-
ated with the X plane image of the point F, The guanti-
ties f and s, associated with points B and D in the A
plane, are given in terms of y and » by

s=@E =12/ (x+1) =7, (20)
t=n(P@-1)V2—r, (21)

Large r corresponds to low pressure cusp equilibria,
while as » approaches 1, a smooth transition is made to
closed equilibria. Note that as » approaches 1, / be-
comes less than 1, i.e., point B crosses point C on the

(19)

FIG. 6. The A-plane image of the z-plane sector of Fig. 3 is
shown.
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fluid boundary. When this happens, point B ceases to
be a point of maximum field magnitude on the ray CA
in Fig. 3, and instead becomes a point of inflection on
the free boundary; the boundary segment CB then
curves outward, while the segment BD has the inward
curvature required in the neighborhood of the cusp
point, D. The appearance of outward curvature makes
the equilibrium unstable to flute modes localized in the
region of outward curvature,'* Thus, /=1 marks the
transition from stable to unstable equilibria,

The solution is completed by determining the quantity
¥ in terms of the physical parameters, This is done
by requiring that the wire be at the position z =a[exp(in/
n)] in Fig. 3. Making the change of variable

X =cosh({n) (22)

and using Eqs. (15), (18), and (19) yields a differential

equation for z(n):

dz _ pol(x+1) exp(n/n)(coshn~s)

dn 2mb cosh(n+n,) +1 ’ (23)
where
coshn,=7. (24)

(Note that n and X are complex variables; care must be
taken to properly analytically continue expressions
containing them.) Requiring the wire to be at the proper
position relates » and v, defined in Eq. (8), by

20 T T T

10} -
= r\<|
T o 1
-0.2
i 1
o] ! 2 A 3

(r-1)

FIG. 7. The function k is displayed vs (»—1)!/4 for x=4, 1, 0,
and —0.2, and for n=4, an octopole. The x=4, 1, and —0.2
curves stop when the equilibria neck off.

The function 4 (r) is shown in Fig. 7 for several values
of x. Note that for » near 1 and for y such that closed
equilibria exist, there are two equilibria for each value
of y, either a closed equilibrium and a cusp equilibri-
um, or two cusp equilibria. If we imagine performing
a thought experiment in which »n,/,a, and y are held
fixed as the pressure is lowered from some high value,
no equilibria will be obtained at first; when the pres-
sure reaches a critical value, one cusp equilibrium will

i) be obtained, and further decreases in the pressure will
y=h(r)=l(r)+ pryey sy (25)
sin(n/n) allow two cusp equilibria to exist. One of the cusp
where equilibria will evolve into a closed equilibrium, while
the other will remain cusp-like as the pressure is de-
"o exp(t/n)(coshé +s) creased further
=(x+ - .
1=+ [ el (26)
d wh Detailed information about the equilibria can be ob-
and where tained by integrating Eq. (23). For a given value of n it
s *exp(i6/n)(cosd — s) appears to be possible to integrate Eq. (23) in closed
j(r)=Re <(X+1)£ cosh(i6+n,)+1 ds). 27 form; for an octupole the result is
|
A+ (A2 1)t/ .
2 - e ) | e 1972 (- gy ottt + 0 1/ A0+ 2= DV
/4 2 1/2]1/4
- 2 1/2 2 1/211/4 2= DM2 [+ O = DA+ A 1017 ] 28
+tan 1{[7"-(7’ —1) ][A-{-(x —1) ]} )— (x+1) [’}’+(1’2—1)1/2]B+(K2—1)1/2]—1 +const . ( )
r
This rather formidable expression gives insight only in function F (1) and Ampere’s law are used to obtain
special limits, although it is very useful for numerically a1 “af, 12— 12
determining the free boundary shapes and the function - HTX{COS - (x+1) ]
h(r). Figures 8-11, showing some free boundary —(x+1eosr - 2-1)*2/(x +1)]}* (30)

shapes, were obtained using Eq. (28). Figures 8-10
show equilibria with x fixed for various values of v;
Fig. 11 shows equilibria with ¥ fixed for various values
of x.

There is a special quantity that gives qualitative in-
formation about the free boundary. It is the quantity «
defined by

a=Lpg/Lep (29)

where Lpg is the length of the free boundary segment
DE while L, is that of the segment CD. The mapping

1694 Phys. Fiuids, Vol. 23, No. 8, August 1980

This relatively simple expression gives the elongation
of one segment over its neighbor; note that if x =0, then
a=1, as expected. This quantity is especially useful
for describing low pressure cusp equilibria.

C. The low pressure limit

If we imagine decreasing the fluid pressure, or v, to
lower and lower values holding »n, I, a, and X fixed,
then unless |x|< 1, equilibria will cease to exist below
some critical pressure. This occurs because the free

Ross L. Spencer 1694
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FIG. 8. Free boundary shapes for x=0 and n=4 are shown.
(a) v=2.57, ®b)v=3.02, () ¥y=3.02, (d) y=2.57, {e) y=0.5, and
) y=o0.1.

boundary “necks off,”!® i.e., two different segments of
the boundary touch. To see why this happens, note that
Ampere’s law can be used to write X in the form

X= (Zb/“-ol)(LDE "Lcn) .

Decreasing b thus requires L,z — Lp to increase, un-
less x is nearly zero. For closed equilibria, this even-
tually causes the circular surfaces around neighboring
wires to intersect, causing loss of equilibrium. For
cusp equilibria, a similar process occurs; one of the
two segments must become much longer than the other,
until neighboring segments touch, or “neck off,” as il-
lustrated in Figs. 9(d) and 10(d). This loss of cusp
equilibrium for x not near zero is the reason for the
termination of the curves in Fig. 7. The study of low
pressure equilibria is thus the study of equilibria with
x =0,

(31)

From Fig. 7 it is clear that the low pressure limit is
obtained by letting » become large. Expanding in 1/7,
and keeping only leading terms, the low pressure limit
of h(r) is

y/a

1.5 20

FIG. 9. Free boundary shapes for x=1 and n=4 are shown. (a)
Closed equilibrium with y=4.53, () y=7.05, (c) y=17.05, and
(d) y=4.53. [Note that (d) is a necked off equilibrium; it
touches another segment on the line between the center and the
wire.]
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T T T
15 a .
1o —
o
~
o=
0.5 -
% 0.5 10 15 20

x/a

FIG. 10. Free boundary shapes for x=0.2 and n=4 are shown.
(a) Closed equilibrium with y=1.6, () v=2.22, (c) ¥=2.22, and
(d) v=0.895. [Note that (d) is a necked off equilibrium.]

hr)=n/@y)im0/n, (32)

At low pressure the free boundary is given in paramet-
ric form by

x 1(2)” ("-”(cos(w) _cos[en - 1)o] 25 cosl b0 - l)w]) ’

a” 2\n om -1 n-1
(33)
y _1f» ”‘"'”( . sinf @n = 1Dw]  2s sinf - 1)w]
a~2 ) sin(@)+==g S+ 1 ’
(34)
where
~ X7, (35)

and where w is in the range 0 < w < 7/2n. Equations (33)
and (34) can be used to find that the equilibria neck off
unless s satisfies the inequality

T 7
o] <= sm(z(n_l)).

The quantity « is given, in the low pressure limit, by

(36)

y/a
o

Cc
a,bc

0 I 2 3 4
x/a

FIG. 11. Free boundary shapes for ¥=2 and n=4 are shown.
(a) Closed equilibrium with x=1, () closed equilibrium with
Xx=0, (¢) closed equilibrium with x=- 0.2, d) x=0, and (e) x
== 0.2,

Ross L. Spencer 1695



a=147[(l =sH2/s = cos(s)]. (37)

It is more convenient to describe low pressure cusp
equilibria by x, a, b, I, and «, obtaining s from Eq.
(37). For an octupole, the condition on s requires & to
be in the range 1/10.85 < a < 10.85, so that the free
boundary may have one segment quite elongated before
necking off occurs.

For n=2 and for x =0, the free boundary shape equa-
tions should describe the quadrupole cusp obtained by
Berkowitz ef al.”? in the low pressure limit. Indeed, if
the z plane shown in Fig. 3 is rotated by 45°, then the
parametric form for the free boundary shape in the ro-
tated coordinates is

x' { 4mab \'/3 3< Tr)

w=(am) e lo-3) 9

y'_( 4mab \V/? .3< n)

a_<27u01') sin’(w-7 ), (39)
or, eliminating the parametric dependence,

xt\2/3 (y, 2/3 Arab )2/9

(a) + 7) =(27u01 : 40)

the familiar hypocycloid form. The coefficient on the
right-hand side of Eq. (39) differs from that obtained by
Berkowitz in that the quantity inside the parentheses is
a factor of 2 bigger. The difference is understood by
noting that in his quadrupole cusp there are four wires
carrying current in alternating directions, while in the
cusp considered here there are only two wires carry-
ing current. Hence, his equivalent multipole at infinity
is twice as strong for a given wire current as in the
system considered here.

D. The high pressure limit

The high pressure limit corresponds to » near 1, as
shown by Fig. 7. As v —1, the free boundary shape of
the cusp equilibrium continuously approaches the two
circular arcs of a closed equilibrium, although the ap-
proach is very slow, being characterized by the quanti-
ty * = 1)/%, In order to understand the nature of the bi-
furcation that occurs at high pressure, it is useful to
examine the function k£ {r) near » =1. Defining € by

€=r-1 (41)

and expanding the functions j and ! defined in Eqs. (26)
and (27) in € yields, for the function k4,

h1+€)=(X+1=1/n)l ~ V€ In€)+O(Ve). (42)

If € =0, then k=y=n(x+1)~1, the maximum value of ¥
for which a closed equilibrium exists. As € increases
from zero, the O(Ve€ In€) term dominates at first, caus-
ing % to increase; as € increases further the O(Ve) term
dominates and % decreases, as shown in Fig. 7. Hence,
for a range of y slightly above y=n(x+1)- 1, there are
two cusp equilibria for given values of », a, I, and X.
For a range of v below this value a closed equilibrium
and a cusp equilibrium are obtained. [ Recall that closed
equilibria exist for v in the range given in Eq. (7).] As
v is decreased further, the closed equilibria neck off;
the cusp equilibria also neck off unless X is near zero.

1696 Phys. Fluids, Vol. 23, No. 8, August 1980

For y below [sin(r/7)]"! and for y near zero, one low
pressure cusp equilibrium is obtained.

1t is interesting to note that if we imagine a low pres-
sure cusp equilibrium and imagine increasing the pres-
sure, keeping the total flux fixed, i.e., holding / and x
constant, then there is no loss of equilibrium until y
exceeds the maximum value of #(r); that is, the equilib-
ria do not neck off under these conditions. This behav-
ior is explained by noting that Eq. (31) requires L
—Lop to decrease as v is increased, avoiding the elonga-
tion of one free boundary segment compared to the
other that causes necking off. This indicates that for
this highly idealized case, at least, it should be pos-
sible to “pump up” a multipole equilibrium from zero
pressure to some maximum pressure in a flux conserv-
ing way.

IV. CONCLUSION

The hodograph method has been used to study bifurca-
tion and the free boundary shapes in sharp boundary
multipole equilibria and shows that two different equi-
libria may exist for given values of the external param-
eters. The particular form of the hodograph method
used here is also well suited to the study of multipole
systems enclosed in conducting walls as long as the
wall cross section in the x-y plane is composed of
straight line segments. With walls present, the images
in the F and w planes become more complicated and
elliptic functions are needed to effect the necessary
mappings. Furthermore, in some cases the w plane
image becomes multiply valued, making the mappings
more difficult to carry out; the closed equilibria are
also more difficult to calculate than the simple circular
equilibria discussed in Sec. II. In spite of the difficul-
ties, it would be interesting to study cusp equilibria in
the presence of walls to see how the results obtained
here are changed, and to look for bifurcation with a
finite flux between the fluid and the wall held fixed.

Finally, in addition to whatever intrinsic interest
there is in studying how different kinds of equilibria
pass into one another, the results obtained here may
be helpful in solving for diffuse magnetohydrodynamic
equilibria in multipole geometries at high beta. Just as
low pressure multipole equilibria have flux distributions
resembling vacuum fields, high beta equilibria might
be expected to resemble the equilibria calculated here.
Thus, this calculation provides an upper end point in
beta with which to compare diffuse equilibria. Also,
since sharp boundary 8=1 equilibria bifurcate, it might
be expected that diffuse equilibria should also bifurcate
for high beta and for narrow pressure profiles, i.e.,
the bifurcation between closed and cusp-like equilibria
might have a diffuse boundary analog.
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