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Solutions of the Helmholtz equation with boundary
conditions for force-free magnetic fields

S. Neil Rasband® and Leaf Turner

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

(Received 31 August 1979; accepted 5 February 1981)

It is shown that the solution, with one ignorable coordinate, for the Taylor minimum energy state {resulting in
a force-free magnetic field) in either a straight cylindrical or a toroidal geometry with arbitrary cross section
can be reduced to the solution of either an inhomogeneous Helmholtz equation or a Grad-Shafranov equation
with simple boundary conditions. Standard Green’s function theory is, therefore, applicable. Detailed

solutions are presented for the Taylor state in toroidal and cylindrical domains having a rectangular cross
section. The focus is on solutions corresponding to the continuous eigenvalue spectra. Singular behavior at

90 ° corners is explored in detail.

. INTRODUCTION

The toroidal axisymmetric reversed-field pinch is
a concept that may lead to a fusion reactor with the
potential advantages of high chmic heating, beta values
Z10%, low forces on field coils, and no physics re-
strictions on the choice of aspect ratio., The early ob-
servations on the British ZETA experiment' as well
as on the more recent Italian ETA-BETA II experiment?
show that the discharge has a natural tendency to form
a reversed-field configuration with the low levels of
current fluctuations. As a result, these configurations
are of great interest.

In 1974, Taylor proposed a hypothesis® that appears
to account for many of the gross features of the ob-
served “quiescent” plasma behavior in ZETA. He sug-
gested that small but finite resistivity in the presence
of magnetohydrodynamic turbulence drives the plasma
toward a state of minimum magnetic energy, fB"’ dv,
for a fixed magnetic helicity, fA *Bdv, and a fixed
magnetic flux. The Euler equation of this variational
problem leading to the Taylor state is the equation de-
scribing a force-free magnetic field configuration

Vx B(r)=2B(r). (1)

The spatial constancy of X is a direct consequence of
Taylor’s variational principle. Equation (1) currently
provides the cornerstone of any description of the mag-
netic fields during the relaxation stage of a reversed-
field pinch. Therefore, recognition of the existence of
its solutions for a variety of geometries is crucial.
After such recognition, one may consider introducing
non-ideal effects. For example, one might expect the
presence of a finite resistivity to reduce the tangential
components of the current density in the neighborhood
of a highly conducting wall. However, this reduction
need have only a negligible effect on the magnetic field
profiles within the plasma, the features of which re-
main well-described by Eq. (1).*

For a multiply-connected geometry such as that of a
toroid or the plasma configuration considered by Taylor
{a straight cylindrical geometry with a circular cross
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section bounded by perfectly conducting wall), the eigen-
value A has a continuous range of values which specifies
the ratio of net toroidal or longitudinal current to net
toroidal or longitudinal magnetic flux, For a simply
connected domain such as the spheromak configuration
only a discrete geometrically determined spectrum for
A exists,

There has been recent concern regarding the possibil-
ity that the continuous nature of the spectrum of A for
the geometry considered by Taylor would not occur in
the more general, multiply-connected geometries.® To
allay these fears, we have extended the analysis by
demonstrating that the existence of a continuous spec-
trum for A is neither an artifact of the straight cylin-
drical geometry nor of the circular nature of the cross
section.

We shall prove that for any value of A, the solution
of Eq. (1) with one ignorable coordinate in either a
straight eylindrical or a toroidal geometry with ar-
bitrary cross section can be reduced to the solution
of either an inhomogeneous Helmholtz equation or a
Grad-Shafranov equation with simple boundary con-
ditions. Standard Green’s function theory is therefore
applicable.

We shall present analytical solutions for the case of
rectangular cross sections, with relevance to force-
free magnetic field regions within cusp geometries.®
Figures depicting magnetic field lines for specific
examples will also be represented.

In Sec. II, the basic equations are reviewed and the
notion established. In Sec. III, we examine in detail
the behavior of force-free fields in the neighborhood
of corners, In Sec. IV, we consider force-free mag-
netic fields in cylinders and toroids.

1. BASIC EQUATIONS

We confine our attention to the Taylor state where B
satisfies Eq. (1) and X is a nonvanishing constant. The
usual method of finding force-free magnetic fields in a
specific context is by application of the Chandrasekhar —
Kendall” technique: If the potential ¥ is a solution of the
Helmholtz equation

V24 A%p=0, (2)
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then
B=Vx[ay+(1/M)Vx(ay)] (3)

is a solution of Eq. (1). The vector a is either a con-
stant unit vector or the position vector x.

The typical boundary condition is that B n=0 at the
surface of a conducting container with n being the usual
outward normal. These boundary conditions, when
implemented in terms of the potential ¢, invariably lead
to inhomogeneous boundary conditions. Often these
boundary conditions involve mixed partial derivatives
of ¢, depending on the geometry involved and the sym-
metries assumed.

{Il. SOLUTION IN THE NEIGHBORHOOD OF
CORNERS

In this section we consider a coordinate system
(x',x%,x°) in which x' and x? are arbitrary curvilinear
coordinates in a plane orthogonal to a fixed unit vector
x® corresponding to the direction of increase of x*. We
shall confine our aitention to situations where the po-
tential g and hence the vector field is independent of x>,
Taking a to be x°, we obtain, from Eq. (3), the (con-
travariant) components of the magnetic field

1_ -1/2 ad) .

]
T 2, B=Bny @)

ax

B BZ :g-l /2
The quantity g is the determinant of the metric tensor
&, and g/ is the metric inverse.

Several authors have considered solutions of the
Helmholtz equation in the neighborhood of corners.
For the most part, however, they have been concerned
with standard homogeneous boundary conditions de-
scribing scattering of waves at the corner. Reference
8 is a notable exception and the results obtained in this
section are consistent with the theorems of Wigley.

We shall illustrate the behavior of force-free fields in
the neighborhood of corners and shall show the singular
nature of field derivatives for 90° corners.

8-15

Let two conducting surfaces which meet at a corner
coincide with the coordinate surfaces x'=const and x*
—const. The boundary condition B -n=0 implies that
first and second derivatives of ¢ vanish on these sur-
faces, i.e., on x'=const,

;iz:o, 5)

for all x%. Similarly on x*=const

for all x'. At the corner both Egs. (5) and (6) hold.
Thus, from Eq. (2) we find
8°B
2 44+ XB,=0. 7
2¢* oion? T VB, 0 (7

For a 90° corner where g'?=0, either B,=0 or

92 B,/8x'0x? ~ «atthe corner, Weillustrate this behavior
explicitly by calculating B, = A$ in the neighborhood of
90° and 45° corners.
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Using Green’s functions,'® we shall calculate the sol-
ution of Eq. (2), valid in the neighborhood of a corner.
We require § = {;,=const on the boundary and then con-
sider the function x=¢ —¢,. This function satisfies
the inhomogeneous Helmholtz equation with the spatially
constant source term, -A%y,, but satisfies homogeneous
boundary conditions. Then,

Yx)= ¢, + (477)'1)\24)0[ G(x,x")d?*", (8)

where G(x,x’) satisfies
V3G + 3G = 416 (x = x "), (9)

and the integral is over the region of interest with
G(x,x’) vanishing if either x or x’ is on the boundary.
In two dimensions the singularity in the solution for a
point source is of the logarithmic type and thus the
dominant contribution to the solution comes from
Y,(#), the Bessel function of the Neumann type. To

Y, one could add const XJ,,, but without closing off

the region bounded by the corner, the constant remains
undetermined. In the solutions to be given, sucha
constant would appear in the coefficient of the polynom-
ial type terms and, for simplicity, we set the constant
equal to zero,

Using the method of images we find for a 90° corner
G(x,x) = =m(Y N[ (x— )2+ (y =y )?] 7%
~ Y (= 22+ (y+y 2P 2 = Y A (x + x 72
+ (v =y PP+ Y+ 2P + (v + 9 PT /2D
(10)

Substitution of result (10) into Eq. (8) and a tedious but
straightforward calculation gives, for y=4,+ x, where

X=xP+x?
X = (C/mH[-2(In(/2)+ ¥) + 3]xy = xy In(x® +x?)
—x?tan(y/x) —y*tanx/v)}, (11)

X® = (A/12m1{-[-2(In{(V/2) + ) + 11/3]xy (X + %)
+ xv(x? + 1) In(x? + %)
+x*tan™(y/x) + y*tan~Hx/y)}. (12)

The Bessel functions of Eq. (10) have been expanded to
quadratic order in x and y. v is Euler’s constant
=0.5772. It is straightforward, using Egs. (11) and
(12), to show that the Helmholtz equation is indeed sat-
isfied and that for ¢,#0, 8%/ axdy, diverges logarith-
mically at the corner, i.e., as x and y ~0.

In analogous fashion using a Green’s function obtained
by the image technique we find a solution for a 45° corn-
er. With =y, + x and x only calculated to lowest ord-
er,

AZ -
b=, + ——%[xz tan? L _y2tant X
T X y

1 [ _12y+§+t _12y—§)d
—4[ g(tan 3 an 3 I3

x ty
_1_ -x ty 1 2x+§_ -1 2y+§) ] 3
+5 [_m g(tan 7 tan . dci. (13)
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In this case, we use as coordinates, (x,7n)=(x',x?),

where = (x +y)/V2.
It follows easily that g'>=1/v2 and
I &y 32¢)
axt ax' T ax an —ﬁ(ax oy ay? (14)

Using the results (13) in Eq. (14), we find at the corner
that

3°B -V2X*B,

L —
ol ox® 2 ’

which explicitly verifies Eq. (7), and which yields a
well-behaved 8°B,/ ox* ox® for this case.

IV. CYLINDERS AND TOROIDS WITH
RECTANGULAR CROSS SECTION

For a region completely enclosed by a conducting
shell, we obtain the Green’s function in terms of a sum
of normalized eigensolutions of the homogeneous prob-
lem, rather than by using the method of images as in
Sec. II.

The analysis of this section was also carried out for a
cylinder of circular cross section and we obtained re-
sults in exact agreement with the solutions for arbitrary
X given in Ref. 3.

A. Cylinders

To obtain the boundary condition on ¢ at the conducting
wall bounding a straight cylinder of arbitrary cross
section oriented along the z axis, we write out Eq. (3)
explicitly where a =z and restrict our considerations
to z-independent solutions. We find B= V§X Z + zZA
and that B-n=Vy- (2xfi). Thus, the requirement B-fi
=0 implies the constancy of ¥ on the boundary.

Confining our attention to a rectangular cross sec-
tion, we choose the z axis to coincide with one corner
of the cylinder and take § = y,=const at the conducting
boundary.

For y,=0, we obtain the eigenvalues and normalized
eigensolutions of Eq. (2),

2.2 2.2
mow nem
+

)\fm:—aT- pB B m,n=1,2,. ey (15)
2 . mMUX . n|y
Uy =75 sin——sin—==, (16)

where the sides of the rectangular cross section in the
x and y directions are @ and b, respectively. Using
Eq. (8) where

U _(x)U_ (x')
P ’

Gx,x')= -4n Z 1

and with A#)_,
tion to Eq. (2),

=1, + 47‘277 Z (2n+1)" smg-'-l-ib})ﬂ

for any m and n, we obtain, as a solu-

x [A2a? — (2n + 17%a%/b*] [cos {(5 ~x/a)
x [M2a? = (2n + 1)*n%a?/ b*] /%)

x (cos {3[3%a? - (2n + 1?72/ b2/ 3})1 - 1] (18)

933 Phys. Fluids, Vol. 24, No. 5, May 1981

In obtaining the final form of Eq. (18), we have used
the result™

©

E [@n+1)2a® -b*] " cos(2n +1)x

n=0
s b b
=4ah sm[(z —x);] sec 5, (19)

which holds for 0 <x <7,

Equation (18) is the solution of Eq. (2) for A not equal
to one of the eigenvalues of Eq. (15). If ¢,=0, then
A=, for some m and n, and the solution of Eq. (2)
is, of course, just A=constxU_,

Figure 1 gives sample field lines for a solution given
by Eq. (18).

B. Toroids

The rectangular toroid is the region defined in cylin-
drical coordinates Py Ry<y<R,, 0<0<2r,and 0 <z
=q, Choosing a =z and restricting our attention to
azimuthally independent ¥, we obtain, using Eq. (3),

B= Vszz+z)\¢+ v(af).

or in component form

1 %
B"z-;\- 9y 9z’ By =~

2 Bz_Li(rﬂL). (20)

ar’ 2 Ay v oy

To obtain the appropriate boundary condition on y we
may proceed as follows. We let r,(z)=const denote the
curve of intersection for a poloidal plane with a toroid
of arbitrary cross section. Then, we note that the nor-
malto the conducting surfaceis proportionalto #~87,/82%,
where f is the unit radial vector., Expressing
B :n=0 at the boundary in terms of ¥, using the com-

FIG. 1. Sample B-field lines satisfying VX B=3B in a cylinder
of square cross section having unit area. Field lines are dot-
ted when y >0.5. The intersection curves of a z=const plane
and the magnetic surfaces for the chosen field lines are shown
on the upper plane.
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ponents of B given by Eq. (20), leads to »8y/ 8r =const
on the boundary. For the rectangular cross section
this implies that if we set y=x+ ¢, In{r/»,), where ¥,
and 7, are constants, then x will satisfy the inhomo-
geneous Helmholtz equation

(V2 + X)X = =A%y In(r/7,) , e

with mixed homogeneous boundary conditions: x=0 at
z=0and z=aqa, and also 9x/6r=0at r=R, and »=R,.

We construct a Green’s function from the eigensolu-
tions to Eq. (21) with §,=0.

Let
fo(pr) = Yl(pRo)Jo(p'r) _Jl (PRO)YO(PV) . (22)
The roots p,, are determined from the equation
1 df,
— =0 =0 23
P Adr|,.g, ’ (23)

with the eigenvalues A given by
N =p? +n’n/d (24)

The normalized eigensolutions are

U (r,2)=A_f,(p,r)sin(nrz/a), (25)
with
A, =[(ma/2)(REfip R,) —4/T°E)] /2. (26)

Using these solutions as an orthonormal basis for the
Green’s function of the form specified by Eq. (17), we
then obtain, with x#x_ for any m and »,

r o~ A% fo(p,7)
= . 1ln —+ rar? fulial ALt 1A
Py, 2) =y, nrO Ta mz::lp.:,n(xz_pi)

x (fol p,Ry) +2/7p RoNcos[(a/2 — 2)(X* — p2 )" /2]
x{cos[(a/2)(A% - pZ) V2]}1 - 1) 27

FIG. 2. Sample B-field lines satisfying VX B=3B in a toroid
of square cross section having area 4b%, The aspect ratio is

2 and only a 90° section of the toroid is shown. The field lines
are dotted when (z/b) >1.0. The curves of intersection of the
¥ =0 and ¥ =7 /2 planes with the magnetic surfaces for the
chosen field lines are shown. The toroidal component of the
B field reverses at (»/b)=1.3 and (r/b) =2.9 for (2/6)=1.0.
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where we have again used Eq. (19) and a Wronskian re-
lation for the Bessel functions. [Note that ¥(r, 2)

=i, In(r/r,) + (7\2/411)11)0] G{x,x")In(r'/r,)d?x’, where
d®x'=dr’dz’ and the domain of integration is the rec-
tangular cross section.] Again if $,=0, then x=2__
for some m and n, and the solution becomes = const
xU_ . Figure 2 shows sample field lines for a solution
given by Eq. (27).

This force-free problem may also be formulated in
terms of the familiar Grad—Shafranov equation by de-
fining the flux function & =#8y/38». The Helmholtz
equation for ¥ then becomes the Grad-Shafranov equa-
tion for ®. The boundary conditions correspond to
& = const on the boundary. Similar comments can be
made for the straight cylinder.

V. SUMMARY

In the neighborhood of 45° and 90° corners, and within
cylinders and tori of rectangular cross sections, we
have obtained the scalar Helmholtz potential satisfying
boundary conditions relevant to force-free magnetic
fields. Differentiation of the potential then gave the
fields explicitly. Both continuous and discrete eigen-
values were considered.
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