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Simplified Equations for Relativistic Rotating Perfect Fluids
with Axial Symmetry*
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The general relativistic equations for a stationary axially symmetric rotating perfect Quid, in a comoving
coordinate system, are presented in an elegant general form. The coordinates can then be chosen in any of
several ways to further simplify the equations. One choice reduces the number of independent metric func-
tions to three.

'

~~OR work on the general relativistic problem of the
stationary, rotating, axially symmetric perfect

fluid, one uses equations that are as simple as possible.
In this paper we find equations which have an elegant
vectorial form, and which can be adapted to any of
several approaches to the problem by proper choice of
coordinates. One of these approaches reduces the
number of independent metric coefficients to three.
This simplification has not been noted before in the
literature, although it was found independently by
Wahlquist in parallel work. ' The derivation proceeds
from the usual tensor form of Einstein's equations, but
with occasional insights from the dyadic analysis of
Wahlquist and Estabrook. '

We consider the timelike congruence of the world
lines of a perfect fluid. The absolute angular velocity
of this congruence, locally defined, will be denoted by
Q. Stationarity requires that the congruence be rigid,
so that the rate of strain dyadic S and all time deriva-
tives vanish. The triad determining the spacelike
coordinates will be 6xed in the rigid body, so that its
angular velocity ~ =Q. The absolute acceleration of the
congruence is denoted by a.

These choices enable one to choose a metric of the
form'

—ds'= e'v(dx'+f dx—)'+e 'vr/ pdx dxP—

where time derivatives vanish and Greek letters run
from 1 to 3. The fluid velocity four-vector is

metric:
r/ p=b ph

' (no summation),

and define the usual vector operations for such a metric:

VF =P h
—'F,.u, (4)

—1/s Q (~l/sh —llr(a))

VXV=rt '" Q e p,h (h, U'»), pu,
aPy

V2P ~
—1/2 Q (~l/2h —2P )

V'Xf=e 4vVQ,

Vs/ —4' VU=O,

V'Uy e'v(Vy)s=e 'v—(3P+p) (10)

I'- =2U, -U, +.'e "W,A, p
-4I'e "n-p —(11)

where the u are the orthonormal triad of vectors along
the space axes, V=+ V&o&u, r/=det(r/ p), and commas
denote ordinary di6erentiation.

We can now easily write the Einstein equations,
using previously derived expressions for the Ricci
tensor for the metric (1).' After some simplification,

they are

(2)u'= (e
—v,0,0,0) .

We specialize immediately to the case of diagonal space
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' H. D. Wahlquist (private communication).' H. D. Wahlquist and F. B.Estabrook, Jet Propulsion Labora-
tory Technical Report No. 32-868, 1966 (unpublished); see also
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f& &=h 'f (no sum). (12)

(Thus f=P f V'x; for details on the various bases,
see Ref. 2.) Units are chosen so that c=1, G= (4sr) ';
P and p are the perfect fluid pressure and density,
respectively.

From the contracted Bianchi identities, we have

I', +(I'+p)U, =0,
gt ' B. K. Harrison, J. Math. Phys. 9, 1744 (1968i),
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Here P is a potential, the use of which satisfies the Rp

equation, P p is the three-dimensional Ricci tensor
formed from the st p, and the components f& / of the
vector f are given by
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which yields

P=P(U), p=p(U), dP/dU= P—p,— (14)

relations noted before. ' I' and p may be obtained as
explicit functions of U if an equation of state P=P(p) is
known.

Introduction of a complex Ernst potential'

The curl of Eq. (21) reduces to an identity by virtue
of Eqs. (14)—(16) and (20). The divergence of Eq. (21)
reduces to an equation obtained from the combination
B 2AP—+g 2BP— B

—2CP

[A1,22++,2(A1,2 ~,2)1+& $+,11+I',1(+,1 +,1))
=2pe 2~ 'e —'~V) Vt*. (22)

g=e' +i4

simpliles Eqs. (9)—(11) to

V2~ =e-»(Vg) 2+2(3P+&),

(15)
Equations {8), (14)—(16), and (20)—(22) are now the
complete set of equations Lwith fl ——f2 ——0 and Eqs.
(4)—(7) understood).

SIMPLIFYING CHOICES OF COORDINATES

Thus,

and we find

a=e~VU,

Q = —~2e2~VXf = —
—2,e

—~V/

(18)

(19)

by Eq. (8). We note that V)=2e~(a 2Q). —
We now specialize to the axial symmetry case and

put 8/Bx2=0. We also write hl ——eA, h2 ——eB, h2 ——eo, and
f2=Q. It is easily shown from Eq. (8) that fl t, l, ——
f2 f,2, where ——l is an arbitrary function f' may be
absorbed into x2, so that f1=f2=0.

Finally, we evaluate I'
p by formulas suitable for

diagonal metrics and. write out and simplify Eq. (17).
The E'» equation becomes

The combination

V 2C =4I'e-2&. (20)

yields

C, 2P12+ C, i( B Pll+& P22
g2CP )j+u2g —B$ B

—2AC p
+,'C, 2(e '"Pll e' P-22 e'op 2)—]—

,'V/(VC)'j+VC(VC)—'=2PB 'Vcy ,'B '~(VC(V-~. VP)-
—V((VC VP) —VP(VC V()j. (21)

' R. H. Boyer and R. Lindquist, Phys. Letters 20, 504 (1966);
J. B. Hartle and D. H. Sharp, Phys. Rev. Letters 15, 909 (1965).' F. J. Ernst, Phys. Rev. 167, 1175 (1968).' B. K. Harrison, Phys. Rev. 116, 1285 (1959).

P-s =!B"(~,-~,s-*+~,s~.-*) 4P "n-.s -(»)

Comparison of metric (1) with Eq. (24) of Ref. 2
shows that the quantities @=e ~, h s e2~——v s, and

f . The—se identifications enable us to evaluate
the vectors a and Q. They are given in Ref. 2 as
a= p'V'p —and Q= —21$ 'V'XA', where V' is the del
operator for the metric h p, and A' is defined relative
to h p. The following relations hold between arbitrary
quantities defined for h s (primed) and for g s
(unprimed):

V'F =e~VF, V'Xv=e2~VX(e ~v'), v'=e~v.

(1) We may choose x'=f(U). U then becomes an
independent variable, labelling the isobaric surfaces.
The equation of surface of the Quid object, I'=0, is
now simply U=const. Thus this coordinate choice
simplifies the description of the surface. Since I' de-
creases monotonically from center to surface of Quid,
U increases monotonically. This behavior of U con-
tinues outside the Quid. The value of U can be taken
as zero at infinity, so that U(0 in finite regions. U is
similar to a radial distance coordinate; x' now becomes
similar to a polar angle. Thus this choice of coordinates
is very suitable for treatment of spherically symmetric
and slow rotation problems (problems previously
treated').

(2) The angular velocity Q ( VP) points along the
axis of rotation, so that the variable f is similar to a
cylindrical s coordinate. We can see easily from Eq. (8)
that V'Q V/=0 (Q=fl), so that Q is similar to cylin-
drical r. If we take f= —2Xx2 (li determines the mag-
nitude of Q), then Eq. (8) gives Q=Q(x'). Choose x'
so that Q=2Xx'; then Eq. (8) yields A —8+C—4U=O.
We have in this way reduced the number of dependent
variables to three. This provides a simplification over
previous published. results (p. 328 in Hartle and Sharp' ).

(3) One may set A =8, in analogy to Weyl canonical
coordinates. One may not, however, put e~=x', as is
usually done in vacuum, ' because of the inhomogeneous
term in Eq. {20). If we now write DF =F,lu'+F, 2u',
D'F =F 1,+F 22, then we see that VF =e "DF,
V'F=e '"X(D'F+DF DC), for any F. A simplifica-
tion of appearance in the gradient and Laplacian
operators is thus achieved; the corresponding physical
significance is, however, obscure.

It is hoped that the above approaches will suggest
useful numerical computational schemes for solving
the rapidly rotating dense star problem. An iterative
technique, in which one first guesses values for the

' For the spherically symmetric case, see B. K. Harrison, K. S.
Thorne, M. Wakano, and J. A. Wheeler, Gravitatiol Theory amd
Gravitational Collapse (University of Chicago, Chicago, Ill. ,
1965).For the slowly rotating-case, --see J.B.Hartle, Astrophys. J.
150, 1005 (1967); J. B. Hartle and K. S. Thorne, ibid. 153, 807
(1968); J. B. Hartle and D. H. Sharp, ibid. 14'7, 317 (1967).' See, for example, H. Levy, Nuovo Cimento 56, 253 (1968),
and references to Lewis, etc., cited therein.
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metric coeKcients and evaluates the nonlinear terms
and the operators, then solves the Poisson equations
(16) and (20), may possibly be fruitful. ""

For an application of this approach to Newtonian rapidly
rotating stars, bee J. P. Ostriker and J. W. K. Mark, Astrophys. J.
151, 1075 (1968)."It has come to the author's attention that similar equations
have been discussed by G. K. Tauber and J. W. Weinberg, Phys.
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12$, 1342 (1961). Ho~ever, their paper does not consider
the reduction of the number of dependent variables to three;
nor does it present the equations in this particular form.
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It is shown that many of the satellite terms possible in Veneziano models are linearly dependent, and that,
in fact, speci6cation of the residues of the poles is arbitrary, but completely determines all the coeScients
of the satellite terms. Implications of this for ghosts, parity doubling, daughters, asymptotic behavior, Adler
zero, and Qnite-energy sum rules are discussed. A specific numerical example for w-7r'scattering is given.

I. INTRODUCTION

CLOSED-FORM expression to describe the scat-
'

~ ~

~

tering of pions has been proposed by Veneziano'
and modified by others. ' ' In all suggested forms, the
usual desired criteria' save unitarity were satisfied, but
a number of less vital characteristics needed considera-
tion. Some of the more popular points of investigation
have been studies of j-plane analyticity and daughter
resonances, 4 positivity of the residues at a pole, ' the
constraints imposed by invoking the nonexistence of
parity doublets, for example, in m-p scattering, ' and the
difficulties inherent in phenomenologically fitting
experiment to the one-term form. '

The results indicate that higher-order terms, named
"satellites" by some authors, must be included in the
amplitude in order to provide consistency- within the
model and with experiment. For example, in one in-
vestigation' it was shown, ~that in"'order to eliminate
wrong-parity daughters at a pole, '.higher-order terms
in the Veneziano amplitude must be employed. This
was to be done by assigning the "arbitrary" coefficients

~ Work supported in part by the National Research Council of
Canada and the Province of Ontario.' G. Veneziano, Nuovo Cimento 57A, 190 (1968).

'C. Lovelace, Phys. Letters 28B, 2264 (1968); M. Virasoro,
Phys. Rev. 1'7'7, 2309 (1969); G. Altarelli and H. Rubinstein,
iNd. 178, 2165 (1969).' J. Shapiro, Phys. Rev. 179, 1345 (1969).' D. Fivel and P. Mitter, Phys. Rev. 183, 1240 (1969).'F. Wagner, Nuovo Cimento 63A, 393 (1969); R. Oehme,
Nuovo Cimento Letters 1, 420 (1969).' P. Freund and E. Schonberg, Phys. Letters 28B, 600 (1969).

7 K. Vasavada, Phys. Rev. D 1, 88 (1970).8¹Antoniou et al. , Universitat Tubingen Report (unpub-
lished).' S. Mandelstam, Phys. Rev. Letters 21, 1724 (1968).

of each term a value according to a definite prescription.
It has also been remarked that various other constraints,
such as the 6nite-energy sum rule (FESR) or the Adler
condition in 71--m. scattering; can be trivially satisfied by
adding suitable satellites, without significantly affecting
properties of the leading trajectories.

In this paper we wish to examine these questions,
and in particular to show the following: that the most
general (four-point) Veneziano amplitude can be
written in "diagonal" form, and, comsequently, that
specification of the residues at the poles completely
determines the amplitude everywhere. Since each pole
residue is a completely arbitrary polynomial, the
assignments of widths (zero or otherwise) to parents
and daughters in a particular model is subject only to
questions of convergence. Thus, no parity doubling
and/or no ghosts and/or no daughters at all can be built
in; but all other constraints (such as the Adler condi-
tion) now become sum rules on the widths, with the
trajectory function playing a parametric role.

We erst give some reduction formulas, " and then
the solution for the most general codIicients in terms of
arbitrary residues. Next we touch on questions of
asymptotics and convergences; and then we give, as is
customary, an explicit example for x-x scattering,
discussing its properties in terms of daughter structure.
In our conclusion we summarize our main results and
point out some implications for other models.

'0 The existence of a reduction formula has been invoked by
some authors (cf. Ref. 7) and ignored by many others. To the best
of our knowledge, no explicit proof of this fact exists in the litera-
ture; since this result yields vast simpli6cations in calculatiens
with satellite terms, we should like to set this matter to rest once
and for all.


