Global active control of energy density in a mock tractor cabin
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Low frequency tonal noise, associated with engine firing frequency, often makes a significant
contribution to sound levels that exist inside tractor cabins. Because these tones are low
frequency in nature, they present a considerable challenge to passive noise control techniques,
but are good candidates for active noise control applications. The presence of such noise can also
threaten machinery operators’ auditory health in addition to posing a challenge to machinery
manufacturers in their efforts to produce machines that meet standards for operator exposure to
noise. Active minimization of acoustic energy density has been applied to a mock tractor cabin,
targeting engine firing frequency in simulated static and dynamic machine conditions. Previous
work has demonstrated that active control of energy density generally provides good global
control of enclosed sound fields. Multiple microphones were distributed throughout the cab to
verify the global nature of the control. Generated sinusoids as well as actual recorded tractor
noise were used to simulate the uncontrolled acoustic field. Both static and dynamic results
will be presented, showing the local attenuation at the error sensor and the global attenuation

throughout the cab. © Institute of Noise Control Engineering
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1 INTRODUCTION

Significant motivations exist for noise reduction in heavy
equipment cabins. The noisy environments often encountered
in heavy equipment cabins pose a risk to the health and
safety of machinery operators, due in part to the amount
of time operators spend in such environments.'? Auditory
fatigue and discomfort could potentially be reduced and
mental concentration and job efficiency increased through the
reduction of operator noise exposure. The need for equipment
manufacturers to meet existing and future standards for
operator exposure to noise presents another reason for the
employment of relevant technology in the reduction of noise
inside equipment cabs.

Prior investigation of noise in tractor cabins showed that
discrete tones that are harmonically related to the rotation
speed of the tractor’s engine generally dominate the noise
spectrum."® The tonal components of the engine noise make
good candidates for active noise control (ANC), because
of their relatively low frequencies. The low frequencies
also make engine noise difficult to control through passive
techniques, which could potentially add to the appeal of ANC
from the perspective of equipment manufacturers.

ANC efforts in the past demonstrated the successful
attenuation of engine tonal noise inside tractor cabins, but
significant weaknesses of the control systems rendered them
impractical for commercial installation. Noise reduction
tended to be limited to a relatively small spatial region near
the operator’s head and error sensors were sometimes placed
in locations that would be inconvenient for the operator. The
inability of such control systems to adequately track rapid
changes in tractor engine speed during normal work cycles
was an additional drawback."* The approach taken by these
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systems was to minimize squared acoustic pressure (SP) at
one or more error sensor locations.

The minimization of acoustic energy density (ED) by ANC
systems can have certain advantages over the minimization of
SP5? Acoustic ED depends on acoustic particle velocity in
addition to acoustic pressure, which allows more information
to be utilized by an ANC system that uses ED as a squared
error signal. The additional dependence on particle velocity
results in a more global control of an enclosed sound field
than is often achieved through the minimization of SP alone.
Additionally, an ED error sensor has a much lower probability
of being placed in a nodal region than an SP sensor for the
natural modes of the same enclosure.’

The potential advantages of an ED-based control system
make it an attractive option for the reduction of low-frequency
engine tones in closed tractor cabs. This paper discusses
an ED-based ANC system, constructed at Brigham Young
University, and the performance of the system in a simulated
tractor cabin using synthesized tonal noise as well as recorded
noise from an actual tractor.

2 THE CONTROL SYSTEM

2.1 An Energy-Based Error Sensor

Since acoustic ED is a sum of kinetic energy density, which
is proportional to the square of particle velocity, and potential
energy density, which is proportional to the square of acoustic
pressure, its instantaneous value may be obtained by measuring
particle velocity and pressure at a point. The dependence of
the total instantaneous acoustic ED on particle velocity and

pressure is given by:

2
1 2 P
= " (1)
e, 2/)0 u +[ ()C]

-y



where 1, p, p,. and ¢ represent the magnitude squared of the
acoustic particle velocity vector, the acoustic pressure, the
ambient fluid density, and the speed of sound, respectively.
By assuming the density of air and the speed of sound in air to
be constant and known, the measurement of acoustic ED only
requires that the particle velocity and pressure be obtained.

A two-microphone measurement technique allows one
directional component of the particle velocity vector to
be obtained in the direction defined by the location of the
microphones. By embedding three orthogonally arranged pairs
of microphones in a solid sphere, a three-dimensional particle
velocity vector can be obtained for the point corresponding
1o the center of the sphere. The two-microphone technique
assumes that some distance, d, separates the microphones and
that no obstruction exists between them. However, the bias
crrors in the measurement due to the presence of a sphere turn
out to be beneficial.'"® A spherical sensor with diameter d will
behave similarly to a sensor with no obstruction between the
microphones, but a microphone separation distance of 1.5d.
This allows a spherical sensor to be constructed two-thirds the
size of a sensor with no sphere without any loss in accuracy.
The performance of a wooden spherical ED sensor with a
two-inch diameter and three pairs of inexpensive electret
microphones was described by Parkins, ef al* The wooden
sensor was shown to exhibit total energy density errors within
+1.75 dB in the frequency range 110 <f <400 Hz. Microphone
configurations other than the three orthogonal pairs are possible
for energy density sensors and some alternatives have been
explored at Brigham Young University."

2.2 The Algorithm

The well-known filtered-x LMS adaptive filtering algorithm
provides a basis for the algorithm employed in the ED-based
ANC system. However, the filtered-x algorithm had to be
modified in order to minimize acoustic ED and the resultant
algorithm is that described in greater detail by Sommerfeldt
and Nashif.” Four control path transfer functions are required
in order to produce four of the so-called filtered-x signals.
These four transfer functions are obtained via an offline system
identification algorithm for the pressure path as well as each of
the paths corresponding to the three components of the particle
velocity vector. The reference input signal, x(n), is filtered by
each of the four control path transfer functions to produce the
filtered-x signals, rp(n). r.(n), ruy(n), and r_(n). In order to
verify proper identification of the secondary paths within the
DSP, the secondary path filters actually used by the control
system were compared to high-resolution measurements of the
same transfer functions. The high-resolution measurements
were obtained at much higher sample rates, using longer time
records. Fast and stable convergence of the control system
occurred when enough filter coefficients were used in the DSP
to capture more than 95% of the energy contained in the high-
resolution impulse response.

The update equation for the vector of control filter
coefficients, w, at time #, is given as:
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where u_(») is the m" component of the instantaneous particle
velocity at time n (m=1, 2, and 3 corresponds to the X, y, and
z directions, respectively), and rp(n) and r_(n) are vectors
containing the current (time n) and past values of the four
filtered-x signals. Since the current system employs a two-
microphone technique for the estimation of particle velocity,
Ax, represents the effective microphone separation distance
in each of the three orthogonal directions and p(n) is the
instantaneous pressure averaged over all microphones. The
energy-based algorithm’s dependence on four error signals,
pressure and three velocity components, makes it comparable
to a four-channel version of the common filtered-x algorithm
used for the reduction of squared acoustic pressure, although
for ED control the error signals are colocated. The same
stability criterion holds for the two algorithms.

Numerical simulations of ED control within a rectangular
enclosure were reported by Parkins, er al.®

2.3 Control System Electronics

A 32-bit Texas Instruments DSP processor, capable of
performing 120 million floating point instructions per second,
provided more than enough processing power for the ED-
based, feedforward adaptive algorithm. Analog-to-digital and
digital-to-analog conversions were accomplished with the use
of 12-bit converters. Because the control system only targeted
low-frequency noise, all analog input and output signals were
low-pass filtered using fourth order Butterworth filters with a
cutoff frequency of 400 Hz. The system was generally operated
with a sampling rate of 2 kHz, so the filters were sufficient to
avoid any problems with aliasing. The hardware allowed for
two control signals to be routed to the loudspeakers used as
control actuators. Before passing through a power amplifier
and on to the loudspeakers, the control signals passed through
acrossover circuit in order to route frequencies less than 90 Hz
to a subwoofer and frequencies greater than 90 Hz to one of
two smaller satellite speakers. Each of the two control signals
was routed to one of the satellite speakers, but the two signals
were summed to produce the final control signal sent to the
subwoofer.

3 EXPERIMENTAL SETUP

In an effort to simulate the use of an ED-based ANC system
in a real tractor cabin, the control system was operated in a
mock cabin consisting of a steel frame and 3/8-inch plywood
panels on all sides except the front panel, which was made of
1/8-inch Plexiglas®. The frame measured 1.5 meters high
and 1 meter wide. The length of the frame was 1.2 meters
at the bottom and 1 meter at the top, so that the front panel
(resembling a windshield) was sloped. A chair was placed in
the back of the cab, centered between the two sides, on which
a person could sit to simulate the presence of an equipment
operator during measurements or to operate the ANC system
from within the cab. Photos of the cab appear in Fig. 1.
Numerically computed mode shapes for the first four modes of
the cab, up to 200 Hz, are shown in Figs. 2 through 5. These
mode shapes were obtained with the Finite Element Method
using LMS SYSNOISE and assuming rigid boundaries.



Mock cabin photos. Front and side views on the left and
right, respectively.

Fig. 1.

Uncontrolled noise was produced in the cab using a Mackie
HR824 loudspeaker (the source speaker) with reasonably

Fig. 2. The first cab mode at 113.2 Hz exhibits a single nodal
plane dividing the top and bottom halves of the cab.

Fig. 3. The second cab mode at 154.0 Hz exhibits a single nodal
plane dividing the fiont and back halves of the cab.

flat frequency response down to 37 Hz. The source speaker
was placed underneath the chair inside the mock cab. The
two satellite control speakers were positioned near the top
corners of the mock cab in order to be near the operator’s
head, as well as to be in a position to couple well with the
acoustic modes of the cab. The subwoofer was placed in the
front left corner of the cab on the floor. The control speaker
locations can be seen in the photos in Fig. 1. The error sensor
was located directly above the operator’s head. The benefit of
this error sensor placement is that it enables the center of the
so-called “zone of silence” to be as close as possible to the
operators ears, while keeping the sensor out of the operator’s
way. Since the operator of a tractor will generally be centered
between the two side walls of the cab, this placement would be
more problematic for a simple pressure sensor. The potential
presence of axial modes possessing nodal regions centered
between the two side walls suggests that a pressure sensor
should be placed to one side of the operator’s head (see Fig.
4). An ED sensor, however, will only encounter an ED node
where two or more pressure nodes overlap, which could not
happen at the chosen error sensor location in the 0 to 200 Hz
range of the mock cabin.
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For measurements in which the uncontrolled noise was a
synthesized sinusoid, the same signal was sent to the source
speaker as well as to the reference input of the control system
electronics. The tractor noise recordings, however, had two
channels—one for the noise inside the cab, and the other for a
tachometer signal from the tractor’s engine. When the recorded
tractor noise was used as the uncontrolled noise in the mock
cab, the tractor noise signal was routed to the source speaker
under the seat and the recorded tachometer signal was routed
to the reference input of the control system electronics.

Fifteen microphones measured the sound pressure inside
the mock cab in order to determine the global nature of the
noise control. Twelve of these microphones were arranged in
two parallel horizontal planes, above and below the height of
the operator’s ears. Two other microphones were strapped to
a set of headphones to measure the sound pressure levels near
the operator’s ears. These headphones were sometimes worn
by a person sitting inside the cab and sometimes suspended
from the ceiling of the cab for measurements without a person
in the cab. One additional microphone was used to measure
the sound pressure at the error sensor location. Fig. 6 shows
the placement of the microphones.

4 MEASUREMENTS

Both static (fixed frequency) and dynamic (swept
frequency) sinusoids served as uncontrolled noise signals
inside the mock cab to help quantify the performance of the
ED-based ANC system. Static sinusoids were synthesized
with several different frequencies ranging between 40 and 200
Hz, to test the control system at or near modal frequencies of
the cab as well as away from modal frequencies. The chosen
frequencies, for which results are discussed in the next section,
are 50, 80, 113, 125, 154, 171, and 195 Hz. A dynamic
excitation signal was created to explore the tracking abilities of
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the ANC system. This dynamic signal was composed of four
different sections. The frequency of the sinusoid was swept at
a linear rate between 40 Hz and 200 Hz at two different rates.
The slower sweeps had a duration of four seconds while the
faster sweeps had a duration of one second. For portions of
the test signal, the end frequencies were held for the same
duration as the corresponding sweeps. A spectrogram of the
dynamic noise signal can be seen in Fig. 7.

In order to more closely simulate the use of the ANC system
in an actual tractor cab, static and dynamic engine noise was
recorded inside a tractor cab along with a tachometer signal
to be used for the reference input to the adaptive control
algorithm. Static engine noise was recorded at engine speeds
of approximately 820, 1800, 2000, and 2340 rpm, which
produced dominant engine tones at 41, 91, 99, and 117 Hz.
The dominant tones correspond to the engine firing frequency,
which is three times the engine rotation frequency for a typical
six-cylinder diesel engine. Additional recordings were made
of the tractor engine noise as the engine speed was swept
up and down between idle and full-throttle. Three different
sweep rates were recorded, with the faster two corresponding
to roughly the same sweep rates as the synthesized swept sine
signal.

For all measurements reported in this paper, filter lengths
were consistently 32 taps for the adaptive control filters and
120 taps for the fixed secondary path filters.

5 RESULTS

5.1 Synthesized Test Signals

Fig. 8 shows the noise reduction achieved at the
frequencies selected for static ANC performance tests. Three
measurements are shown at each frequency: the attenuation
achieved at the error sensor location; the average attenuation
at the 2 microphones near the operator’s ears (the ear mics);
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Fig. 7. Spectrogram of the swept sine excitation signal used to

study dynamic ANC performance.
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Fig. 8. Attenuation of static tones, comparing noise reduction
achieved at various locations inside the cab.

and the spatially averaged attenuation (the global reduction),
as recorded by the 12 microphones distributed throughout
the upper half of the cab. The same 12 microphones were
used in static noise tests using synthesized tones as well
as recorded tractor noise. Average attenuation values were
computed in pascals before being converted to dB values. At
nearly all frequencies, reduction of the noise tone is significant
throughout the cab. At 50 Hz, the amount of reduction at the
error sensor is close to the dynamic range of the 12-bit analog-
to-digital converters used in the control system electronics.
Reduction throughout the rest of the cab is, on average,
greater than 40 dB, which is to be expected due to the large
wavelength of the low-frequency tone. The ED-based ANC
system also performs well at high frequencies with a global
reduction exceeding 10 dB at 195 Hz. The performance of the
ANC system was diminished at 154 Hz, however, at which a
single axial mode existed in the mock cab. The presence of
an axial pressure mode should not have caused a problem for
the energy density sensor, however. The cab sat in a rigid-
walled hallway, and further investigation revealed that the
hallway had several modes near 154 Hz, one of which was an
axial mode between 154 and 155 Hz. It was found that the
uncontrolled noise exhibited lower sound levels, by as much as
20 to 30 dB when compared to other frequencies, for nearly all
observations. The lower uncontrolled noise levels, in addition
to weak coupling between the control loudspeakers and the
hallway modes, likely accounted for the poor results at this
frequency.

Dynamic performance was recorded in terms of the amount
of reduction in the equivalent sound level,L_, over the length
of the test signal of interest. L was measured with a flat
frequency weighting. For dynamic measurements (with the
synthesized test signal as well as recorded tractor noise),
microphone signals were streamed to a computer hard disk
for post processing. This allowed for accurate comparisons to



be made in L over the duration of the test signal. However,
at the time the dynamic measurements were made, only 4 of
the 12 microphones distributed in the cab could be used for
direct-to-disk recording. The 4 microphones chosen were the 4
closest to the front of the cab in the upper 6-microphone plane.
The results obtained by the ANC system, using the previously
described swept sine signal, are shown in Fig. 9. In the figure,
“Global Reduction™ refers to the spatially averaged reduction
measured by 4 microphones rather than 12. The system
tracked the changing noise signal well enough to achieve
approximately 3 dB of global reduction in the Leq over the
duration of the entire swept sine test signal as well as during
sach of its individual sections. The noisc reduction at the error
sensor often exceeded 4 dB and the average reduction seen
by the car mics cven approached 5 dB. At all measurement
locations, the system performance was nearly as good for the
faster sweeps as it was for the slower sweeps. It should be
noted that similar reductions in sound level were observed
between the two ear mics in nearly all measurements.

A similar swept-sine excitation signal was also used to
investigate the stability of the control system under different
conditions of the cab door. For example, after measuring
secondary path transfer functions with the cab door open,
the controller was run with the door closed. In this case, the
controller remained stable with a net reduction in the noise
level, although the noise reduction achieved dropped by nearly
4 dB. Similarly, the controller performed well with the door
open when the secondary paths were measured with the door
closed, although performance was not as good as when the
correct transfer functions were used.

5.2 Recorded Tractor Engine Noise
Attenuation of the tone corresponding to the tractor engine
firing frequency for four different engine speeds appears in Fig.
10. Again, the best global reduction was seen at the lowest
frequency. In this case, that frequency was 41 Hz, at which
the global reduction exceeded 20 dB and was even slightly
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Fig. 9. Reduction in L, achieved during different sections of a
dvnamic test signal at various locations inside the cab.
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Fig. 10. Attenuation of static engine tones, comparing noise reduc-
tion achieved at various locations inside the cab.

better than the reduction at the error sensor or ear mics. For all
tested engine speeds, the noise reduction at the ear mics was
nearly equal to the noise reduction at the error sensor, which
suggests that a good location was chosen for the placement
of the ED-based error sensor. Even at the highest frequency
of 117 Hz, over 10 dB of global reduction was achieved. The
uncontrolled engine tone was much lower in amplitude at 99
Hz, which may explain the apparent reduction in ANC system
performance at that frequency.

As mentioned previously, three different engine speed
sweep rates were recorded for use in dynamic testing of the
ANC system with recorded tractor noise. The fastest sweep
was obtained by ramping up (and down) the engine speed of
the tractor as fast as it would go. Fig. 11 shows the measured
results for each of the three sweep rates. As the sweep rate
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Fig. 11. Reduction in L“7 achieved during different recorded engine
speed sweeps at various locations inside the cab.



increased, the amount of reduction in Leq over the duration

of the measurement decreased. At the slowest sweep rate,
global reduction exceeded 6 dB. However, even at the fastest
sweep rate, the system still achieved over 1 dB of reduction
at all measurement locations (at a// microphones, not just on
average). These results suggest that the ED-based ANC system
may reduce overall sound levels experienced in a tractor, even
when the tractor is being operated through fast-paced work
cycles in which engine speeds can vary rapidly.

Fig. 12 shows time-averaged spectra of the noise at the left
ear microphone with and without ANC running. This example
is for a slow engine speed sweep and shows that the ANC
system was able to attenuate the engine tone throughout its
entire frequency range (40 to 120 Hz).

6 CONCLUSIONS

Significant levels of noise reduction were achieved in the
mock cabin, using the ED-based ANC system. Good global
control was demonstrated in the cab with synthesized static and
dynamic test signals as well as noise recorded from an actual
tractor cab. The global nature of the control was apparent in all
tests, except for one static test in which acoustic modes of the
environment in which the cab was located may have adversely
affected ANC system performance. These results suggest that
at certain frequencies, the energy-based control system may
indeed have some advantage over a similar pressure-based
control system for this type of application. The advantages may
be seen in that the ED-based system provides uniform control
of the enclosed sound field over a relatively large frequency
range (one for which acoustic modes of the enclosure are
encountered) and the system is relatively insensitive to error
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Fig. 12. Time-averaged spectrum of recorded engine noise, mea-
sured by the left ear microphone with and without ANC,
using slow engine speed sweeps.

sensor placement. Additionally, the system’s ability to track
recorded engine noise well enough to provide global noise
reduction at the highest engine speed changes likely to be
encountered suggests that such a system could potentially
improve operating conditions and satisfy noise exposure
standards in a real world environment.
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Propagation constants from the response of a finite periodic beam
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An infinite periodic structure is usually modeled using a single span with appropriate periodic
conditions. If a large finite periodic structure with N spans behaves like an infinite periodic
structure, then, here also a single span model will suffice giving cost savings in computation.
This paper is about such a meeting point between infinite and finite periodic structures. The
propagation constant of an infinite periodically supported beam is obtained analytically from the
response of a finite periodically supported beam. In aninfinite periodic beam, * (g is the complex
propagation constant) is the ratio of velocities in any two neighboring spans and is obtained using
a single span model. Here, it is shown (analytically and experimentally) that if the finite periodic
beam has enough spans, then e* computed from the first two spans will match e® for an infinite
periodic beam in the attenuation zones. © Institute of Noise Control Engineering
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1 INTRODUCTION

Finite periodic structures such as railway tracks, bridges
and ship hulls appear quite often in engineering. In literature,
however, mostly infinite periodic structures have been
theoretically investigated using wave propagation methods and
more recently using FEM. Modeling of infinite periodicity is
relatively simple. A single span or bay needs to be modeled
and then periodicity imposed. Real structures being finite are
not truly periodic and hence the structure has to be modeled
in its totality. If the structure is large and has many degrees of
freedom, solving for the response becomes computationally
expense. Thus, it would be advantageous if under some
conditions, a finite periodic structure would behave like an
infinite structure. If that is so, once again, only a single span
needs to be modeled. In this paper, we provide such a meeting
ground where a finite periodic beam behaves like an infinite
beam.

A distinct feature of infinite periodic structures is that they
transmit vibrations in certain frequency bands (pass bands)
and attenuate vibrations in other bands (stop bands). The
ratio of velocities in the neighboring spans is e¢, where g =
a + ib is the propagation constant. The real part of g is the
amplitude constant ¢ and the imaginary part is b, the phase
constant. Figures la and b show an infinite periodic beam and
the corresponding amplitude constant a and phase constant b'.
The regions where a is positive are the attenuation zones (or
stop bands) and where it is zero are the propagation zones (or
pass bands). Thus, there occur alternate frequency bands of
attenuation and propagation.

In this paper, it is shown (using analysis and experiments)
that the propagation constant g of an infinite periodically
supported beam can be obtained using the response of a finite
periodically supported beam. Provided the finite beam has
enough spans, the ratio of velocities in the first two spans will
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Mechanical Engineering, Indian Institute of Science, Banglalore 560 012
INDIA; email: sonti@mecheng.iisc.ernet.in.
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be a good estimate for the value e® of the corresponding infinite
beam. The match between the two propagation constants will
be close in the attenuation zones. In the propagation zones of
the finite beam, its resonance behavior will show up.

Thus, a finite periodic structure looks like an infinite
periodic structure from the two spans immediate to the driven
span. And if one needs to know the frequencies which will
be transmitted or attenuated from the excitation point, only a
single span modeling needs to be performed (like in the infinite
case).

There is another advantage. In an actual finite periodic
structure, the supports differ from each other to within
statistical bounds. Using the theory presented here, the
propagation constant experimentally obtained from the finite
structure corresponds to an overall support condition which
can be mathematically identified. The identified mathematical
support becomes the model for the finite as well as the infinite
system.

Following the theoretical development, an experiment is
conducted on a finite periodic beam (See Fig. 2). Frequency
Response Functions (FRFs) which are ratios of the velocity
response and the applied force Fourier transforms are obtained
from a hammer impact test on the finite periodic beam and
the ratio of the FRFs from the first two spans is used to obtain
the propagation constant. A reasonable qualitative match is
obtained with theory.

2 LITERATURE SURVEY

Dynamics of periodic structures have been studied using
the linear matrix difference equations®, the transfer matrix?,
the z-transform* and wave propagation methods™s. Sen
Gupta® presented a method to find resonance frequencies of
finite periodic structures using the infinite periodic structure
propagation constant. As part of finite structures, Mallik
and Mead'’, Mallik and Murthy'" and Murthy and Nigam'?
investigated the dynamics of homogenous rings. More

complex systems such as layered rings were investigated by
Reddy and Mallik'3!,
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Fig. 1. (a) Sketch of infinite periodic beam, (b) amplitude constant a and phase constant b from Evler theory.

3 THEORETICAL ANALYSIS

Figure 2 shows a 5-span-6-support beam with an overhang
on the left. The span numbers and support numbers are given
below the spans and supports, respectively. The span length
is denoted by length L. It is assumed that all the supports in
the periodic beam have # as the transmission coefficient and »
as the reflection coefficient. The following derivation is based
on Fig. 2.

If a wave of unit amplitude traveling to the right is incident
on the fifth support, it will be transmitted into the fifth span as
te”* at the distance x to the right of the support. The constant
Jis V=1. Atthe sixth support (which is the last support) it will
have an amplitude f¢7**. If the sixth support has a reflection
coefficient r,, then the wave reflected from the support has
an amplitude tr e”*" and travels towards the left (towards
the fifth support). It reaches the fifth support and gets partly
reflected into the fifth span and partly transmitted to the fourth
span. The reflected wave has an amplitude #rr e?** and the
transmitted wave has an amplitude #»,e %2, The reflected

Hammer .
Accelerometer Positions wave transmitted

out of span §

"
i : .
/ incident unit

wave from left

Position )

waves within
span 5 r

Y ——————
L=0.4m

Supports

Fig. 2. The 5-span-6-support experimental setup with the ham-
mer and accelerometer locations.

— L

wave travels to the right and gets reflected at the sixth support
as trr Je¥ . This wave travels to the left and at the fifth support
gets reflected as #°r ’e ¥** and transmitted as £*rr ’e #**. This
reflection and transmission will continue until a steady state
condition is reached.

Thus, within the fifth span at a distance of x from the fifth
support there is a train of right traveling waves (RTW) and a
train of left traveling waves (LTW) given by

RTW =te™ +trrje”Me™™ +orirfe e ™ .. (1)
LTW =tre™™e™ +urrie”™e™ +urirje*™e™...  (2)

both of which form a geometric series with the common ratio
given by rr,e . Provided the magnitude of r is less than
one, the two series can be summed and written as

= ikx

RTW =—"5 3)
l=rre™’
t =2iK1 Ry

Lrw =" ¢ )
1=rre™

The transmitted wave coming out of the fifth span (at the
fifth support) is also a geometric series and is given by

2 ~2 )KL
r ) tne

W, =r,e ™ L4+ rr e ™ +ririe =
I=rre

2 A1
Thus, if a wave of amplitude A (instead of unity) is incident
from the left onto the fifth support, the total wave reflected
out of the fifth span is given by
2 =2 JKL
W = A._:’_f___.}. Ar,

=2 KL
1-rre



where Ar is the reflection from the fifth support immediately
after incidence (prior to transmission into the fifth span). Thus,
the reflection coefficient of the total span number 5 as seen by
a wave of amplitude A at the fifth support is given by

Similarly, for a wave incident from the left onto the fourth
support, the entire beam to the right of the fourth support can
be given by an equivalent reflection coeflicient
£ e
s

Vg, =—+tr.

" I—rr“c"’“
And similarly for the third, second and first supports, the
cquivalent reflection coefficients are

I‘I'HL’""M
r'n = l=rr o™ +1
4
f.r“c_-’“
R o
1
2 =24,
r'r.e”"
= 1= rr,e™™ s
L2

respectively.

If a wave of unit amplitude traveling to the right is incident
from the overhang portion onto the first support then the
response within the first and second spans at the point x = a
within each span is given by

ELY]

te O
u/ - — (l+r,e .vAI.e.llu)
R Y .
L2
and
,e-IAI te-/Ku R
r =~2/KL .rku
”;' - =2 AL (l+ rne )’

. =2k .
l=rr.e 1=rr,e

respectively. The distance x = a is measured within each span
from its left support, i.c., for each span, x = 0 is at the left
support of that span. Notice that the expression for ¥, has an
extra term in front in comparison to #,. This is the amplnude
of the right traveling wave component in the first span incident
on the second support.

The ratio of the two responses after canceling the common
terms is given by

W, I=rre ™ 1+re " e™

= , ————=¢" &)

W, et 14 e M

This ratio is a good estimate of ef of the infinite beam where
g is the complex propagation constant. Using the calculation
above (Eqn. (5)), the amplitude constant a for the finite beam
in Fig. 2 is shown in Fig. 3 with the curve for an infinite beam
superimposed on it. The values of # and r for a simple support
(which allows no vertical displacement, but allows rotation)
are” 1 =0.5(1 = i) and r =0.5(1 + §). Here, r, = =1 for the
beam shown in Fig. 2. As can be seen, in the attenuation
zones both the curves match closely. This match will occur
provided the finite beam has at least 5 or 6 spans and the ratio
of responses from the first and second span will give the best
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Amplitude constant for the finite and infinite beam
1 ] |

- finite
+ _infinite]

Ty » T -

"

e
°
'

o4
P
v

&
“
'

¢
>
'

05-

Amplitude constant “a"
o
S
'

03-

6 8
Nondimensional wavenumber KL

Fig. 3. Comparison of amplitude constants between an infinite
and a finite periodic beam.

result. It is important to leave out the overhang portion where
excitation is given and hence is not part of the periodicity.
It may be noted that although ef is obtained (analytically or
experimentally), the amplitude constant a is of main interest.
The phase constant b is known once the values of a in the
attenuation zone are known.

In Fig. 4, a plot of a from L% is compared against that

obtained from / (Eqn. (5)). The inaccuracy in using the

fourth and fifth spans is evident.

The reason for this inaccuracy can be seen in Egn. (5). The
r,’s become equal to each other within the attenuation zones
as one proceeds more and more to the left from the fifth span
to the overhang which is the source of excitation. Physically,
as the number of spans increases beyond a certain value, the
beam looks almost infinite from the overhang side (except in
the propagation zones where the number of resonances keep
increasing). The attenuation value reaches a saturation value.
This can be verified by plotting all of the r,’s. Since r,, and
r,, are almost equal in the attenuation zone, the second rano
in Eqn. (5) cancels out and even in the remaining ratio we
replace r, with r,, and write

",’ 1 - ’,rL:e«.'-‘lKl
VV te-/A‘L ‘ (6)

The above expression is a very good approximation to e¢ (and
a) of the infinite beam in the attenuation zones. (The value
of a in the propagation zones is zero for the infinite beam). It
even has the 1/t dependence as given in Ref. [1].
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Fig. 4. Comparison of amplitude constants using the response
Jfrom the first two spans (al2) and the last two spans (a45)
in a finite periodic beam.

4 EXPERIMENTS WITH A 5-SPAN-6-
SUPPORT BEAM

4.1 The Setup and Measurements

The experimental setup consists of a five span aluminum
beam with six supports as shown in Fig. 2. Each span is 40
cm long. There is an overhang 40 ¢m long on the left side.
The excitation is given in this overhang portion of the beam.
Each support is constructed to behave like a simple support,
i.e., the vertical motion at the support is arrested and the
rotation is allowed (as shown in Fig. 5). A groove is cut into
the underside of the beam, such that a corresponding section
of the support snugly fits into it. The top part of the groove is
cylindrical and so is that of the inserted part of the support. The
supports are then bolted to a heavy iron block forming the base.
The experimental results, however, show that this support
does deviate from the intended simple-support behavior. The
experimental beam properties are given in Table 1.

Table 1 — Material and geometric properties of the aluminum beam

ngzﬁi P IT; thickness width
62¢9 N/m’ 2699 Kg/m® 0.3 0.0l m 0.02 m

The beam is excited with an impact hammer (B&K Type
8210) at a distance of 7.5 cm to the left of the first support
from the free end. The mobility measurements (made with two

holes to fix the support

] T on the base
H 0.01' m
P A

cd rJ 7

"" ,::/ &
Ry
2 0.005 mh# 0.02m
7 4
section of the beam
support

Fig. 5. Schematic of a “simple support”.

accelerometers B&K Type 4508) are taken at 8.5 cm left of the
second support and 8.5 cm left of the third support as shown in
Fig. 2 and 20 averages are taken in arriving at the final mobility
FRFs. Coherence function is used to ascertain the quality of
the measurement. A multi-channel Pulse (B&K Type 2885)
was used to obtain the two mobility FRFs simultaneously and
the propagation constant is then computed from these FRFs.
If the two FRFs are given as

v (@) v, (@)
F(w) F(w)

where v, (@) and v (@) are the velocity spectra at the
accelerometers 1 and 2, and F(®) is the spectrum of the force,
then the propagation constant g = a + jb is given by'

. _FRF,

FRF,”

FRF, =

and FRF, =

The amplitude constant a is then given by'

).

The above result is for a finite beam. However, as mentioned
earlier, the ratio of velocities from the first two spans has
attenuation zones closely approximating that of an infinite
beam as shown in Fig. 3. The propagation zones have a
complex behavior due to the resonance of the finite periodic
beam. Thus, one can find the propagation constant g (hence
a) of the infinite beam using that of the finite beam. In the
attenuation zone (which is typically of interest), it exactly
resembles the infinite beam and in the propagation zones the
infinite beam has zero values for a.

e'!

a= log(

4.2 Results

The two frequency response functions (at the two
accelerometer positions) are shown in Fig. 6. The left figure
is for accelerometer | and the right for accelerometer 2. The
typical periodic structure behavior can be seen where sets
of resonances are separated by a long antiresonance zone



