
 
American Institute of Aeronautics and Astronautics 

 

1 

Investigation of a Single-Point Nonlinearity Indicator in the 
Propagation of High-Amplitude Jet Noise 

Lauren E. Falco* and Anthony A. Atchley† 
The Pennsylvania State University, University Park, PA, 16802 

Kent L. Gee‡ 
Brigham Young University, Provo, UT, 84602 

There is evidence to suggest that nonlinearity is important in the propagation of high-
amplitude jet noise [Gee et al., AIAA J. 43(6), 1398-1401 (2005)]. Typically, the power 
spectral density (PSD) is used to assess the impact of jet noise on the surrounding 
environment, but such an assessment requires multiple measurement locations to observe 
the nonlinear evolution of the PSD. The difference in the PSDs measured at different 
locations depends on a combination of source level, nozzle diameter, and propagation 
distance. As a result, full scale measurements have to be extended over large distances, and 
model scale measurements require high measurement bandwidths. These constraints 
complicate the measurement and make it difficult to observe nonlinear effects using the 
PSD. Here a different technique for determining the importance of nonlinearity is 
investigated. The imaginary part of the cross-spectral density of the pressure and the square 
of the pressure, also called the quadspectral density (QSD), is related to the rate of nonlinear 
change of the PSD. Thus, the extent to which the PSD is evolving nonlinearly can be 
determined at a single measurement location. In the absence of absorption, energy is 
conserved, and the integration of the product of the QSD with frequency over all frequencies 
must be zero; when nonlinearity is present, the value of the QSD can be nonzero for many 
frequencies. Because nonlinearity tends to transfer energy from low frequencies to high 
frequencies and the QSD is positive at frequency components that are losing energy, using 
the integral of the QSD over its positive values as a nonlinearity indicator eliminates the 
need for high bandwidth measurements. Experimental measurements were taken in a plane 
wave tube with a working length of 9.55 m in which boundary layer losses dominate over 
atmospheric absorption. Experimental and numerical results show that the ratio of the 
integral of the QSD over the frequencies for which it is positive (Qpos) to the integral over the 
frequencies for which it is negative (Qneg) is close to one. Also, because the QSD is third-
order in pressure, normalizing its integral by the cube of the rms pressure yields a quantity 
that is easily compared across experimental conditions. Results for both periodic and 
broadband signals are presented and the practicality of using the QSD as a single-point 
indicator of nonlinearity addressed. 

Nomenclature 
c0 = equilibrium sound speed 
d = experimental jet nozzle diameter 
d0 = full-scale jet nozzle diameter 
p = acoustic pressure 
Qp2p  = imaginary part of the cross-spectral density of the square of the pressure and the pressure (also QSD) 
QSDneg = all values of the QSD which are negative 
QSDpos = all values of the QSD which are positive 
Qneg  = summation over frequency of (�*QSDneg) 
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Qpos  = summation over frequency of (�*QSDpos) 
r = radial propagation distance 
Sp = power spectral density (also PSD) 
x = linear propagation distance 
� = generalized atmospheric and boundary-layer absorption coefficient 
� = coefficient of nonlinearity 
�0 = equilibrium density 
� = angular frequency 
�0 = angular frequency of the source 

I. Introduction 
N the study of the propagation of jet noise, the power spectral density (PSD) is typically the quantity used to 
assess impact on the surrounding community. There is evidence1 to suggest that a correct assessment requires 

knowledge of whether the propagation is linear or nonlinear. If the propagation is nonlinear, then the nonlinearity 
must be accurately accounted for in any prediction model. 

 It has been shown1 that, under some conditions, a linear model does not accurately predict the propagation of 
jet noise, especially at higher frequencies. The importance of nonlinearity is usually determined by examining the 
evolution of the PSD with propagation distance. This method, which requires measurements at multiple locations, 
has inherent complications for both full-scale and model-scale jet measurements. In full-scale experiments, many 
effects influence the propagation of the noise, including wind and temperature gradients, ground impedance, and the 
spatial extent and directivity of the source. The complexity of this environment calls for measurements (acoustic and 
meteorological) at many locations so that these effects can be quantified and selectively removed during analysis. 

In model-scale measurements, the scaling-up of frequency and the constraints of working in an anechoic 
chamber of finite dimension often make it difficult to detect nonlinear effects by examining the PSD. Nonlinear 
effects are cumulative, so maximizing the value of r/d of a measurement (where r is radial distance from the source 
and d is jet diameter) is important to their detection. Because model-scale measurements are usually conducted in an 
enclosed space, r is limited. Furthermore, decreasing d increases the frequency bandwidth needed for the 
measurements. Frequency bandwidth well above the peak frequency (one to two decades) is generally necessary to 
see significant differences between measurements and linear predictions and therefore to detect the presence of 
nonlinearity. Peak frequencies are usually around a few hundred Hertz in full-scale measurements; in model-scale 
measurements, they are usually on the order of a few kiloHertz2. Frequency is scaled as d0/d (where d0 is the full-
scale jet diameter), meaning that a greater bandwidth is required for a smaller jet. While it is possible to record data 
at a sample rate of roughly 200 kHz (thereby obtaining a Nyquist frequency of 100 kHz), amplitude and phase 
calibrations are not readily available for most microphones at these high frequencies. A typical 1/8” microphone 
(Brüel & Kjær type 4138) has a flat amplitude response to about 140 kHz; a similar 1/4” microphone (Brüel & Kjær 
type 4938) is reliable only to 70 kHz. Phase responses are not specified for these microphones. This restriction, 
combined with the limitation on r posed by the measurement space, makes it very difficult to see nonlinearity in 
model-scale measurements of the PSD. 

In light of these factors (meteorology, measurement space, and frequency bandwidth), it would be beneficial to 
be able to determine the presence or importance of nonlinearity with a measurement at a single location. This paper 
explores the use of a single-point nonlinearity indicator based on the work of Morfey and Howell. 

II. Theory and Derivation 
Morfey and Howell3 derive an expression containing a quantity that has the potential to serve as a single-point 

nonlinearity indicator. They begin with the Burgers Equation, a second-order parabolic wave equation that includes 
the effects of both nonlinearity and absorption. After some manipulation, including transformation to the frequency 
domain and ensemble-averaging, they obtain an equation similar to  

 ( )
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where x is distance from the source, � a generalized absorption coefficient, Sp the PSD, � the coefficient of 
nonlinearity, and Qp2p the imaginary part of the cross spectral density (also known as the quadspectral density, or 
QSD) of the square of the pressure and the pressure. Equation (1) has been modified slightly from its original form 
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to apply to plane waves. The left-hand side of Eq. (1) is the spatial derivative of the absorption-corrected PSD. The 
right-hand side can be viewed as a source term for changes in the PSD that are due to nonlinearity. Thus, the QSD 
could be a valuable tool in determining the presence or importance of nonlinearity in the propagation of a wave. 

A normalization of this quantity, often referred to as “Q/S” or “the Morfey-Howell nonlinearity indicator”, has 
recently been used by several researchers1,2,4 in the analysis of high-amplitude noise. However, its physical meaning 
is not well understood and has not yet been thoroughly investigated. 

One of the signatures of nonlinearity in sound 
propagation is the transfer of energy from lower-
frequency to higher-frequency spectral components. 
A propagating sinusoid with sufficient amplitude 
will generate spectral components at harmonics of 
the fundamental frequency; as the propagation 
distance increases, more of the higher harmonics 
become important. These harmonics gain energy at 
the expense of the fundamental. Thus, the left-hand 
side of Eq. (1) for an originally sinusoidal wave 
should be negative at the fundamental frequency 
and positive for the harmonic frequencies. Figure 1 
shows this quantity for an initially sinusoidal wave 
at two different propagation distances. These data 
were taken in a 5.2-cm diameter plane wave tube 
with a fiberglass anechoic termination and driven by 
two JBL 2402H drivers. The microphones used 
were 1/4” Brüel & Kjær type 4938 mounted with 
the diaphragm approximately flush with the inner 
wall of the tube. The microphone locations were 
0.10 m, 3.25 m, 6.40 m, and 9.55 m from the source, respectively. For a more complete description of the 
experimental apparatus, please see Falco et al.5 
 Analysis is simplified by temporarily assuming lossless propagation of plane waves. This simplification aids in 
the understanding of the problem; losses can be added later. Rewriting Eq. (1) for a lossless case (� = 0) gives 
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Integrating both sides over frequency yields 
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The integral on the left-hand side of Eq. (3) is the mean-square pressure of the signal, which is proportional to 
energy. In the absence of losses and shocks, the total energy of the wave should not change with propagation 
distance. It follows that 

 0
0

2 =�
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If we define QSDpos as all values of the QSD which are positive (frequencies at which energy is being lost) and 
QSDneg as all values of the QSD which are negative (frequencies at which energy is being gained), conservation of 
energy and Eq. (4) dictate that 
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Figure 1. The left-hand side of Eq. (1) for 
measured waveforms at two different propagation 
distances. 
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For the linear case, both of these integrals should equal zero. For the nonlinear case, both integrals should have 
nonzero values equal in magnitude. Once shocks have formed, however, Eq. (5) apparently no longer holds. Even in 
the absence of explicit atmospheric and boundary-layer losses, the wave will experience losses at the shocks which 
will decrease its total energy6. Thus, the magnitude of the left-hand side of Eq. (5) should be larger than that of the 
right-had side when shocks are present. As a result, the ratio of these integrals can be used as a simple test for the 
presence of shocks (and therefore of nonlinearity).  

Given the restrictions on r/d mentioned above in the context of model-scale jet measurements, the ability to 
detect nonlinearity in the pre-shock region (at smaller values of r/d) and using a limited bandwidth would be 
particularly beneficial. Either integral from Eq. (5) could be used as a nonlinearity indicator in the pre-shock region, 
but since positive values of Qp2p tend to occur at lower frequencies, using the left-hand side of Eq. (5) decreases the 
need for a high-bandwidth measurement. 

III. Analysis 
Measurements were made using the plane wave tube described above with two JBL 2426H drivers as the sound 

source. The drivers were supplied with a sinusoidal signal ranging from 500 Hz to 3 kHz in frequency, and the 
resulting sound waves had amplitudes from 105 dB to 145 dB re 20�Pa at the microphone closest to the source. 
Waveforms were captured at all four microphone locations. Numerical predictions for the second, third, and fourth 
microphone locations were generated by using the measured waveform at the first microphone as the input to an 
Anderson-type propagation algorithm7. Analytical predictions were made using the experimental conditions as 
inputs to Blackstock’s solution8 for the harmonic amplitudes of an initially sinusoidal wave in the absence of 
absorption.  All predictions were generated with the same sample rate as the measurements. PSDs and QSDs were 
calculated by breaking the time signal into shorter records with a 50% overlap, applying a Hanning window to each 
record, taking a Fourier transform, and averaging.  

A. Single-Frequency Source Data 
The ratio Qneg/Qpos, where Qneg is the integral on the right-hand side of Eq. (5) and Qpos is the integral on the left-

hand side, was plotted as a function of �, or propagation distance normalized by shock formation distance, given by 
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Figure 2. Ratio of the integrals in Eq. (5) as a function of normalized propagation distance for measured 
data (a) and analytical data (b). 

(a)     (b) 
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Figure 2 shows these plots for the measured waveforms and for the analytically generated waveforms.  
As expected according to Eq. (5), the value of the ratio is close to one at all propagation distances. Many of the 

data points at smaller propagation distances represent low-amplitude source conditions for which the QSD is small. 
In these cases the signal-to-noise ratio is also small, resulting in the deviations from unity at these points. 

Each value of Qpos was normalized by the cube of the rms pressure of the signal and plotted as a function of 
normalized distance, and a line was fitted to each plot. Results are shown in Fig. 3 for the measured and analytical 
data; the numerically propagated data yields results so similar to those for the measurements that it is not shown 
here. The data in Fig. 3 were generated using a 1500 Hz source and amplitudes ranging from 105 dB to 
145 dB re 20�Pa. The equations for the two lines are similar and r2 > 0.97 for both cases. This result suggests that, 
for an arbitrary single-frequency source signal, knowledge of the QSD could be used to obtain the shock formation 
distance of the signal and therefore information about the source. 

B. Broadband Noise Data 
Broadband noise data were generated by using source conditions similar to those of the measurements as inputs 

to the Anderson-type algorithm. The frequency content of the source was 500 Hz to 3000 Hz, the amplitude was 
between 105 dB and 145 dB re 20�Pa, and the signal was saved at propagation distances corresponding to the 
microphone locations in the plane wave tube. 
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Figure 3. A normalization of Qpos as a function of normalized distance for measured data (a) and analytical 
data (b) for a 1500 Hz source. 
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Figure 5. A normalization of Qpos vs. normalized 
distance for numerically-generated broadband noise. 
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The same analysis was applied to the noise data as to the single-frequency source data. An effective shock 
formation distance was calculated using the center frequency and the rms pressure of the source9. Because noise 
tends to steepen and shock at smaller values of � than single-frequency sources10, shock formation can happen for 
�eff < 1. 

Figure 4 contains a plot of the ratio Qneg/Qpos for the broadband noise data. The ratio is nearly equal to 1 for all 
but the largest normalized propagation distances. Based on the analysis above, it is likely that shocks have formed in 
these signals and that energy is being lost at the shocks rather than being transferred to other frequency components. 

The normalization of Qpos mentioned above is shown in Fig. 5. A line has been fitted to all but the last two data 
points because Fig. 4 indicates that shocks are likely present in these signals. The correlation coefficient for this line 
is very close to one, and the equation of the line is similar to the equations obtained for the single-frequency source 
data. Its slope is larger, but this is to be expected as shock formation seems to occur at smaller values of �eff for the 
noise data. This figure suggests that the preceding analysis is equally valid for single-frequency source signals and 
broadband noise signals (and therefore potentially for jet noise), given that an appropriate normalized propagation 
distance is used for the noise signals. 

IV. Conclusion 
The QSD has been shown to provide information about nonlinearities in the propagation of single-frequency 

source signals and broadband noise signals. The value of the ratio Qneg/Qpos indicates whether shocks are present in a 
signal. A normalization of Qpos could be used to obtain the shock formation distance and source conditions of a 
signal of unknown origin. Because these methods of analysis are valid for broadband noise, they could be used in 
the evaluation of jet noise provided a suitable normalized propagation distance is employed. 
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