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Certain approximations commonly used in the absolute calibration of a scanning monochromator are ex-
amined in terms of the response of the instrument to a monochromatic input. The absolute irradiance
due to any spectral feature in the neighborhood of Xo is commonly computed from the expression W =
AB(Xo)/H(Xo), where A is the area of the spectral feature as recorded by the monochromator output trace,
B(X) is the spectral irradiance of a standard source, and H(X) is the response of the monochromator to B(X)
when the monochromator corresponds to wavelength X. As an example, approximations used in justify-
ing such calculations are examined and applied to an Ebert 0.5-m monochromator. For the case chosen,
the approximation is shown to be valid to an accuracy of 1.5% to 2%, depending upon assumptions made
in the calculation. It is found that the most serious error for this example is introduced by changes in
the sensitivity of the monochromator over a wavelength interval comparable with that of the spectral
feature under investigation. A second source of error is found to be the change in the irradiance of the
standard source over a wavelength interval comparable to the instrument resolving power.

Introduction

A common spectroscopic problem is the determination
of the relative or absolute irradiance of various spectral
components of a radiating source. The spectral com-
ponents may be a set of relatively monochromatic
atomic emission lines, more polychromatic molecular
emission bands, continuous emissions from hot bodies, or
combinations of these three types.

The spectral irradiance may be determined by sepa-
rating the incoming radiation into its spectral compo-
nents by the use of a spectrometer or monochromator.
The intensity due to each component is then measured
by the system detector. This simple solution is com-
plicated by the fact that the response of the spectro-
meter or monochromator is not the same for all wave-
lengths of incident radiation. The detector output,
whether it is film density, phototube current, or any
other measured quantity, will be different for equally
intense monochromatic incident radiations of different
wavelengths. To overcome this difficulty, it is common
practice to calibrate the spectrometer by recording the
detector response to a known irradiance, such as the
blackbody standard source operating at a known tem-
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perature. The standard technique is to measure the
area of the spectral feature as recorded by the mono-
chromator in scanning the relevant wavelengths. This
area is multiplied by a calibration factor obtained as the
ratio of the standard source irradiance at some wave-
length, representative of the spectral feature, and the
monochromator response to the standard source when
the monochromator is set to the same representative
wavelength.

There are certain approximations involved in such a
computation, most of which arise because of the finite
resolution of the instrument. The monochromator will
respond to a monochromatic input at a range of instru-
ment settings around the nominal wavelength. This
leads, of course, to the finite recorded area of a sharp
spectral line. During the calibration procedure, how-
ever, the instrument setting is constant; but the re-
sponse is due to radiations from the continuous source
with a range of wavelengths centered around the nomi-
nal instrument setting.

The purpose of this article is to examine the validity
of using the second of these measurements to calibrate
the first. This may be done by considering the mono-
chromator as a linear filter, an approach that has been
used profitably in many calculations involving resolution,
absorption, and line shape. . 2 The theory will be de-
veloped for the general case and then 0applied, as an
example, to the calibration of a 4000-A line using an
Ebert 0.5-m monochromator.

The General Case

Let T(X, A) be defined as the response of an instru-
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ment to a monochromatic input, 3(X' - X), when the
instrument is set at A. Further, let Xo be the wave-
length for which T(X, A) is a maximum. For some
instruments it may be more useful to define X0 as the
centroid of T(X, A0), or as the midpoint of the chord con-
necting the two points of T(X, A0 ) which are half the
maximum, or some other way of defining the center of
T(X, A0). The general development that follows is valid
for any such choice.

The instrument response to an input G(X) (represent-
ing the spectral irradiance of the spectral feature under
investigation) as a function of the instrument setting is

F(A) = f G(X) T(X, A)dX. (1)

In these terms, the total irradiance of the spectral fea-
ture is

= f G()dX; (2)

and the area of the feature as recorded by the instru-
ment is

A = f F(A)dA = f G(X) T(X, A)dXdA

f'aO (3)

= J G() I(N)dx,

where

I(X) = J T(X, A)dA. (4)

Note that I(X) is the area under the curve of the mono-
chromator output vs monochromator wavelength set-
ting with a monochromatic input of unit intensity and
wavelength X.

With the instrument set at A0 (representing a charac-
teristic wavelength of the feature being considered), the
instrument response to the standard source is

H(Ao) = J B(X) T(X, Ao)dX, (5)

where B(X) is the spectral irradiance due to the standard.
A and H(Ao) are the experimentally measured quanti-

ties, and B (X) may be assumed to be known, either from
theoretical calculations or from prior calibration.
From these, it is hoped that W, the irradiance of the
spectral feature, may be estimated. To this end, it may
be noted that I(X) and B(X) are slowly varying functions
of X. That is, the changes in I(X) and B(X) will be small
over the wavelength interval for which G(X) and T(X, A0)
have significant value. If we set

1(X) = N(Xo) + [I() - I() (6)
= I(N) + AI(X),

and

B(X) = B(Xo) + [B(X) - B(Xo)]

= B(X,) + AB(X),

the integrals representing the experimental measure-
ments become

A =f G() I(X0 )dx + G(X) AI(X)dx

= M(X0 ) f G(X)dX + f G(X) AI(X)dX

= IN(Xo) + f G() AI(X)dX,

and

H(Ao) = f B(X0) T(XN Ao)dx + f AB(X) T(X, Ao)dx

= B(X0 ) f T(X, A,)dx + f AB(X) T(x, Ao)dx.

(8)

(9)

Equation (8) may be solved for W, the desired irradi-
ance, using the definition of 1(X) from Eq. (4), with the
result that

A - G() AI(X)dx

We °

f T(X0, A)dA

A - fJ G(X) Al(x)dx] [fT(X Ao)dx] 

T(X, Ao)dx L fT(o0 A)dAj

The numerator in the last term on the right-hand side of
Eq. (10) is the instrument response, when set at A0, to
white light of unit intensity. The demoninator is the
area of the curve of monochromator output vs mono-
chromator setting with a monochromatic input of unit
intensity and wavelength X0. For many situations,
these terms are nearly equal, so their ratio is almost
unity. The integral in the denominator of the first term
on the right-hand side of Eq. (10) may be eliminated by
using Eq. (9), with the result that

A - fG(X) AI(x)dx

W = B(X0) 0

LH(Ao) - JAB(X) T(X, Ao)dX

X T(x, AO)dX
X o .A~dX (11)

I T(>A, A)dA

Expanding the expression to first order in the correction
terms AI(X) and AB(X) yields.

T(X, Ao)dx _ G(X) AI(X)dx

H(Ao) Ji T(Xo, A)dAW=A \0] Li 0 L' 

AB(X) T(X, Ao)dX

+
10

H(Ao)
(7)

1. (12)
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Thus,

W A[B(Xo)/H(Ao)] (13)

is a reasonable estimate for the total irradiance of the
spectral feature if, and only if, the obvious approxima-
tions to the right-hand side of Eq. (12) can be justified.
This is the expression commonly used for such computa-
tions.

The approximations used in justifying the use of Eq.
(13) instead of Eq. (11) are not generally valid, and
should be evaluated for each experimental situation, as
is done in the next section for a typical case.

Example

As a typical case we consider an Ebert 0.5-m mono-
chromator with a distance between entrance and exit
slits of about 8 cm and a grating ruled with 11,800 lines/
cm. In this type of instrument, the light from the
entrance slit is collimated, dispersed, and focused on the
exit slit. The light from a monochromatic source
forms a single image of the entrance slit (for each
grating order) which is moved past the exit slit by
either a change in grating position or wavelength. If
we assume that the optical system and detector have a
flat response over a wavelength interval large enough to
include T(X, A) either with X = constant or with A
constant, the transmission of the instrument will be
proportional to the overlap of the image of the entrance
slit (image width 2a) and the exit slit (width = 2a).
This simple expression should then be multiplied by a
slowly varying function of wavelength g(X) representing
the wavelength dependence of detector sensitivity and
reflection coefficients of the various optical elements.

Letting x0 be the distance between the center of the
image and the center of the exit slit,

A,
Entrance

Ray

Grating Normal

C
Exit

Ray

Fig. 1. Monochromator geometry. The vector AO represents
the direction of the entrance ray incident upon the grating at 0.
OC represents the direction of exit rays which are focused on the
exit slit. OB is the bisector of the angle AOC. Incident radia-
tion with wavelength will be diffracted in the direction OD,
which will coincide with OC when the monochromator setting,

represented by the angle a, corresponds to X.

sin(ce + 0/2) + sin(a - ) = X/d, (19)

or

since cos(0/2) + cosa sin(0/2) + sina cos3 - cosa sing = X/d.
(20)

For f3 = /2 (which implies X = A), this expression re-
duces to

2 cos(0/2) sina = A/d. (21)

Expanding Eq. (19) in terms of y,

7'(X, A) = 9(X) fa D(x - xo)dx, (14)

where D(x - x0) is the intensity distribution of the
image of the entrance slit.

To find an explicit expression for xo(X, A) we must con-
sider the geometry of the monochromator. The angles
used are defined in Fig. 1. The angle 0 is fixed as the
angle between a ray passing through the center of the
entrance slit and the ray passing through the center of
the exit slit. The following relations obtain

a + /2 = i, (15)

a - 0 (16)

d(sini + sino) = nX, (17)

where d is the grating constant, and n is the order of
diffraction.

For the Ebert geometry, if y = -/2,

xo = f tany fy, (18)

where f is the focal length of the spectrometer mirror,
and y is assumed to be small.

By substituting Eqs. (15) and (16) into Eq. (17), the
following relation is obtained (for first order):

sina cos(0/2) + cosa sin(0/2) + sin(a - 0/2)cosy
- cos(a - .0/2) sin-y = X/d. (22)

By making the approximations cos-y = 1 and siny = ,
and substituting A/d for 2 cos(0/2) sin(a) from Eq. (21),
Eq. (22) may be reduced to

(A - X)/d = y cos(a - /2), (23)

which gives

y = (A - )/[d cos(a - /2) (24)

Using this result, the integrals in the first term on the
right-hand side of Eq. (12) may now be written explicity
as

f T(X, Ao)dxJo\(+ ( fA -X Vid.(5
= JUg\ J- DX- d cos(ao -/2) dx dX (25)

and

f T(Xo, A)dA

= fWg() f-+ D(x _ f(A - X) )dx dA. (26)
.10 -a d cos(a -/2)
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The integrals may be put into similar form by sub-
stituting

f(A, - X)
d cos(ao - 4/2)

into Eq. (25) and

d - -fdX
d cos(ao -<>/2)

(27)

Z = [f(A - Xo)/d cos(a-

dZ = fdA/d [cos(C - /2)]-1

+ (A - Xo) sin(a - /2) (28)
2d cos(a - -p/2) cos(k/2) cosa (

into Eq. (26).
The limits are set by observing that, in both integra-

tions, the entire range for which T has nonzero values is
covered, the only difference being in the direction.
Reversing the sign of Eq. (25) and exchanging the limits,
the integrals of Eqs. (25) and (26) may be written as

f T(x, Ao)dX

-d g(y) f D(x - y) cos(ao - 0/2)dx dy (29)
f _. a

and

d +.
T(A0, A)dA = -

f 
(Y0) f +aD(x - z) [cos(a - /2)]-1_ a 

(A - Xo) sin(a - /2) -1
2d cos(a - /2) coso/2 cosa d

Numerical evaluation of the two terms in brackets in
Eq. (30) at a wavelength Xo of 4000 A over a wavelength
interval of 20 A gives, for the monochromator described
(a ;-; 14°, 0/2 ::: 4°30', y < 3%)

[cos(ao - /2)V-1 = 1.01 (31)

and

I T(X, Ao)dX
- 1.00 < 0.01.

f T(Xo, A)dX

(34)

The second approximation requiring justification
involves the value of the quantity

f G(X) AI(X)dx

A

f 0(X) f [T(X, A) - T(Xo, A)]dAdA

f
(35)

G(X) I(X)dX

Using Eq. (26), the A integral in the numerator may be
written as

AI(X) = f [T(X, A) - T(Xo, A)]dA

= if -f (X)D(x - f( - X))
gS(Xo)D~x - f(A - X) dAdx

d cos(a - /2)) d

= 12 [9(X) £ h(u, x) D(u)du
f-a ugX = al

- g(X0) f h(uo, x)D(uo)duo] dx,
,Io = uo

where

u = x - {f(A - X)l/ [d cos(a -/2)]

h(u, x) =

d cos(a- /2) x-u sin(a -/2) ]1 dA_ ~~ 1 _ +- ___ = -,
f 2f cos(o/2) cosa du

and

ul = x + {fX/[d cos(a - /2)]

(36)

(37)

(A - Xo) sin(a - /2) < 2.03 X 10-3. (32)

2d cos2(a - / 2) cos(a/2)cosa -

Thus, Eq. (32) may be neglected in comparison with Eq.
(31).

The remaining problems in comparing the integrals
are the variation of cos(a-0/2), which changes with A
but not with X, and the variation of g(X), which varies
with X but not with A. The evaluation can be made by
noting that

Ymin ff(x)dx < f y(x) f(x)dx < yxnax ff(x)dx, (33)

where y (x) and f(x) are positive in the range of integra-
tion. To scan the 20-A wavelength interval in the
neighborhood of 4000 A, a changes by less than 3 min of
arc. This corresponds to a change in cos(a - q/2) of
0.02% and a change in g(X) of 1%, as estimated for our
system by measuring the system response to the black-
body standard as a function of spectrometer setting.
Thus,

with obvious extensions with X = X0 in the integral over
Uo.

The limits of integration in both the inner integrals of
Eq. (36) are broad enough to include all values of u for
which D(u) has nonzero value. Thus, the integrals are
not changed if we set u = ulo = + c. Then the two
integrals are identical. Noting that I(X) may be
written in these terms as

I(X) = g(X) f h(u, x)D(u)du,

AI(X) is given by

AI(X) = {1 - [g(Xo)/g(X)l}I(X),

and Eq. (35) becomes

f G(X) AI(X)dx f [1 - g(Xo)/g(x)]G(X)I(X)dX

A J I
Io G(X)I(X)dx

(38)

(39)

(40)
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Over the 20-A range of wavelengths covered by G(X),
g(X) differs from g(Xo) by less than 0.5%. Thus, using
the theorem of Eq. (33),

J G(X)AI(X)dX/A < 0.005. (41)

The third and final quantity requiring evaluation is

f AB(X) T(X, Ao)dx E AB(X) T(x, Ao)dA

H(Ao)
(42)

E B(X) T(X, AO)dX
0

For a blackbody standard source the spectral intensity
is given by Planck's law:

B(X, T) = CX-5 (eC2/XT - 1)1. (43)

For T 10000 C and X = 4000 A, C2/XT 28, and
Eq. (43) may be represented reasonably by the Wien
radiation law:

B(X, T) CoseC2/XT (44)

For constant T = 10000C, AX = 4-1 A [representing
the wavelength width of T(X, A0), or the instrument re-
solving power], and X0 = 4000 A,

AB(X)/B(X) = [C,/XT) - 5] AX/Xo 23AX/Xo -z4 0.006. (45)

Using the theorem of Eq. (33) once again,

f f AB(X) T(X, Ao)dX/H(Ao) < 0.006. (45)

This term is probably considerably smaller than this
value. For example, if T(X, A) were symmetrical
around X = X0, the linear error term represented by Eq.
(45) would give no contribution to the integral of Eq.
(42), and the evaluation would have to be extended to
the second term in the Taylor series expansion of AB(X),
which is quadratic in AX and leads to an upper bound
value of 0-1 for the quantity in Eq. (42). A better
estimate might be to assume that D(x - x0 ) is symmetri-
cal about x = x0, in which case

f AB(X) T(X, A)dX

11(A0) - L (• o [g(X yB0O) irnax

- (0.006) (0.01). (47)

To this must be added the value resulting from the
(AX)2 term in the expansion of AB(X), yielding a limit,
for the case of symmetric D(x - x0 ), of about 10-4.

Combining the results of Eqs. (34), (41), (46), and
(47), Eq. (12) reduces, in this example, to

[- A B(Xo)/H(Xo)l/WI < 0.015 or 0.02, (48)

depending upon which estimate of the last error term is
used.

Conclusion

The results of the previous section indicate that the
commonly used method of calibrating spectroscopic
measurements must be carefully examined for each
combination of wavelength, spectroscopic analyzer,
calibrating source and resolving power, to mention the
most obvious of the variables involved. Such justifica-
tion must show that the values of the error integrals of
Eq. (12) are appropriately bounded. Unless proper
precautions are taken and appropriate justifications
provided, all absolute and relative spectral irradiance
measurements are subject to unknown systematic
errors, and the ultimate precision attainable by such
measurements is severely limited.

The most serious error arises from changes in detector
sensitivity and optical transmission of the spectrometer
over the wavelength interval included in the spectral
feature. If this interval is small, as is the case for a
sharp spectral line, the calibration procedure can be
justified to within approximately l%. If the interval is
large, as for an extended molecular band system, the
problem is more difficult. In this case it may be
necessary, for example, to calibrate the instrument out-
put point by point before measuring the area under the
spectral feature.

A second source of error is the change in the emission
of the blackbody standard over a wavelength interval
comparable to the resolving power of the instrument.
This will contribute only a small error to measurements
made with high resolving power, but may contribute
significantly if, for example, the resolving power of the
instrument is compromised to achieve greater sensitivity.
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