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The active control of tractor noise requires the ability to track and control a
signal that changes in frequency as the speed of the engine, in revolutions per
minute (rpm), changes during operation. The most common control approach is
typically based on some version of the filtered-x algorithm. For this algorithm,
the convergence and tracking speed are functions of the frequency dependent
eigenvalues of the filtered-x autocorrelation matrix. To maintain stability, the
system must be implemented based on the slowest converging frequency that
will be encountered. This often leads to significant degradation in the overall
performance of the control system. This paper will present an approach which
largely overcomes this frequency dependent performance, maintains a relatively
simple control implementation, and improves the overall performance of the
control system. The control approach is called the eigenvalue equalization
filtered-x least mean squares (EE-FXLMS) algorithm and its effectiveness will
be demonstrated through an application to tractor noise in a mock cab.
Experimental results will be presented which show that the EE-FXLMS
algorithm has faster convergence times and provides on average a 1 dB increase
in attenuation. A 3.5 dB increase in attenuation was seen in some of the cases

presented. © 2008 Institute of Noise Control Engineering.
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1 INTRODUCTION

The most common control approach for the active
noise control (ANC) of stationary or time-varying
frequencies is typically based on some version of the
filtered-x least mean squares (FXLMS) algorithm"z.
Though the FXLMS algorithm has proven successful
for many applications, one of its limitations is that it
exhibits frequency dependent convergence and track-
ing behavior leading to a significant degradation in the
overall performance of the control system. The perfor-
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mance degradation is especially evident for the case of
non-stationary noise, such as tractor noise, where the
target noise is likely to take on every frequency in the
range where control is possible. In these cases, less
attenuation is seen at the frequencies where the conver-
gence of the algorithm is slow. Solutions to the
frequency dependent problem have been proposed such
as the HLMS algorithm by Clark and Gibbs®, and
similar work by Lee et al.*, the FxGAL algorithm by
Vicente and Masgraus, the work of Kuo et al.6, the
modified FXLMS algorithm’, or the normalized
FXLMS. The drawback of most of these approaches is
that they either increase the computational burden of
the algorithm, increase the algorithm’s complexity, or
are only effective for specific applications.

This paper will discuss a new approach that has been
developed which largely overcomes this frequency
dependent performance, and improves the overall
performance. The approach is relatively simple to
implement, can be added to existing FXLMS
algorithms with only minor modifications, and does not
increase the computational burden of the algorithm.
The approach is valid for both single, and multiple
input/output implementations. The effectiveness of the
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approach will be demonstrated through an application
to tractor noise in a mock cabin.

2 BACKGROUND

For this research, a feedforward implementation of
the FXLMS algorithm is used which relies on a refer-
ence signal being “fed” forward to the control
algorithm so that it can predict in advance the control
signal needed to attenuate the unwanted noise. A
feedforward implementation of the FXLMS algorithm
involves adaptive signal processing to filter the refer-
ence signal in such a way that the measured residual
noise is minimized. The measured residual is called the
crror signal and for this research it will be measured as
an energy density (ED) quantity. The advantages of an
ED based FXLMS algorithm® for noise in an
enclosure”'® and for the application of tractor engine
noise'""'? are well documented. Before introducing the
new control approach, a brief explanation of the
general FXLMS algorithm is given. The extension of
the general FXLMS algorithm to an ED based FXLMS
is straightforward and well documented in Ref. 8.

2.1 FXLMS

The goal of the FXLMS algorithm is to reduce the
mean-squared value of the error signal at a location
where the sound is to be minimized. Boucher, Elliot,
and Nelson' provide a good reference for the deriva-
tion of the single channel FXLMS algorithm, which is
shown in block diagram form in Fig. 1. In the figure,
and in all equations presented, the variable ¢ is used as
a discrete time index and the variable z is used as a
discrete frequency domain index.

The mean-squared value of the error signal is a
quadratic function (a “bow!”) with a unique global
minimum. For each iteration of the algorithm, W(z), an
adaptive FIR control filter, takes a step of size u, the
convergence coefficient, times the gradient of the
squared error signal in search of a single global
minimum that represents the smallest attainable
mean-squared value of the error signal. The control
filter update equation for w can be expressed in vector
notation as

w(r+ 1) =w(7) — ue()r(z) (1)

where e(t) is the error signal and r(t) and w(t) are
defined as

() =[r(),r(t=1), ...,r(t—=1+1)] (2)
wi(t) =[wo,wy, ..., Wwe]. (3)

The filtered-x signal, r(t), is the convolution of h(t), the
estimate of the secondary path transfer function, and
x(t), the reference signal. The secondary path transfer
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Fig. 1—Block diagram of the FXLMS Algorithm.

function is represented as an impulse response that
includes the effects of digital-to-analog converters,
reconstruction filters, audio power amplifiers,
loudspeakers, the acoustical transmission path, error
sensors, signal conditioning, anti-alias filters, and
analog-to-digital converters. This secondary path trans-
fer function has a large effect on the performance of the
algorithm.

2.2 Secondary Path Transfer Function

One difficulty in implementing the FXLMS
algorithm is that the secondary path, represented as

H(z) in Fig. 1, is unknown. An estimate, ﬁ(z), of the
secondary path must be used. The estimate is obtained
through a process called system identification (SysID).

The SysID process to obtain H(z) is performed
either online (while ANC is running), or offline (before
ANC is started). For the fastest convergence of the
algorithm, an offline approach is used. The offline
SysID process is performed before ANC is started and
consists of playing white noise through the control
speaker and measuring the response at the error sensor..
The measured transfer function is a finite impulse

response (FIR) filter, ﬂ(t), that represents ﬁ(z). The
coefficients of h(t) are stored and used to run control.

3 FREQUENCY DEPENDENT
CONVERGENCE BEHAVIOR

The inclusion of H(z), while absolutely necessary’
for algorithm stability, degrades performance by
slowing the algorithm’s convergence. One reason for
the decreased performance is the delay associated with-

ﬁ(z). For many ANC applications, such as enclosures
of less than a few meters, the delay is on the order of
10 ms or less and convergence is still rapid'®. A more

significant problem is that the inclusion of ﬂ(z) causes
frequency dependent convergence behavior. The
frequency dependent behavior can be better understood:
by looking at the eigenvalues of the autocorrelation
matrix of the filtered-x signal, which is largely a

function of ﬁ(z).



The eigenvalues of the autocorrelation matrix of the
filtered-x signal relate to the dynamics or time
constants of the modes of the system. Typically, a large
spread is observed in the eigenvalues of this matrix,
corresponding to fast and slow modes of convergence.
For a given fixed value of the convergence parameter, u,
some of the modes converge faster than others. As the
frequency of the reference signal changes, the optimal
value of u would also change, with larger values of u
being used for slower modes to help them converge
more rapidly. The fastest modes have the fastest
convergence and the greatest reduction potential, but
limit how large of a convergence parameter, u, can be
used'>, If 4 is increased beyond this limit, the conver-
gence at frequencies associated with slower modes will
be faster, but the system will become unstable at
frequencies associated with faster modes.

The autocorrelation matrix of the filtered-x signal is
defined as

R=E[r(O)r’(1)] 4)

where E[ ] denotes the expected value of the operand
which is the filtered-x signal vector, r(t), multiplied by
the filtered-x signal vector transposed, r’(t). In general,
it has been shown that the FXLMS algorithm (or any of
its variations) will converge (in the mean) and remain
stable as long as the chosen u satisfies the following
equation’®

o<u< 2 . (5)

max
In Eqn. (5), A\, is the maximum eigenvalue of the
autocorrelation matrix for the filtered-x signal in the
range of frequencies targeted for control. The eigenval-
ues of R are associated with the characteristic equation

[R-M]Q,=0 (6)

where I is the identify matrix, Q, is a column vector
(eigenvector), and N is a scalar variable (eigenvalue).
The eigenvalues are found as the solutions of the
equation

det{R—\I]=0 (7)

where det indicates the determinant of the matrix.
Since the autocorrelation matrix, R, is positive
semidefinite, the eigenvalues are all real and
non-negative. In practice, it is too computationally
demanding to obtain a real-time estimate of the
autocorrelation matrix so the optimal u is often
selected through experimentation. An offline estimate
of the autocorrelation matrix is made by taking an

flctual ﬁ(z) model from a mock cabin and importing it
Into a numerical computer package. If a single
frequency reference signal is used, A, can be
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Fig. 2—Plot of normalized maximum eigenvalues
of the autocorrelation matrix over fre-
quency.

computed for that frequency. If the simulation is
repeated over a range of frequencies, A, for each
frequency can be found. Figure 2 shows an offline

simulation using an actual H(z) from a mock cab, and
tonal inputs from 0-500 Hz. The eigenvalues in the
figure have been normalized to the largest eigenvalue in
the range.

Figure 2 illustrates the frequency dependent behav-
ior. The largest eigenvalue occurs at about 210 Hz. This
location corresponds to the largest stable g in the
frequency range from 0—500 Hz as given by Eqn. (5).
Most other frequencies have a smaller eigenvalue and
could use a larger u, and still be stable, if only that
particular frequency was targeted for control. Frequen-
cies at the valleys of the figure have the smallest eigen-
values and could use the largest #’s and still be stable,
again if they were the only frequencies targeted for
control. For dynamic signals, larger u’s are desirable as
they lead to faster convergence and thus increased
attenuation. Larger u’s also increase gradient search
noise and thus increase the excess mean square error.
This effect is insignificant compared to the benefit of
improved tracking ability for dynamic signals.

If the frequency range for control is 0—500 Hz, the
4 associated with 210 Hz (the smallest in the range)
must be used for stability. If for example, 100 Hz was
the only tone targeted for control a u larger than the one
used at 210 Hz could be used and convergence would
be faster. If both 100 and 210 Hz were targeted for
control, the smaller u associated with 210 Hz must be
used for stability and degraded performance at 100 Hz
is expected. In summary, because the u associated with
the largest eigenvalue in the range of frequencies
targeted for control must be used for stability, degraded
performance is expected at the other frequencies in the
range that would benefit from the use of a larger u.
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4 EIGENVALUE EQUALIZATION

If the variance in the eigenvalues of the autocorre-
lation matrix was minimized, a single convergence
parameter could then be chosen that would converge at
nearly the same rate over all frequencies. As previously
stated, the autocorrelation matrix is directly dependent
on the filtered-x signal, which is computed by filtering

the input reference signal with H(z). Often times it is
cither impossible or undesirable to alter the reference
signal. Assuming the reference signal is left unchanged,
changes to the autocorrelation matrix must stem from

changes to H (z), but must be done carefully as errors in
its estimation already contribute to slower convergence
rates and instability. Estimation errors can be consid-
ered in two parts: errors in the amplitude estimation
and errors in the phase estimation'’. It has been shown
that phase estimation errors greater than £90 degrees
cause algorithm instability”, but errors as high as
40 degrees have little effect on the performance®.
Magnitude estimation errors can be compensated for
by the choice of x'®'%, and consequently do not affect
stability. Ideally, changes would be made to the magni-

tude information of H(z), while the phase information
is preserved. Essentially an all-pass filter with the same

phase characteristic as that of H(z) is designed.
The idea to remove the variance in the eigenvalues

by changing the magnitude coefficients of ﬁ(z), while
preserving the phase will be referred to as the eigen-
value equalization filtered-x least mean squares
(EE-FXLMS) algorithm approach. There are many
ways that the magnitude coefficients could be adjusted.
The remainder of this paper will focus on one method
of adjusting the magnitude coefficients that is simple to
implement, and offers significant improvement in the
overall sound reduction.

The basic procedure for implementing the

EE-FXLMS is to adjust the coefficients of ﬁ(t) before

ANC control is started as follows: R
1. Get the time domain impulse response h(t) for

each ﬁ(z) through an offline SysID process.

2. Take the Fast Fourier Transform (FFT) to obtain
H(z).

3. Divide each value in the FFT by its magnitude
and then multiply by the mean value of the FFT.

4. Compute the inverse FFT to obtain a new ﬁ(t)

and use the new modified fl(t) in the FXLMS al-
gorithm as normal.
This procedure flattens the magnitude coefficients of

I:I(z) while preserving the phase. If using multiple
channel and/or ED control, the process is repeated for

each fl(t) estimate. In general there will be one fl(t) for
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Fig. 3—Original and modified magnitude coeffi-
cients of H(z).

each channel for squared pressure control and three for
each channel for ED control with a 2D error sensor as
used in this paper (one for pressure, one for each of two
velocity directions). It is an offline process done
directly following SysID, and can be incorporated into
any existing algorithm with only a few lines of code. As
an offline process, it adds no computational burden to
the algorithm when control is running. The results of
the flattening process can be seen in Figs. 3 and 4.

Figure 3 shows the original and modified H(z) magni-
tude coefficients and Fig. 4 shows that the phase infor-

mation of ﬁ(z) has been preserved. Note in Fig. 4 that
the two lines representing the original and modified
phase information of ﬁ(z) are directly on top of each
other.

An attempt to quantify any improvement in the
eigenvalue spread has been made by using the follow-
ing metrics: ‘
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Fig. 4—Original and modified phase coefficients
of H(z).
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The effect of the flattening process on the eigenval-
ues can be seen in Fig. 5. The data for the figure were
computed as before by an offline estimate of the

autocorrelation matrix using an actual ﬁ(z) model
from a mock cabin and finding the A, for each
frequency from 0—500 Hz. The curve labeled “Origi-
nal” represents the same data shown in Fig. 2, and the
curve labeled “Modified” is an estimate of the eigen-

values using the modified ﬁ(z) model. In Fig. 5, the
eigenvalues in both the original, and modified case,
have been normalized by the largest of the original
eigenvalues. It is seen that the modified eigenvalues are
more uniform (“equalized”) over all frequencies. The
variation in the modified eigenvalues would be ideally
zero. Because of finite frequency resolution the magni-
tude can only be constrained to be “flat” at frequency
bin values. The variation in the eigenvalues is zero at
those bins and the variation over all frequencies is
greatly reduced, although some variation is still appar-
ent between bin values. The decreased variation
compared to the original eigenvalues should produce
an observable performance advantage. The algorithm
should converge at near the same rate over all frequen-
cies, and should not exhibit the frequency dependent
behavior of the standard FXLMS.

Table 1 shows the improvement of the modified
eigenvalues according to the defined metrics. In Table
1, it can be seen that the modified case has a lower
span, higher RMS value, and a lower crest factor. In all
three metrics, the values for the modified case are
closer to the optimum values that would be present if
the eigenvalues across all frequencies were exactly the
same. While possibly not the optimum, the modifica-

tion to ﬁ(z) that gives these improved eigenvalues
makes a noticeable improvement in the performance of
the algorithm.

S EXPERIMENTAL RESULTS

The performance advantages of the EE-FXLMS
control approach were verified for the case of a single
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frequency disturbance, a single time-varying
frequency, and recorded tractor engine noise.

5.1 Experimental Setup

The experiments were conducted inside a mock
tractor cabin with nominal dimensions of 1.0 m
X 1.5 mX 1.1 m. The cabin has a steel frame, 0.01 m
thick plywood sides, and a 0.003 m thick Plexiglass®
front panel. A speaker placed under a chair served as
the sound source and three loudspeakers were setup in
a two channel control configuration. The control
signals were routed through a crossover circuit to route
the low-frequency content (below 90 Hz) of both
channels to a subwoofer on the floor of the cab, and to
route the high-frequency content (above 90 Hz) of each
control channel to one of two smaller satellite speakers
mounted in the top corners of the cab, near the back.
An ED error sensor consisting of four equally spaced
microphones around a small disk was placed on the
ceiling near where the operator’s head would be. A
photo of the cab, error sensor, and speakers is seen in
Fig. 6.

The control algorithms were implemented on a
Texas Instruments TMS320C6713 DSP processor.
Both adaptive control filters consisted of 32 taps, and
all secondary path transfer functions were modeled
with 128 taps. All input channels were simultaneously
sampled at 2 kHz, and all input and output signals had
16 bits of resolution. Fourth-order Butterworth lowpass

Table 1—Comparison of original and modified ei-
genvalues using defined metrics.

Metric Original  Modified % Improvement
Span 1.50e4 347 97.7
RMS 0.202 0.349 72.7
Crest Factor 4.94 2.87 419
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ED error sensor

satellite speakers

- f

subwoofer

Fig. 6—Photo of inside of mock cab.

filters (400 Hz cutoff) provided anti-aliasing and
reconstruction of input and output signals, respectively.

The controller performance was monitored in the
cab using the ED error sensor, and eleven precision
microphones. Ten of the microphones were equally
spaced in two horizontal planes, located 0.15 m and
0.45 m from the cab ceiling. The eleventh microphone
was placed where the operator’s ear would be; about
0.30 m from the cab ceiling. Diagrams of the micro-
phone locations can be seen in Fig. 7 (side view) and
Fig. 8 (top view). The microphones were placed in
several different measurement groupings to obtain
estimates of how well the control was performing both
locally (near the operator’s head), and globally through-
out the cabin. The measurement groupings can be seen
in Fig. 8.

5.2 Single Frequency Disturbance

A function generator was used to generate single
sinusoids at seven different frequencies (50 Hz, 80 Hz,

1.0m

upper plane of mics

= ear mic

lower plane of mics
1.5m

Fig. 7—Diagram of microphone locations in mock
cab (side view).
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Fig. 8—Diagram of microphone locations in mock
cab (top view) and measurement group-
ings.

113 Hz, 125 Hz, 154 Hz, 171 Hz, and 195 Hz). These
frequencies correspond with the resonance frequencies
of the cab (see Fig. 3). The convergence coefficient, ,
was determined experimentally for each frequency by
finding the largest stable value and then scaling it back
by a factor of ten to ensure stability. The measured
performance for each configuration was the amount of
attenuation in dB at the error sensor and the conver-
gence time in seconds. The convergence time was taken
to be a measure of how long it took the error signal,
from the time that control was enabled to reach 1/e of
its initial value (about 9 dB attenuation), where e is the
base of the natural logarithm. The reason for choosing
this was that the convergence time essentially becomes
a measure of the rate of attenuation, which was felt to
be useful when comparing cases where the overall level
of attenuation may be significantly different. Each
measurement was performed three times for computa-
tion of an average and to give a sense of the measure-
ment’s reproducibility. The results are shown in Table 2.
In the table, EE refers to the EE-FLXMS implementa-
tion, and normal refers to the standard FXLMS imple-
mentation. The “reproducibility” shown in Table 2 was
calculated in the same manner as a standard deviation,
although it is recognized that the small sample size
precludes referring to the result as a statistically valid
standard deviation.

The results in Table 2 show that on average, over all
of the frequencies tested, the EE-FXLMS converged



Table 2—Results of single frequency experimentation.

Attenuation (dB) Convergence Time (scc)

Code Type Freq. (Hz) u Avg. Reproducibility Avg, Reproducibility
Normal 50 1.E-08 37.85 0.34 0.26 0.02
EE 50 4.E-08 36.98 0.41 0.21 0.04
Normal 80 1.E-07 20.35 0.06 0.21 0.05
EE 80 2.E-07 21.77 0.02 0.30 0.02
Normal 113 1.E-08 13.69 0.01 0.44 0.04
EE 113 5.E-08 15.63 0.01 0.44 0.02
Normal 125 6.E-08 22.43 0.02 0.14 0.01
EE 125 7.E-07 23.68 0.01 0.11 0.01
Normal 154 3.E-08 1.91 0.01 5.00 0.01
EE 154 1.E-07 5.26 0.03 0.21 0.00
Normal 171 2.E-07 3.94 0.02 2.01 2.59
EE 171 9.E-07 6.61 0.01 0.36 0.16
Normal 195 9.E-08 16.43 0.29 0.49 0.12
EE 195 3.E-07 1532 0.08 0.36 0.04
Total Average Normal 16.66 0.08 1.22 0.40
EE 17.89 0.11 0.27 0.04

about a second faster and had a little over 1 dB more
attenuation at the error sensor. In addition, the variation
for EE-FXLMS was smaller than the variation for the
normal FXLMS. Table 2 also shows that the greatest
decreases in convergence time occurred at 154 Hz and
171 Hz with a difference of several seconds being seen
at these frequencies. 154 Hz and 171 Hz correspond to
the two largest resonance modes of the cab below
200 Hz, and are places where the normal FXLMS
exhibits slow convergence.

The advantage of the EE-FXLMS having a faster,
more uniform convergence will be shown for the case
of time-varying frequencies in the form of increased
attenuation as the algorithm can more quickly converge
on each frequency before the frequency shifts and the
algorithm must reconverge.

5.3 Single Time-Varying Frequency

Several swept sine test signals with different sweep
rates were created. Each test signal consisted of a swept
sine from 50-200 Hz and the rates ranged from
2 Hz/sec to 265 Hz/sec. The time-averaged sound
pressure level over the entire duration of the test signal
was measured with and without control running. The
convergence coefficient, 4, was determined experimen-
tally by finding the largest stable value for the entire
frequency range and then scaling it back by a factor of
ten to ensure stability. The x4 for EE-FXLMS control
was found to be le-7 and the u for standard FXLMS
control was found to be 1e-8. The attenuation in dB was
recorded at the measurement locations shown in Fig. 8.
Each measurement was performed three times for
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computation of an average and to give a sense of the
measurement reproducibility. The actual attenuation
for both control types is shown in Table 3. The differ-
ence in attenuation between EE-FXLMS and FXLMS
control is shown in Table 4. A positive number
indicates EE-FXLMS performed better. The variation
for each test case was small (usually less that 0.02 dB)
and is not reported in either table.

The data show that averaged over all of the data,
EE-FXLMS performs 1.0 dB better than normal
FXLMS at the error sensor and about 0.8 dB globally.
The data also show that the slower the sweep rate the
more advantage EE-FXLMS provides. For the 2 Hz/sec
sweep rate, EE-FXLMS control provides 2-3.5 dB
more reduction. At the fastest sweep rates, the differ-
ences were almost negligible. It is postulated that for
very fast sweep rates the signal changes so rapidly that
the improved tracking ability of the EE-FXLMS is
obscured, since the frequency is changing more rapidly
than the algorithm is capable of converging. On the
other hand, for slower sweep rates, the algorithm has
sufficient time to converge and track the changing
frequency.

5.4 Tractor Engine Noise

The performance advantages of EE-FXLMS were
tested for the application of tractor noise. Tractor
recordings were obtained for a CAT wheel-loader
tractor for different operating conditions. As part of the
recordings, the engine tachometer signal was recorded
to use as the reference signal. The recordings were
played through the source speaker, and measurements
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- Table 3—Results of time-varying frequency experimentation for EE-FXLMS

-and normal FXLMS control.

ontrol  EarMic  Error Mic 10 Mic 8 Mic 5 Mic
Sl?:t? CType Avg. (dB) Avg. (dB) Avg. (dB) Avg.(dB) Avg. (dB)

2 Hz/sec  Normal 4,92 6.45 3.62 4.82 5.28
EE 7.78 10.01 5.88 7.79 8.52

4 Hz/sec  Normal 3.80 5.18 2.60 3.69 4.12
EE 5.12 7.34 3.37 5.09 5.76

8 Hz/sec  Normal 3.25 427 2.13 3.05 343
EE 3.97 5.72 2.49 3.86 441

16 Hz/sec  Normal 323 4.42 2.03 3.03 345
EE 3.87 5.48 247 3.75 4.28

32 Hz/scc  Normal 2.87 3.99 1.71 2.66 3.07
EE 3.02 4.32 1.79 2.85 3.31

64 Hz/sec  Normal 2.76 3.37 1.61 2.54 2.95
EE 2.91 4.09 1.80 2.74 3.16

128 Hz/sec Normal 2.71 3.85 1.54 2.49 2.90
EE 2.63 3.90 1.47 245 2.89

256 Hz/sec  Normal 271 3.88 1.55 2.50 2.91
EE 2.61 3.87 1.47 2.44 2.87

were taken in the same manner as the single time
varying frequency measurements for both the
EE-FXLMS and normal FXLMS. The actual attenua-
tion for slow, medium, and fast sweep rates of the
engine rpm is shown in Table 5. The difference in
attenuation between EE-FXLMS and FXLMS is shown
in Table 6. A positive number indicates EE-FXLMS
performed better. The variation for each test case was
small (usually less than 0.02 dB) and is not reported in
either table.

Similar performance advantages for the EE-FXLMS
were seen with the tractor recording experiments. On

average EE-FXLMS performed 0.9 dB better at the
error sensor and globally 0.85 dB better than the
normal case.

6 CONCLUSIONS

A new eigenvalue equalization approach
(EE-FXLMS) has been demonstrated for the case of
engine noise in a mock cabin. It has been shown that

adjustments to the magnitude coefficients of H(z),
while preserving the phase, leads to a more uniform
eigenvalue spread, faster convergence times, and

Table 4—Comparison of EE-FXLMS and normal FXLMS control for time-

varying frequency experimentation. A positive number indicates
that EE-FXLMS control performed better.

Sweep Ear Mic Error Mic

10 Mic 8 Mic 5 Mic
Rate Avg. (dB)  Ave. (dB)  Avg. (dB) Avg. (dB) Avg. (dB)
2 Hz/sec 2.86 3.56 2.26 2.97 3.24
4 Hz/sec 1.33 2.16 0.77 1.40 1.64
8 Hz/sec 0.72 1.45 0.35 0.80 0.98
16 Hz/sec 0.64 1.06 0.44 0.72 0.83
32 Hz/sec 0.14 0.33 0.08 0.19 0.24
64 Hz/sec 0.15 0.22 0.19 0.20 0.21
128 Hz/sec -0.07 0.06 ~0.08 -0.04 -0.01
256 Hz/sec —-0.10 ~-0.01 —-0.08 -0.06 -0.04
Total Average (dB)

Ear Mic Error Mic 10 Mic 8 Mic 5 Mic Total

Avg. Avg. Avg. Avg. Avg. Avg.

Average 0.71 1.10 0.49 0.77 0.89 0.79
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Table 5—Results of tractor engine noise experimentation for EE-FXLMS
and normal FXLMS control. Slow, medium, and fast ramp refers to
how fast the rpm of the tractor engine was increased (ramped up)

during testing.
Control  EarMic ErrorMic 10 Mic 8 Mic 5 Mic
Sweep Rate Type  Avg.(dB) Avg. (dB) Avg. (dB) Avg.(dB) Avg. (dB)

Slow ramp Normal 4.05 4.60 3.46 3.95 4.10
EE 5.03 5.58 4.31 4.90 5.07

Medium Ramp Normal 222 247 1.88 2.14 2.23
EE 345 3.82 2.95 3.35 3.48

Fast Ramp Normal 048 0.48 041 048 0.50
EE 0.88 0.83 0.80 0.88 0.91

Table 6—Comparison of EE-FXLMS and normal FXLMS control for tractor

engine noise experimentation. A positive number indicates that
EE-FXLMS control performed better. Slow, medium, and fast ramp
refers to how fast the rpm of the tractor engine was increased

(ramped up) during testing.

EarMic  Error Mic 10 Mic 8 Mic 5 Mic
Sweep Rate Avg. (dB)  Avg. (dB) Avg. (dB) Avg. (dB)  Avg.(dB)
Slow ramp 0.98 0.98 0.86 0.95 0.97
Medium Ramp 1.23 1.35 1.07 1.21 1.25
Fast Ramp 0.40 0.35 0.38 0.40 0.41
Total Averages (dB)

EarMic  ErrorMic 10Mic 8 Mic 5 Mic Total

Avg. Avg. Avg. Avg. Avg. Avg.

Average 0.87 0.89 0.77 0.85 0.87 0.85

increased attenuation. The method of flattening the
magnitude coefficients as part of the EE-FXLMS led to
as much as 3.5 dB additional attentuation at the error
sensor and 2.0—3.0 dB globally for the slower sweep
rates. An additional attenuation of 1.0 dB at the error
sensor and 0.5—1.0 dB globally was seen at sweep rates
up to 16 Hz/sec, with a slight increase being seen at
rates as high as 64 Hz/sec. Averaged over all of the
sweep rates tested, EE-FXLMS provided 1 dB
additional attenuation at the error sensor and 0.8 dB
globally. For the tractor noise, on average EE-FXLMS
performed 0.9 dB better at the error sensor and
globally 0.85 dB better than the normal case.

The performance advantages of the EE-FXLMS
become more meaningful when considering the
simplicity of its implementation. It can be incorporated
into any FXLMS algorithm with only a few lines of
code. As an offline process, it does not increase the
computational burden of the algorithm.

Flattening the magnitude coefficients is but one of
many possible methods for adjusting the magnitude
coefficients to improve the performance of FXLMS
based algorithms. Future work will focus on an optimi-
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zation approach to finding the values of the magnitude
coefficients that lead to the best performance.
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