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New critical behavior in Einstein-Yang-Mills collapse
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We extend the investigation of the gravitational collapse of a spherically symmetric Yang-Mills field in
Einstein gravity and show that, within the black hole regime, a new kind of critical behavior arises which
separates black holes formed via type | collapse from black holes formed through type Il collapse. Further, we
provide evidence that these new attracting critical solutions are in fact the previously discovered colored black
holes with a single unstable mod&0556-2820199)03024-4

PACS numbg(s): 04.25.Dm, 04.40-b, 04.70.Bw

[. INTRODUCTION with the discontinuous behavior in order parameter which

It is by now relatively well known that gravitational col- frequently accompanies first order phase transitions, this is
lapse can produce rich structure even within highly simpli-called type | behavior. For the case of the Einstein-Yang-
fied systems such as spherical symmetry. In particular, neavlills (EYM) model studied if5], the static solution appear-
the threshold of black hole formation, the strong field dy-ing in type | collapse is the well-knowm=1 Bartnik-
namics of general relativity exhibits critical phenomena.  Mckinnon solution[10], while for the massive scalar model

The pioneering work demonstrating this critical behaviorconsidered i 6], the type | threshold solutions are appar-
in the collapse of a single massless scalar figldhas been ently unstable members of the family of “oscillating soliton
supplemented by investigations of gravitational wa\@&sa  stars” which have previously been constructed by Seidel and
perfect fluid[3] and a variety of other matter models, all of Suen[11], albeit in a different context. Finally, in the case of
which exhibit the same general characteristics. Indeed, to oUEinstein-Skyrme(ES) collapse considered if7,8], a static
knowledge no system which has been studied in this contesxtype | solution was observed, which, as in the EYM case,
has been shownot to exhibit this critical phenomena. had previously been constructed and studied within a purely

At this point in the subject’s development, dynamical staticansatz[12]. As noted above, each of these three mod-
evolutions(solutions of the full partial differential equations els also exhibits type Il behavior—in the case of massive
of motion), in tandem with analytic and perturbative calcu- scalar collaps¢6], the type Il critical solution is the same
lations have given us a reasonable understanding of many a@he originally observed in massless scalar colldfigeand,
the phenomenological details of critical behavior in collapseinterestingly, in the ES model, the type Il solution is evi-
(See[4] for an excellent review of the subject. dently identical[9] to that observed in the EYM modgb].

In light of this, one of the more interesting discoveries in Heuristically, one expects type Il behavior amy collapse
some of the more recently studied mods-9] is the pres- model where the initial configuration can be made suffi-
ence of two distinct types of behavior at the threshold ofciently  “kinetic-energy-dominated” (ultra-relativistig,
black hole formation. Specifically, in these models, certainvhereas type | behavior is expected only in those models
regions of parameter spacmitial-data spaceare found to  which have an intrinsic length scaler equivalently, mass
yield near-critical collapsing configurations which display scalg, and which have some type of self-interaction which
self-similarity and, in the super-critical regime, a scaling lawcan “balance” the attractive gravitational interaction.
which is continuous in the black hole mass. By analogy with  As noted in the concluding remarks [&], hints of further
the theory of phase transitions, this is called a type Il transiinteresting phenomenology in the EYM model have been
tion. However, it is found that other regions of parameterseen in the super-critical regime where all evolutions are
space lead to critical collapse which has a staircperiodio characterized by black hole formation. In this paper we study
solution as an intermediate attractor—this results in a blackhis regime in more detail and present evidence for a new
hole transition with a nonzero mass gap. Again, in analogytype of critical transition in which the intermediate attractors

are the “minimally unstable’(one unstable mode in pertur-
bation theory colored black holes discovered by Bizfi8],

*Electronic address: matt@einstein.ph.utexas.edu and independently by Volkov and Gal'ts¢¥4]. This result
"Electronic address: ehirsch@bach.liu.edu is, of course, analogous to the discovery that thel
*Electronic address: marsa@einstein.ph.utexas.edu Bartnik-Mckinnon solution is the intermediate attractor for
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type | collapse. Crucially, in order to accurately model thethe phase space, we will likewise make the “magneiic
dynamics of super-critical solutions for long times after thesatz” As described in the Appendix, together with appropri-
formation of an event horizon, we use black-hole excisionate gauge choices, thamsatzeffectively sets all but one of
techniques. Such methods were first successfully employetthe components of the gauge connection to zero.
in a dynamical context by Seidel and Sudrb], and have In addition to making these gauge choices we must also
subsequently been studied and implemented by many othehoose a coordinate system. As mentioned in the Introduc-
authors(see[16] and references therein for a more extensivetion, in order to evolve the system for long times to the
discussion However, to our knowledge, this is the first time future of black hole formation, we choose maximal time
that excision has been used to study critical collapse, and waices and aredlor radia) spatial coordinates.
feel our results highlight the power and potential of the strat- As detailed in the Appendix, the equations can now be
egy to elucidate issues relating to the formation and longwritten in the following form. The evolution equations are
time evolution of black holes. Our adoption of excising tech-
nigues necessitates the use of a different coordinate system
than that used ifi5]—that work used polar slicing and areal
spatial coordinates, a system which generalizes the usual
Schwarzschild coordinates to time-dependent spacetimes. As . |a !
is well-known, thet= constant slices in the polar or areal CI):{EH—I—IB(I)} )
system cannot penetrate apparent horizons—thus, for all
practical purposes, the slices remain outside of event hori- o
zons and therefore cannot be used in conjunction with exci- w= aH-ﬁ-ﬁW' 4
sion. We therefore retain areal spatial coordinates, but adopt
maximal slicing—in this case the sliceto cross apparent
and event horizons, and excision techniqoas be used.
The outline of the remainder of the paper is as follows. w' =d (5
The next section describes the EYM model and the equations

!
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and the constraint equations are

of motion we subsequently solve numerically. We pay par- L (a2 2« ) ra’
ticular attention to gauge and coordinate choices, as well as® =& | =~ + rrako 1+ a +47Ga(S—3p)
to regularity, boundary and initial conditions for the fields. In (6)
Sec. Ill we describe our numerical scheme, focusing on our
specific coordinate choices and on some details of our black- 1-a2 3 o
hole excising technique. In Secs. IV and V we describe our @’ =a T ErasKg +4mGrap (7)
results and conclusions.
o 3 ., no
Il. EQUATIONS AND ASSUMPTIONS Ky == Ky'+47G g%ar? (8)
We are interested in investigating the gravitational col- .
lapse of a self-gravitating Yang-Mills gauge field. To begin, Where the matter stress-energy terms are given by
let us consider the action for an EYM theory: a%(1—w?)? 1 L
S—-3p= 25—+ 22 (P°+II9) 9
R 1 29°r gr
s=f d*%V—0| am=— = F3, F (1)
167TG g (e 2 2.2
a“(1—w°) 1 ) )

. —_— p= za— t 5077 (PO,
whereFf‘w is the Yang-Mills field strength tensor. On vary- 49°r 29°r
ing the action with respect to the metrg;,, , and the gauge (10
connectionAZ, we get the general equations of motion. We

We also note that we have an algebraic relation for the sole

simplify these further by making some additional assump'component,B, of the shift vector8 = (3,0,0):

tions. In particular, we choose the gauge group t&Ghi2)
and focus on spherically symmetric gravitational collapse. B=ark. (12)
This places restrictions on both the spacetime metric and the

form of the gauge connection. Even so, the equations we |n addition to the equations of motion, we need boundary
derive have a rather general form as can be seen in Eqgonditions on the fields. These are determined by demanding
(A6)—(A22). Subsets of these equations have been considegularity at the origin of spherical symmetry, and by enforc-
ered in a variety of different contexts. In particult]  ing an outgoing condition on the radiation fields at large
evolved a version of the Einstein-Yang-Mills equations inradius. This latter condition assumes that there is no radia-
polar (Kj=0), areal p=1) coordinates with the additional tion coming in from outside our finite mesh. This is not
assumption on the Yang-Mills field that the connectj@i\ completely true, as in general there will be backscattering of
was purely magnetic. the propagating fields off regions of high curvature. How-

Since our interest here is to consider the same model stuaver, if our domain of integration is large enough, the con-
ied in [5], but to penetrate into the super-critical regime oftributions from this scattering are dynamically negligible.
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The demand for a regular origin results in boundary con-Thus, we can compute a characteristic funct®such that
ditions on the fields at=0. From Eqgs(6) and(7) it can be ) ;
seen that'(t,0)=a’(t,0)=0, as well asa(t,0)=1. In ad- 1 if arkKg=py,

dition, ,B(t,O)zKZ(t,O)zo. For the matter fieldsw(t,0) c 0 if aer>MHa
==*1 andw’(t,0)=0, so that the auxiliary variabld$ and
& are both zero at the origin. We note that these conditionsvhere uy is a threshold value, ostensibly unity, but set to a
constrain the Yang-Mills fieldw, to be in a vacuum state at slightly larger value in practice—typicallyy,;=1.1—to en-
r=0. sure that the inner boundary lies strictly within the apparent
For initial data, we choose a time-symmetric kink for the horizon. At any time, the characteristic function tells us
gauge potential which was previously used®h This pulse  which grid points are deemed to be insigé(r,t)=0] or
is given by outside[ C(r,t)=1] the horizon. As the system evolves, we
recomputeC at each time step and simply “discard” any
tanl‘(u) (12 grid points for whichC=0. The radial locations of these
grid points will then generally satisfiy<ry(t), wherer 4(t)
is the instantaneous inner boundary of the computational do-
w(0y)=0, (13) main, and roughly coincides with the location of the apparent
horizon. We needho boundary conditions for the functions
with the parametera andb chosen such that(0,0)=1 and  evolved with equation&)—(4) since the characteristic direc-
w’(0,0)=0. The two parameters and s define the center tions atr =ry are such that only events witter; are in the
and width of the pulse, respectively. They also serve as thpast domain of dependence. We can therefore use the dis-
two parameters which we will vary in order to explore the crete form of the evolution equations upaod includingthe
phase space. We note that the implementation of this data ifiner boundary point. However, the constraint equatiéys
[5] was incorrect but ultimately had no effect on the overall(8) must have an inner boundary condition. Until a horizon is
conclusions of that work. We have fixed the implementationformed, we can simply use conditions derived from regular-
of the kink data here and note a minor improvement in thdty. Once a horizon forms, however, we need an alternative.

1+a e 2019)?

br
1+ —
S

w(0,r)=

conservation of energy. If the horizon initially forms at time=T and radial coordi-
nater =R, then for a functiorf € {a,K %}, we usef(R,T) as

Il. NUMERICAL APPROACH AND BLACK HOLE the initial boundary value fof. We then evolvd along this
EXCISION boundary using the evolution equation forThe evolution

equations that we use are as follows:
It should be emphasized that we do not incorporate any

form of adaptive mesh refinement into our numerical ap- - 3 a ) 3 02

proach. Instead, we use a fixed uniform grid with a mesh a=p|4mra‘p+ o -(1-af)+gra’k,

spacing which is sufficiently fine to uncover the new critical

behavior. The drawback to this approach, of course, is that +raK§s—4mraej,, (17

we are unable to fully resolve the discretely self-similar so-
lutions which arise near the type Il black hole threshold.
However, our primary interest here is in the supercritical
regime, and we are satisfied that previous work has estab-
lished the nature of the type Il transition. a )
What is important in this work is the use of black hole +2r2a2(a _1)_ra_2' (18)
excision technigues which allow us to evolve well beyond
the formation of the black hole. We discretize the evolutiongjnce the lapser does not have an evolution equation, we
equations(2)—(4) using two time levels with centered time gy leavea and 8 “frozen” at whatever specific values
differences, and angled spatial differences as described iﬂP\ey have when excision at that particular radiyg(t), be-
[16]. The constraint equations are then integrated outwarg; o n
from the origin. Equatior{6), the slicing equation, is rewrit-
ten in first order form

] 1
KZ=3K§(—aK§—€

. +am(aS/-Bjy)

Finally, we note that the programs which we used to gen-
erate the results that we will describe below were written in
RNPL (Rapid Numerical Prototyping Languaggl7]. This

!

§'=6 a2 + 2_;{ a2—1+ cra +47Ga(S—3p) language has been specifically designed to facilitate the dif-
a f r a ferencing and subsequent numerical solution of partial dif-
(149 ferential equations.
a’=o. (19 IV. RESULTS
The_ ap.parent horizon equation in maximal-areal coordi- On evolution of the equations, we verify previously ex-
nates is simply amined aspects of this system as discussé@]inn particu-

) lar, we find that in different regions of the parameter space,
arky=1. (16)  there are both types of critical behavior at the threshold of
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black hole formation. We observe type | behavior, whereinwhich can be characterized by an asymptotic value of the
black holes turn on at finite mass and the intermediate attragauge potential olv=+1.
tor is then=1 Bartnik-Mckinnon solution. We also confirm It is worth commenting here that our terminology has be-
aspects of type Il collapse in the appropriate region of pacome a bit loose. We have been speaking of type | and type
rameter space. This includes such things as echoing and thlecollapse well into the super-critical regime when in fact
scaling relation for the black hole mass. However, becausthese terms originally referred to types of critical behavior in
our code does not employ mesh-refinement, we are unable tovery small neighborhood of the exact critical solutions. For
fully reproduce the results ¢5]. However, as discussed pre- instance, as one moves away from the type Il threshold, the
viously, our main emphasis here is to address the outstandirdjscrete self-similarity of the exactly critical solution is no
question of what happens in the super-critical region and téonger clearly exhibited by configurations which collapse to
the future of black hole formation. a black hole. In addition, a significant fraction of the mass
On evolving into the Supercritic&b'ack hole regimE, we present will end up in the black hole. This is to be contrasted
find that the dynamics of the resulting spacetimes exhibit twgVith the tiny black holes that can be formed in near-critical
distinct types of behavior which we describe below. It turnstYP€ Il collapse. It should also be made clear that type | and
out that these can be characterized by the asymptotic vacuuf§Pe !l do not refer to differentypesof black holes. The

state of the Yang-Mills potentia. These two behaviors are €nd-state exterior geometry in all of these evolutions is a
related to the type | and type Il critical collapses identifiedSChmIrZSChIIOI black hole. However, we are, in a sense, gen-

. eralizing the concepts of type | and type Il collapse to dis-
previously. tinguish two kinds of collapsdynamicsin the super-critical
The original type | collapse is described, in part, by a

black hole which forms with finite mass. Slightly super- regime.

o : . It quickly becomes clear that these regions are well de-
critical type | evolutions, now continued well to the future of fined in parameter space and it becomes natural to try and

black hole formaﬂon confirm this beh:'?lVIOI’, as one wouldfinqg the boundary separating them. Indeed, the problem re-
expect. In addition, after the black hole is formed, part of theyyces to tuning a single parameter across the threshold be-
remaining Yang-Mills field outside the horizon radiates towyeen these two types of collapse dynamics. What we find is
infinity and some of it falls down the black hole causing thethat at the threshold between these two types of dynamics a
black hole to grow. How much larger the initial black hole static solution emerges as the intermediate attractor for this
becomes through the infall of additional matter depends, imew near-critical collapse. The type Il side of this threshold
part, on where in the parameter space the evolution begingxhibits the following near-critical evolution. As the field
Eventually, however, and in accordance with what might becollapses, a finite mass black hole is formed. The remaining
expected from the no-hair theorems, the exterior spacetimfield exterior to the black hole then approaches a static, non-
settles down to a Schwarzschild black hole with the Yangrivial configuration. After some time the field then departs
Mills field in its vacuum state. In general, for slightly super- from the static configuration and disperses to infinity leaving
critical collapse(either type | or type I, as the remaining the original black hole virtually unchanged. The gauge po-
mass-energy radiates away the gauge potential approachestial in this case approaches the vacuum valueof+ 1
one of its two vacuum valuesv=*1. For the case of and thus this side of the threshold is part of the generalized
slightly super-critical type | collapse, in the asymptotic re-type Il collapse dynamics. The type | side of this threshold
gime, the gauge potential always picks thes —1 vacuum has, of course, a very similar development initially. Again, a
state [recall that our initial data family(12) has w(t,0)  black hole of finite mass is formed exactly as before and is
=+1 andw(t,0)=—1]. This turns out to be true even for followed by the approach of the exterior Yang-Mills field to
collapsing configurations which are no longer just slightlythe static solution. However, as the field leaves the static
super-critical but are, in fact, well into the black hole regime.solution, most of the matter collapses into the black hole
We can thus characterize a sort of “generalized” super-with only a small portion radiating off to infinity. The gauge
critical type | collapse by the asymptotic value of the gaugepotential, in this case, approaches the vacuum states of
potentialw. =—1. Figures 1 and 2 show the development of these two
When type Il collapse is considered, the overall picture iscases overlayed with the static, intermediate attractor which
broadly the same. Again, after the original black hole formsis the exactly critical solution.
(at finite mass since we are slightly super-criticabme of Since we are in the super-critical regime, these new, ex-
the matter remaining in the region exterior to the black holeactly critical solutions are themselves black holes with Yang-
falls into the black hole causing it to grow and the rest isMills hair. Indeed, these attractors are the colored black
radiated off to infinity. The resulting exterior spacetime holes discovered by Bizon and independently by Volkov and
again settles down to Schwarzschild with the Yang-Mills Galtsov[13,14] shortly after the discovery of the Bartnik-
field in its vacuum state. However, the gauge potential in theéMckinnon solutions. In general, these colored, static black
slightly super-critical type Il collapse approaches its otherhole solutions are described by their horizon radiois re-
vacuum valuew— +1. Similarly, further into the type Il latedly, their massr,, and the numben of zero crossings of
super-critical regimgwhere we should emphasize the dis- the Yang-Mills potentialw. The solutions which serve here
cretely self-similar nature of the critical solution is no longer as intermediate attractors in the dynamical collapse are the
clear and where the black holes which form all have finitelowest lying colored black holes with=1. Subsequent to
mass$ we find “generalized” super-critical type Il collapse their discovery, it was shown that these black holes are un-
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FIG. 1. Time sequences of the Yang-Mills potentiafor both FIG. 2. Time sequence of the Yang-Mills potential as shown in

sub- and super-critical evolutions, overlayed with a static, colored~jg, 1—here the wave forms are plotted using a logarithmic radial
black hole solution. Both evolutions are calculated to machine preggordinate.

cision, i.e.,|p— p*|/p* =10 5. The solid line is the static solution,
the dashed line is the generalized type | solution, where part of th
Yang-Mills field of the colored black hole collapses to a second,

larger black hole, and the dotted line is the generalized type | } itial ; I - fi . |
solution, in which the remaining Yang-Mills field surrounding the 1(r;ry). Initial data for collapsing configurations close to

colored black hole disperses to infinity. The calculations showr®n€ Of the critical solutions will approacty(r;ry,), and re-
here use the kink data defined in Efj2). We fix the center of the ~Main in its vicinity for some amount of timé, as measured,
pulse to bex=2.16, and perform our parameter search on fOr €xample, by an observer at infinity. The evolution will
(=p), the width of the pulse. These plots use the original radiaithen peel off the static solution with the remaining field ei-
coordinater. The initial colored black hole that forms has a radius ther dispersing to infinity or collapsing and adding a finite
of r~0.55 on a domain from=0 tor =40; a fixed uniform radial amount of mass to the already present black hole. One can
grid with 3201 points is used for all calculations. In the generalizedquantify the amount of time spent near the static solution in
type | case, the second and larger black hole forms with a radius dhe same way as with the type | collapse. The time, as mea-
r~1.69. Note that after the black hole forms, we do not plot pointssured by an asymptotic observerTis- — \ In|p—p*|, where
at locations within the horizon radius. This illustrates that our ho-the coefficient\ is the characteristic time scale for the col-
rizon excision continues the evolution only outside the black holejapse of the unstable solution,(r;r,) or, in other words,
As can b_e seen, the agreement between the static solution and thge inverse Lyapounov exponent of the single unstable mode.
|ntermeFi|ate attractor to Whigh the dynamical splutions temporarily With our evolutions, we confirm this relation and can cal-
evo!ve is e>§cellent._ The s_tatlc sc_;lutlon is obtained by solving theculate the value oh in the manner described if5]. For
static equatlonﬁordlnary differential equation€ODES] for a col- Figs. 1 and 2, where the static solution has a black hole
ored black hole of radius=0.55. radius ofr,~0.55, we confirm the linear relation and find
N~4.88 as shown in Fig. 3.
stable. In particular, the colored black holes with label Once we have established the existence of these new, col-
have 4 unstable mode$18-2(0. Of these & unstable ored critical solutions, it then becomes straightforward to
modes,n arise from spherically symmetric perturbations in map out parameter space for our choice of initial data. Figure
the gravitational sector away from staticity and another 4 does this for the main region of interest. Figure 5 is a
unstable modes arise from perturbations in the sphaleron sesehematic drawing of the mass of the black hole as a func-
tor, i.e., away from the magnetansatzfor the Yang-Mills  tion of the two initial data parameters.
fields. Since we are solving the nonlinear evolution equations Figure 4 should be compared to Fig. 1[i]. There, it
while remaining within the magnetensatzwe would expect was suggested that there was a coexistence between black
our data to excite all the unstable modes within the gravitaholes exhibiting both types of critical behavior. However,
tional sector while exciting none of the unstable modes in thehat suggestion was based on evolutions which did not actu-
sphaleron sector. As a result, we would expect thel ally continue to the future of the resulting black hole. Thus,
family of solutions to have a single unstable mode, thus makup to this point, only the region marked “dispersion” had
ing it relevant to critical collapse. The picture of this new been well explored. Evolutions had been performed in the
critical solution in the black hole regime having a single black hole regime, but detailed understanding of what hap-
unstable mode thus accords perfectly with previous underpened in collapse was largely limited to times prior to the
standing of both type | and type Il collapse. formation of the black hole. Now, with our use of apparent
This new critical behavior within the black hole regime is, horizon boundary conditions, we can explore more com-
in many ways, qualitatively similar to that of the type | col- pletely this super-critical region. Thus, what is actually

_\\&
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Fapse. Solutions in one of these new interpolating families
symptote to one of the static, colored black hole solutions,
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FIG. 4. Plot of the phase space for the two parameter family of
kink data given by(12). Each point represents a critical solution at
a level of |p—p*|/p*=<10* and sits on one of the thresholds
separating two of the three phases. The open hexagons represent
type | critical solutions which separate configurations that disperse
from those that form a finite size black hole. We confirm that the
intermediate attractor in this case is the=1 Bartnik-Mckinnon
solution, as found ifi5]. The open triangles represent type I criti-
Thus we can estimate by measuring this total time as a function cal solutions _vvhiqh s_eparate configuration; that disperse from those
of Injp—p*|. A straightforward least squares fit of this data yields that form an |nf|n|te3|rn_al black _hoIe. The flll_ed hexagons r(_epresent
\~4.88. the new black hole critical solutions separating the generalized type
I and type Il collapse dynamics as described in the text. These
critical solutions are the=1 colored black holes. They are param-
etrized by their horizon radius, such that as the “triple point” is
approached along the critical line, the radius of the black holes goes
to zero.

FIG. 3. Plot of the elapsed tim@s measured by an observer at
infinity) in generalized type Il collapse before the zero ofwhigeld
crossesr =35. As the exactly critical solution is approached in
parameter space, i.ga;—p*, the dynamical fields spend more time
on the critical solution; specifically, the lifetime of the static con-
figuration isT~ — \In|p—p*|. Since the early part of the dynamics
is unchanged ap—p*, the total time before the lingering field
escapes and passes a finite radial value depends orjly-ep*|.

present is two well-demarcated regions in the black hole re
gime separated by a critical line, as described above.

V. DISCUSSION

We have presented evidence for the existence of a newritical regime were present in earlier calculati¢g4].) Na-
type of critical phenomena within the black hole regime ofively, this might be somewhat surprising since it means that
the spherically symmetric Einstein-Yang-Mills model. Previ- nearby configurations in the space of initial data can have, in
ous work on critical behavior in this model has establishedprinciple, very different sized black holes as their end-states.
that both type | and type Il critical solutions emerge in suf-  Further, we note that when the colored black holes were
ficiently general families of initial data. However, that earlier originally investigated, it was found that thh static col-
work was unable to accurately evolve to the future of blackored black hole is parametrized by its horizon radiys, In
hole formation. Using a different coordinate system and hoaddition, asr,—0, the black hole solution approaches the
rizon excision techniques, we are able to evolve well into thecorrespondingnth Bartnik-Mckinnon solution. In the dy-
black hole regime. We find that these two different types ofnamical context discussed here for the 1 solutions, one
critical collapse can be generalized to types of collapsingiotices an interesting manifestation of this result. The col-
spacetimes with a distinguishing characteristic being thered black hole attractors separating the type | and type Il
asymptotic vacuum value of the Yang-Mills potential. Theseregions in Fig. 4, are likewise parametrized by their horizon
two “phases” of black hole formation are separated by aradius in such a way that as the “triple point” is approached,
critical line in phase space such that dynamically formingr,—0, and the Bartnik-Mckinnon solution emerges as the
black hole solutions exactly at criticality are the static, relevant attractor separating type | collapse from dispersion.

=1 colored black hole§13,14. This, of course, fits nicely Finally, it is natural to ask if other collapsing systems
within our conceptual framework that critical solutions are might exhibit similar behavior. Indeed, one can simply look
intermediate attractors of co-dimension one. in the literature on static, hairy black holes and point to a

It is worth emphasizing a few observations at this point.number of systems that one would conjecture should have a
First, it is important to note that the mass of the final “phase diagram” similar to Fig. 4. Such theories should
Schwarzschild black hole in the evolution will be discontinu-include Einstein-Yang-Mills coupled to a dilatqEYMD)
ous across this new critical line in Fig. @n fact, indications and the Einstein-Skyrme system. However, there are other
of jumps in the black hole mass-spectrum in the superexamples of systems which exhibit both type | and type Il
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WhereFfw is the Yang-Mills field strength tensor. As usual,
Greek indices range over the four spacetime dimensions and
Latin indices indicate group indices. Spacetime indices are
raised and lowered by the metdg, , while we will not lower
group indices. Thus, repeated upper grduptin) indices
will be summed over.

The equations of motion are found by varying the action
with respect to the fields. Varying with respect to the metric
yields the Einstein equations

1 1 1
— _ a an a «
%GMV_TMV_F ZF/H\FV _zg,quaBFa B .
(A2)
p_1 : . . .
Varying with respect to the connectmﬁ gives
1

D, Far=V Faury AP FChr =0, (A3)

FIG. 5. This is aschematiglot of the final black hole mass as

a function of the two initial data parameters. One should compare \with the general equations in hand we are in a position to
this plot with Fig. 4. If one imagines lookingt@ 3 dimensional make some simplifying assumptions. To begin, we assume
version of that figure viewed from the upper right hand corner, theihat we have arg U(2) gauge field. In addition we will as-

result should be something like this. The zéflat) portion of the sume spherical symmetry. The most general parametrization
graph corresponds to dispersion of the collapsing fields. Exactlybf the spacetime metric is then

type Il critical solutions sit along the left side of the critical line

with the masses of super-critical black holes forming a continuous g?— (— o2+ a282)dt?+ 2a28dtdr+a2dr2+b2r2dQ?
transition from it. Exactly type | critical solutiongvhich are not (A4)
black holeg sit on the right side of the critical line which marks the

discontinuity in the black hole masses of super-critical black holeswhere the metric coefficients, B, aandb will depend on
Finally, the new transition is also a discontinuous one with thethe temporal and radial coordinatesndr and dO? is the
colored black holes sitting on the threshold between black holegisyal metric on the unit two-sphere. Likewise, the most gen-

formed via generalized type | and type Il collapse. eral parametrization of the gauge connection is now
critical behavior. These include a massive scalar field(@nd A=urdt+v 7dr+ w2+ w r*)dé

is conjecturegl a massive, charged scalar fidll]. These

latter systems are particularly intriguing in light of the results +(cotf 7 +w r?—w r%)sin 6d .

presented here because though they do exhibit type | and

type Il critical behavior, no-hair theorems suggest that thesyhere the coefficients, v, w andw will all depend ont
systems will not have static black hole solutions other tharhnd r. The 72 are the Spherica| projection of the Pauli Spin
Kerr (or Schwarzschild, in spherical symmetryt should  matrices and form an anti-Hermitian basis for the group
thus be of interest to investigate the nature of the supersy(2) satisfying[ 7, 7°]= €227 with a,b,c e {r, 6, ¢}. We
critical regime for these, and possibly other, systems. note that this connection is invariant under a gauge transfor-

mation of the formU=e%®)7 The field strength derived
from this connection is

This research has been supported in part by NSF grants e .~ , =
PHY93-18152, PHY94-07194 and PHY97-22068. M.W.C. F =7 (v—u")dt/Adr+[(w—uw)dt+(w’—vw)dr]
would like to thank P. Bizon and T. Chmaj for useful com- P b ~ ~,
munications[21], including descriptions of unpublished re- A(7do+7%sin6dp) +[(w+uw)dt+ (W' +vw)dr]
sults which indicated that the parameter-space regime stud- b A Oci 4 oo o .
ied here might lead to colored black holes. A(r?d6—77singd¢) — (1-w—w?)7'd6/\sin 6d .

(A5)
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APPENDIX . . . .
With these assumptions, the equations of motion for the

We collect here some of the details involved in deriving Yang-Mills fields can now be written in first ordéin time)
the equations of motion used in the paper, and to presentfarm as
somewhat more general framework for future work on the

Einstein-Yang-Mills system(EYM). The action for our - a | B a
model is IT=| pII+ gcp +uP—v IBP—I—EQ
R 1 aa B
= Ay [—ql —— a rauv o =5
S de 9{1677(3 g wF (AD) + 2 W(l-w W) (A6)
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. a | o
Pz{ﬂp‘l‘gQ —ull+v ,BH‘FE(D)
aa - ~
+pzr2W(1- w2 -w?) (A7)
Y’ =wIl-wP (A8)
Y=§(\7VCD—WQ)+,B(VVH—WP) (A9)

where we have used the definitions

a . - ~
H=;[W—uw—,8(w’—vw)] (A10)
d=w'—vw (Al11)

a - ~
P= E[W-l— uw— B(w’'+vw)] (A12)
Q=w'+vw (A13)
r2 |
Y—%(V—U ) (Al4)
We also have evolution equations f&r and Q:
o] 211+ po| %ot ol — w223y
—-g +,8 +UQ_V5 +BQ__WW
(A15)
'—-aP+ , Ry 'y e (I)-+ 2aaY
Q—_g BQ| —ud+vi~ B_WW,
(A16)

which follow from differentiation of(A11) and (A13) with

PHYSICAL REVIEW D60 124011

2 (rb)’ ’+1 rb b’,
“ab|lTa | Tz ™)) A
+4K" K+ 2K ?=167Gp (A21)
rb)’
! )(K(’(,—K',)—KZ'=47TGjr. (A22)

rb

Here, p is the energy densityj,, is the momentum density
ands',, s’, and S¢¢ are the stress energy components pro-
jected onto our spacelike hypersurface. Explicitly, we have

1 [ay? (1-w?-w?)?
P=ag? | b bir4
2
+W[Q2+CI)2+P2+H2] (A23)
C1 oAy (1-wP-w?)?
SrTag| ThT T g
2 2 2 2 2
+ bzlrzaz[Q +®+P+117] (A24)
, 1 [ay? (1-w?-w?)?
ag| BT e hze
jrz—m(HCD-FPQ). (A27)

As can be seen, we have chosen to write things in a fairly
general form. Indeed, this is the most general EYM theory
we could consider in spherical symmetry. We can thus con-

respect to time, and elimination of explicit time derivatives sider more general matter configurations, together with a

using the definitiongA10)—(A14).

greater variety of coordinate systems than have been consid-

Finally, the relevant Einstein equations are the evolutiorered to date. Subsets of these equations have been investi-
equations for the metric components and the components afated before in different contexts. For example, static ver-
the extrinsic curvature, together with the Hamiltonian andsions of these equations have been studied in order to

momentum constraints, as follows:

a=—aaK', +(aB)’ (A17)
N 6 B ’
b=—abK’,+ ~(rb) (A18)
KT — BT 4 oK' K 1ia"\" 2a|(rb)"|’
= BKe ek K212 ) Tab| a
+47Ga[S—p—2S,] (A19)
kY= BKO + ak Ok + [P ()|
H_:B /] a 4 (rb)Z a(rb)z a (r )
+47Ga[S—p—25Y,] (A20)

understand particle-like solutions and colored black holes. In
addition, [5] evolved a version of these equations in polar
(K?=0), areal p=1) coordinates with the additional as-
sumption on the Yang-Mills field that the connectién,®
was purely magnetic.

For our work here, we will also make this “magnetic
ansatz’ More specifically, we will assume that the electric
charge densityY, is identically zero. In addition to thian-
satz we also make the following gauge choiee=0. Mak-
ing this gauge choice leaves the connection invariant under a

gauge transformation of the forth=e?®" . From the defi-
nition for Y in Eq. (A14) we see that the functiom by these
assumptions, depends only brHowever, the residual gauge
freedom implies thatl is arbitrary up to a function of. We
can thus fix the remaining gauge freedom in the following
way. Choosingu=0 fixes the gauge up to a constant gauge
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transformation of the forn =e?" where s is now a con- w' = (A31)
stant. This has the effect of sendimgand w into linear

combinations of each other. such that choosing a value for o (32} 2a 2 14 2ra’

(such as zenopicks out a particular combination of these R R r? a a

remaining connection coefficients. Thus, without loss of gen-

erality, we can choose=0 and we see that in the context of +4mGa(S-3p) (A32)
this particular problem, the magnetimsatzhas effectively 1-a2 3
set all the fields butv to zero. o 3 62

As discussed in the body of the paper, we want to be able a=a—, * 2" Ko™ +4amGrap (A33)
to evolve the system for long times to the future of any black
hole formation. To this end, we choose a coordinate system 3
with maximal slicing:K=K", +K’+K?*,=0. We will re- Ko =— FK‘90+ 4G g%ar? (A34)

tain the choice of areal, or radial, coordinatés=(1) so that
the coordinate is immediately related to the area of origin-

where the matter stress-energy terms are given by
centered two-spheres.

Given all these assumptions, the equations which we must a2(1-w?)? 1

solve simplify considerably. The evolution equations are S— 3p=W+ W(®2+ 11%) (A35)
. a |" «aa )
II=|BII+ E(I) -‘rr—zW(l—W ) (A28) a2(1-w?)? 1 —

— (
p 47" + Zgzrzk@ +119). (A36)
. @ !
QZ[EHJFB(D} (A29) Finally, we have an algebraic condition for the non-
vanishing component of the shift vector

. o
w= al’H—,BW’ (A30) B=arK,’, (A37)

and the constraint equations are which follows from (A18) with b(r,t)=1.
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