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New critical behavior in Einstein-Yang-Mills collapse
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We extend the investigation of the gravitational collapse of a spherically symmetric Yang-Mills field in
Einstein gravity and show that, within the black hole regime, a new kind of critical behavior arises which
separates black holes formed via type I collapse from black holes formed through type II collapse. Further, we
provide evidence that these new attracting critical solutions are in fact the previously discovered colored black
holes with a single unstable mode.@S0556-2821~99!03024-6#
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I. INTRODUCTION

It is by now relatively well known that gravitational co
lapse can produce rich structure even within highly simp
fied systems such as spherical symmetry. In particular, n
the threshold of black hole formation, the strong field d
namics of general relativity exhibits critical phenomena.

The pioneering work demonstrating this critical behav
in the collapse of a single massless scalar field@1# has been
supplemented by investigations of gravitational waves@2#, a
perfect fluid@3# and a variety of other matter models, all
which exhibit the same general characteristics. Indeed, to
knowledge no system which has been studied in this con
has been shownnot to exhibit this critical phenomena.

At this point in the subject’s development, dynamic
evolutions~solutions of the full partial differential equation
of motion!, in tandem with analytic and perturbative calc
lations have given us a reasonable understanding of man
the phenomenological details of critical behavior in collap
~See@4# for an excellent review of the subject.!

In light of this, one of the more interesting discoveries
some of the more recently studied models@5–9# is the pres-
ence of two distinct types of behavior at the threshold
black hole formation. Specifically, in these models, cert
regions of parameter space~initial-data space! are found to
yield near-critical collapsing configurations which displ
self-similarity and, in the super-critical regime, a scaling la
which is continuous in the black hole mass. By analogy w
the theory of phase transitions, this is called a type II tran
tion. However, it is found that other regions of parame
space lead to critical collapse which has a static~or periodic!
solution as an intermediate attractor—this results in a bl
hole transition with a nonzero mass gap. Again, in analo
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with the discontinuous behavior in order parameter wh
frequently accompanies first order phase transitions, thi
called type I behavior. For the case of the Einstein-Yan
Mills ~EYM! model studied in@5#, the static solution appear
ing in type I collapse is the well-knownn51 Bartnik-
Mckinnon solution@10#, while for the massive scalar mode
considered in@6#, the type I threshold solutions are appa
ently unstable members of the family of ‘‘oscillating solito
stars’’ which have previously been constructed by Seidel
Suen@11#, albeit in a different context. Finally, in the case
Einstein-Skyrme~ES! collapse considered in@7,8#, a static
type I solution was observed, which, as in the EYM ca
had previously been constructed and studied within a pu
staticansatz@12#. As noted above, each of these three mo
els also exhibits type II behavior—in the case of mass
scalar collapse@6#, the type II critical solution is the sam
one originally observed in massless scalar collapse@1#, and,
interestingly, in the ES model, the type II solution is ev
dently identical@9# to that observed in the EYM model@5#.
Heuristically, one expects type II behavior inany collapse
model where the initial configuration can be made su
ciently ‘‘kinetic-energy-dominated’’ ~ultra-relativistic!,
whereas type I behavior is expected only in those mod
which have an intrinsic length scale~or equivalently, mass
scale!, and which have some type of self-interaction whi
can ‘‘balance’’ the attractive gravitational interaction.

As noted in the concluding remarks of@5#, hints of further
interesting phenomenology in the EYM model have be
seen in the super-critical regime where all evolutions
characterized by black hole formation. In this paper we stu
this regime in more detail and present evidence for a n
type of critical transition in which the intermediate attracto
are the ‘‘minimally unstable’’~one unstable mode in pertur
bation theory! colored black holes discovered by Bizon@13#,
and independently by Volkov and Gal’tsov@14#. This result
is, of course, analogous to the discovery that then51
Bartnik-Mckinnon solution is the intermediate attractor f
©1999 The American Physical Society11-1



he
he
io
y

th
iv
e
w

a
ng
h

st
al
su
.

al

o
xc
do
t

s
io
ar
ll
In
ou
c

ou

ol
in

-

e
p

se
t
w

Eq
si

in
l

tu
o

ri-
f

lso
uc-

he
e

be

ole

ary
ding
rc-
ge
dia-
ot

of
w-
n-

CHOPTUIK, HIRSCHMANN, AND MARSA PHYSICAL REVIEW D60 124011
type I collapse. Crucially, in order to accurately model t
dynamics of super-critical solutions for long times after t
formation of an event horizon, we use black-hole excis
techniques. Such methods were first successfully emplo
in a dynamical context by Seidel and Suen@15#, and have
subsequently been studied and implemented by many o
authors~see@16# and references therein for a more extens
discussion!. However, to our knowledge, this is the first tim
that excision has been used to study critical collapse, and
feel our results highlight the power and potential of the str
egy to elucidate issues relating to the formation and lo
time evolution of black holes. Our adoption of excising tec
niques necessitates the use of a different coordinate sy
than that used in@5#—that work used polar slicing and are
spatial coordinates, a system which generalizes the u
Schwarzschild coordinates to time-dependent spacetimes
is well-known, thet5 constant slices in the polar or are
system cannot penetrate apparent horizons—thus, for
practical purposes, the slices remain outside of event h
zons and therefore cannot be used in conjunction with e
sion. We therefore retain areal spatial coordinates, but a
maximal slicing—in this case the slicesdo cross apparen
and event horizons, and excision techniquescan be used.

The outline of the remainder of the paper is as follow
The next section describes the EYM model and the equat
of motion we subsequently solve numerically. We pay p
ticular attention to gauge and coordinate choices, as we
to regularity, boundary and initial conditions for the fields.
Sec. III we describe our numerical scheme, focusing on
specific coordinate choices and on some details of our bla
hole excising technique. In Secs. IV and V we describe
results and conclusions.

II. EQUATIONS AND ASSUMPTIONS

We are interested in investigating the gravitational c
lapse of a self-gravitating Yang-Mills gauge field. To beg
let us consider the action for an EYM theory:

S5E d4xA2gF R

16pG
2

1

g2 Fmn
a FamnG ~1!

whereFmn
a is the Yang-Mills field strength tensor. On vary

ing the action with respect to the metric,gmn , and the gauge
connection,Am

a , we get the general equations of motion. W
simplify these further by making some additional assum
tions. In particular, we choose the gauge group to beSU(2)
and focus on spherically symmetric gravitational collap
This places restrictions on both the spacetime metric and
form of the gauge connection. Even so, the equations
derive have a rather general form as can be seen in
~A6!–~A22!. Subsets of these equations have been con
ered in a variety of different contexts. In particular@5#
evolved a version of the Einstein-Yang-Mills equations
polar (Ku

u50), areal (b51) coordinates with the additiona
assumption on the Yang-Mills field that the connectionAm

a

was purely magnetic.
Since our interest here is to consider the same model s

ied in @5#, but to penetrate into the super-critical regime
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the phase space, we will likewise make the ‘‘magnetican-
satz.’’ As described in the Appendix, together with approp
ate gauge choices, thisansatzeffectively sets all but one o
the components of the gauge connection to zero.

In addition to making these gauge choices we must a
choose a coordinate system. As mentioned in the Introd
tion, in order to evolve the system for long times to t
future of black hole formation, we choose maximal tim
slices and areal~or radial! spatial coordinates.

As detailed in the Appendix, the equations can now
written in the following form. The evolution equations are

Ṗ5FbP1
a

a
FG81

aa

r 2 w~12w2! ~2!

Ḟ5Faa P1bFG8 ~3!

ẇ5
a

a
P1bw8 ~4!

and the constraint equations are

w85F ~5!

a95a8S a8

a
2

2

r D1
2a

r 2 S a2211
2ra8

a D14pGa~S23r!

~6!

a85a
12a2

2r
1

3

2
ra3Ku

u214pGrar ~7!

Ku
u852

3

r
Ku

u14pGS PF

g2ar2D ~8!

where the matter stress-energy terms are given by

S23r5
a2~12w2!2

2g2r 4 1
1

g2r 2 ~F21P2! ~9!

r5
a2~12w2!2

4g2r 4 1
1

2g2r 2 ~F21P2!.

~10!

We also note that we have an algebraic relation for the s
component,b, of the shift vector,b i5(b,0,0):

b5arK u
u . ~11!

In addition to the equations of motion, we need bound
conditions on the fields. These are determined by deman
regularity at the origin of spherical symmetry, and by enfo
ing an outgoing condition on the radiation fields at lar
radius. This latter condition assumes that there is no ra
tion coming in from outside our finite mesh. This is n
completely true, as in general there will be backscattering
the propagating fields off regions of high curvature. Ho
ever, if our domain of integration is large enough, the co
tributions from this scattering are dynamically negligible.
1-2
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NEW CRITICAL BEHAVIOR IN EINSTEIN-YANG- . . . PHYSICAL REVIEW D 60 124011
The demand for a regular origin results in boundary c
ditions on the fields atr 50. From Eqs.~6! and~7! it can be
seen thata8(t,0)5a8(t,0)50, as well asa(t,0)51. In ad-
dition, b(t,0)5Ku

u(t,0)50. For the matter fields,w(t,0)
561 andw8(t,0)50, so that the auxiliary variablesP and
F are both zero at the origin. We note that these conditi
constrain the Yang-Mills field,w, to be in a vacuum state a
r 50.

For initial data, we choose a time-symmetric kink for t
gauge potential which was previously used in@5#. This pulse
is given by

w~0,r !5F11aS 11
br

s De22(r /s)2G tanhS x2r

s D ~12!

ẇ~0,r !50, ~13!

with the parametersa andb chosen such thatw(0,0)51 and
w8(0,0)50. The two parametersx and s define the center
and width of the pulse, respectively. They also serve as
two parameters which we will vary in order to explore t
phase space. We note that the implementation of this da
@5# was incorrect but ultimately had no effect on the over
conclusions of that work. We have fixed the implementat
of the kink data here and note a minor improvement in
conservation of energy.

III. NUMERICAL APPROACH AND BLACK HOLE
EXCISION

It should be emphasized that we do not incorporate
form of adaptive mesh refinement into our numerical a
proach. Instead, we use a fixed uniform grid with a me
spacing which is sufficiently fine to uncover the new critic
behavior. The drawback to this approach, of course, is
we are unable to fully resolve the discretely self-similar s
lutions which arise near the type II black hole thresho
However, our primary interest here is in the supercriti
regime, and we are satisfied that previous work has es
lished the nature of the type II transition.

What is important in this work is the use of black ho
excision techniques which allow us to evolve well beyo
the formation of the black hole. We discretize the evoluti
equations~2!–~4! using two time levels with centered tim
differences, and angled spatial differences as describe
@16#. The constraint equations are then integrated outw
from the origin. Equation~6!, the slicing equation, is rewrit
ten in first order form

d85dS a8

a
2

2

r D1
2a

r 2 S a2211
2ra8

a D14pGa~S23r!

~14!

a85d. ~15!

The apparent horizon equation in maximal-areal coo
nates is simply

arKu
u51. ~16!
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Thus, we can compute a characteristic functionC such that

C5H 1 if arKu
u<mH ,

0 if arKu
u.mH ,

wheremH is a threshold value, ostensibly unity, but set to
slightly larger value in practice—typically,mH51.1—to en-
sure that the inner boundary lies strictly within the appar
horizon. At any time, the characteristic function tells
which grid points are deemed to be inside@C(r ,t)50# or
outside@C(r ,t)51# the horizon. As the system evolves, w
recomputeC at each time step and simply ‘‘discard’’ an
grid points for whichC50. The radial locations of thes
grid points will then generally satisfyr<r H(t), wherer H(t)
is the instantaneous inner boundary of the computational
main, and roughly coincides with the location of the appar
horizon. We needno boundary conditions for the function
evolved with equations~2!–~4! since the characteristic direc
tions atr 5r H are such that only events withr>r H are in the
past domain of dependence. We can therefore use the
crete form of the evolution equations up toand includingthe
inner boundary point. However, the constraint equations~6!–
~8! must have an inner boundary condition. Until a horizon
formed, we can simply use conditions derived from regul
ity. Once a horizon forms, however, we need an alternat
If the horizon initially forms at timet5T and radial coordi-
nater 5R, then for a functionf P$a,Ku

u%, we usef (R,T) as
the initial boundary value forf. We then evolvef along this
boundary using the evolution equation forf. The evolution
equations that we use are as follows:

ȧ5b F4pra3r1
a

2r
~12a2!1

3

2
ra3Ku

u2G
1raKu

u d24praa j r , ~17!

Ku
u̇53Ku

u S 1

2
aKu

u2
b

r D14p~aSr
r2b j r !

1
a

2r 2a2
~a221!2

d

ra2
. ~18!

Since the lapsea does not have an evolution equation, w
simply leavea andd ‘‘frozen’’ at whatever specific values
they have when excision at that particular radius,r H(t), be-
gins.

Finally, we note that the programs which we used to g
erate the results that we will describe below were written
RNPL ~Rapid Numerical Prototyping Language! @17#. This
language has been specifically designed to facilitate the
ferencing and subsequent numerical solution of partial
ferential equations.

IV. RESULTS

On evolution of the equations, we verify previously e
amined aspects of this system as discussed in@5#. In particu-
lar, we find that in different regions of the parameter spa
there are both types of critical behavior at the threshold
1-3
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CHOPTUIK, HIRSCHMANN, AND MARSA PHYSICAL REVIEW D60 124011
black hole formation. We observe type I behavior, wher
black holes turn on at finite mass and the intermediate att
tor is then51 Bartnik-Mckinnon solution. We also confirm
aspects of type II collapse in the appropriate region of
rameter space. This includes such things as echoing and
scaling relation for the black hole mass. However, beca
our code does not employ mesh-refinement, we are unab
fully reproduce the results of@5#. However, as discussed pre
viously, our main emphasis here is to address the outstan
question of what happens in the super-critical region and
the future of black hole formation.

On evolving into the supercritical~black hole! regime, we
find that the dynamics of the resulting spacetimes exhibit
distinct types of behavior which we describe below. It tur
out that these can be characterized by the asymptotic vac
state of the Yang-Mills potentialw. These two behaviors ar
related to the type I and type II critical collapses identifi
previously.

The original type I collapse is described, in part, by
black hole which forms with finite mass. Slightly supe
critical type I evolutions, now continued well to the future
black hole formation confirm this behavior, as one wou
expect. In addition, after the black hole is formed, part of
remaining Yang-Mills field outside the horizon radiates
infinity and some of it falls down the black hole causing t
black hole to grow. How much larger the initial black ho
becomes through the infall of additional matter depends
part, on where in the parameter space the evolution beg
Eventually, however, and in accordance with what might
expected from the no-hair theorems, the exterior space
settles down to a Schwarzschild black hole with the Ya
Mills field in its vacuum state. In general, for slightly supe
critical collapse~either type I or type II!, as the remaining
mass-energy radiates away the gauge potential approa
one of its two vacuum values:w561. For the case of
slightly super-critical type I collapse, in the asymptotic r
gime, the gauge potential always picks thew521 vacuum
state @recall that our initial data family~12! has w(t,0)
511 andw(t,`)521]. This turns out to be true even fo
collapsing configurations which are no longer just sligh
super-critical but are, in fact, well into the black hole regim
We can thus characterize a sort of ‘‘generalized’’ sup
critical type I collapse by the asymptotic value of the gau
potentialw.

When type II collapse is considered, the overall picture
broadly the same. Again, after the original black hole for
~at finite mass since we are slightly super-critical! some of
the matter remaining in the region exterior to the black h
falls into the black hole causing it to grow and the rest
radiated off to infinity. The resulting exterior spacetim
again settles down to Schwarzschild with the Yang-M
field in its vacuum state. However, the gauge potential in
slightly super-critical type II collapse approaches its oth
vacuum value:w→11. Similarly, further into the type II
super-critical regime~where we should emphasize the d
cretely self-similar nature of the critical solution is no long
clear and where the black holes which form all have fin
mass! we find ‘‘generalized’’ super-critical type II collaps
12401
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which can be characterized by an asymptotic value of
gauge potential ofw511.

It is worth commenting here that our terminology has b
come a bit loose. We have been speaking of type I and t
II collapse well into the super-critical regime when in fa
these terms originally referred to types of critical behavior
a very small neighborhood of the exact critical solutions. F
instance, as one moves away from the type II threshold,
discrete self-similarity of the exactly critical solution is n
longer clearly exhibited by configurations which collapse
a black hole. In addition, a significant fraction of the ma
present will end up in the black hole. This is to be contras
with the tiny black holes that can be formed in near-critic
type II collapse. It should also be made clear that type I a
type II do not refer to differenttypesof black holes. The
end-state exterior geometry in all of these evolutions is
Schwarzschild black hole. However, we are, in a sense, g
eralizing the concepts of type I and type II collapse to d
tinguish two kinds of collapsedynamicsin the super-critical
regime.

It quickly becomes clear that these regions are well
fined in parameter space and it becomes natural to try
find the boundary separating them. Indeed, the problem
duces to tuning a single parameter across the threshold
tween these two types of collapse dynamics. What we fin
that at the threshold between these two types of dynami
static solution emerges as the intermediate attractor for
new near-critical collapse. The type II side of this thresho
exhibits the following near-critical evolution. As the fiel
collapses, a finite mass black hole is formed. The remain
field exterior to the black hole then approaches a static, n
trivial configuration. After some time the field then depa
from the static configuration and disperses to infinity leav
the original black hole virtually unchanged. The gauge p
tential in this case approaches the vacuum value ofw511
and thus this side of the threshold is part of the generali
type II collapse dynamics. The type I side of this thresho
has, of course, a very similar development initially. Again
black hole of finite mass is formed exactly as before and
followed by the approach of the exterior Yang-Mills field
the static solution. However, as the field leaves the st
solution, most of the matter collapses into the black h
with only a small portion radiating off to infinity. The gaug
potential, in this case, approaches the vacuum state ow
521. Figures 1 and 2 show the development of these
cases overlayed with the static, intermediate attractor wh
is the exactly critical solution.

Since we are in the super-critical regime, these new,
actly critical solutions are themselves black holes with Yan
Mills hair. Indeed, these attractors are the colored bla
holes discovered by Bizon and independently by Volkov a
Galtsov @13,14# shortly after the discovery of the Bartnik
Mckinnon solutions. In general, these colored, static bla
hole solutions are described by their horizon radius~or, re-
latedly, their mass! r h and the numbern of zero crossings of
the Yang-Mills potentialw. The solutions which serve her
as intermediate attractors in the dynamical collapse are
lowest lying colored black holes withn51. Subsequent to
their discovery, it was shown that these black holes are
1-4
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NEW CRITICAL BEHAVIOR IN EINSTEIN-YANG- . . . PHYSICAL REVIEW D 60 124011
stable. In particular, the colored black holes with laben
have 2n unstable modes@18–20#. Of these 2n unstable
modes,n arise from spherically symmetric perturbations
the gravitational sector away from staticity and anothen
unstable modes arise from perturbations in the sphaleron
tor, i.e., away from the magneticansatzfor the Yang-Mills
fields. Since we are solving the nonlinear evolution equati
while remaining within the magneticansatzwe would expect
our data to excite all the unstable modes within the grav
tional sector while exciting none of the unstable modes in
sphaleron sector. As a result, we would expect then51
family of solutions to have a single unstable mode, thus m
ing it relevant to critical collapse. The picture of this ne
critical solution in the black hole regime having a sing
unstable mode thus accords perfectly with previous und
standing of both type I and type II collapse.

This new critical behavior within the black hole regime
in many ways, qualitatively similar to that of the type I co

FIG. 1. Time sequences of the Yang-Mills potentialw for both
sub- and super-critical evolutions, overlayed with a static, colo
black hole solution. Both evolutions are calculated to machine p
cision, i.e.,up2p* u/p* &10215. The solid line is the static solution
the dashed line is the generalized type I solution, where part of
Yang-Mills field of the colored black hole collapses to a seco
larger black hole, and the dotted line is the generalized typ
solution, in which the remaining Yang-Mills field surrounding th
colored black hole disperses to infinity. The calculations sho
here use the kink data defined in Eq.~12!. We fix the center of the
pulse to bex52.16, and perform our parameter search ons
(5p), the width of the pulse. These plots use the original rad
coordinate,r. The initial colored black hole that forms has a radi
of r'0.55 on a domain fromr 50 to r 540; a fixed uniform radial
grid with 3201 points is used for all calculations. In the generaliz
type I case, the second and larger black hole forms with a radiu
r'1.69. Note that after the black hole forms, we do not plot poi
at locations within the horizon radius. This illustrates that our h
rizon excision continues the evolution only outside the black ho
As can be seen, the agreement between the static solution an
intermediate attractor to which the dynamical solutions tempora
evolve is excellent. The static solution is obtained by solving
static equations@ordinary differential equations~ODEs!# for a col-
ored black hole of radiusr 50.55.
12401
c-

s

-
e

k-

r-

lapse. Solutions in one of these new interpolating famil
asymptote to one of the static, colored black hole solutio
Y1(r ;r h). Initial data for collapsing configurations close
one of the critical solutions will approachY1(r ;r h), and re-
main in its vicinity for some amount of timeT, as measured
for example, by an observer at infinity. The evolution w
then peel off the static solution with the remaining field e
ther dispersing to infinity or collapsing and adding a fin
amount of mass to the already present black hole. One
quantify the amount of time spent near the static solution
the same way as with the type I collapse. The time, as m
sured by an asymptotic observer, isT'2l lnup2p* u, where
the coefficientl is the characteristic time scale for the co
lapse of the unstable solutionY1(r ;r h) or, in other words,
the inverse Lyapounov exponent of the single unstable mo

With our evolutions, we confirm this relation and can ca
culate the value ofl in the manner described in@5#. For
Figs. 1 and 2, where the static solution has a black h
radius of r h'0.55, we confirm the linear relation and fin
l'4.88 as shown in Fig. 3.

Once we have established the existence of these new,
ored critical solutions, it then becomes straightforward
map out parameter space for our choice of initial data. Fig
4 does this for the main region of interest. Figure 5 is
schematic drawing of the mass of the black hole as a fu
tion of the two initial data parameters.

Figure 4 should be compared to Fig. 1 in@5#. There, it
was suggested that there was a coexistence between
holes exhibiting both types of critical behavior. Howeve
that suggestion was based on evolutions which did not a
ally continue to the future of the resulting black hole. Thu
up to this point, only the region marked ‘‘dispersion’’ ha
been well explored. Evolutions had been performed in
black hole regime, but detailed understanding of what h
pened in collapse was largely limited to times prior to t
formation of the black hole. Now, with our use of appare
horizon boundary conditions, we can explore more co
pletely this super-critical region. Thus, what is actua
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FIG. 2. Time sequence of the Yang-Mills potential as shown
Fig. 1—here the wave forms are plotted using a logarithmic rad
coordinate.
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present is two well-demarcated regions in the black hole
gime separated by a critical line, as described above.

V. DISCUSSION

We have presented evidence for the existence of a
type of critical phenomena within the black hole regime
the spherically symmetric Einstein-Yang-Mills model. Pre
ous work on critical behavior in this model has establish
that both type I and type II critical solutions emerge in s
ficiently general families of initial data. However, that earli
work was unable to accurately evolve to the future of bla
hole formation. Using a different coordinate system and
rizon excision techniques, we are able to evolve well into
black hole regime. We find that these two different types
critical collapse can be generalized to types of collaps
spacetimes with a distinguishing characteristic being
asymptotic vacuum value of the Yang-Mills potential. The
two ‘‘phases’’ of black hole formation are separated by
critical line in phase space such that dynamically form
black hole solutions exactly at criticality are the static,n
51 colored black holes@13,14#. This, of course, fits nicely
within our conceptual framework that critical solutions a
intermediate attractors of co-dimension one.

It is worth emphasizing a few observations at this poi
First, it is important to note that the mass of the fin
Schwarzschild black hole in the evolution will be discontin
ous across this new critical line in Fig. 4.~In fact, indications
of jumps in the black hole mass-spectrum in the sup

FIG. 3. Plot of the elapsed time~as measured by an observer
infinity! in generalized type II collapse before the zero of thew field
crossesr 535. As the exactly critical solution is approached
parameter space, i.e.,p→p* , the dynamical fields spend more tim
on the critical solution; specifically, the lifetime of the static co
figuration isT'2l lnup2p* u. Since the early part of the dynamic
is unchanged asp→p!, the total time before the lingering field
escapes and passes a finite radial value depends only onup2p* u.
Thus we can estimatel by measuring this total time as a functio
of lnup2p* u. A straightforward least squares fit of this data yiel
l'4.88.
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critical regime were present in earlier calculations@21#.! Na-
ively, this might be somewhat surprising since it means t
nearby configurations in the space of initial data can have
principle, very different sized black holes as their end-sta

Further, we note that when the colored black holes w
originally investigated, it was found that thenth static col-
ored black hole is parametrized by its horizon radius,r h . In
addition, asr h→0, the black hole solution approaches t
correspondingnth Bartnik-Mckinnon solution. In the dy-
namical context discussed here for then51 solutions, one
notices an interesting manifestation of this result. The c
ored black hole attractors separating the type I and typ
regions in Fig. 4, are likewise parametrized by their horiz
radius in such a way that as the ‘‘triple point’’ is approache
r h→0, and the Bartnik-Mckinnon solution emerges as t
relevant attractor separating type I collapse from dispers

Finally, it is natural to ask if other collapsing system
might exhibit similar behavior. Indeed, one can simply lo
in the literature on static, hairy black holes and point to
number of systems that one would conjecture should hav
‘‘phase diagram’’ similar to Fig. 4. Such theories shou
include Einstein-Yang-Mills coupled to a dilaton~EYMD!
and the Einstein-Skyrme system. However, there are o
examples of systems which exhibit both type I and type

FIG. 4. Plot of the phase space for the two parameter family
kink data given by~12!. Each point represents a critical solution
a level of up2p* u/p* &1024 and sits on one of the threshold
separating two of the three phases. The open hexagons repr
type I critical solutions which separate configurations that dispe
from those that form a finite size black hole. We confirm that t
intermediate attractor in this case is then51 Bartnik-Mckinnon
solution, as found in@5#. The open triangles represent type II crit
cal solutions which separate configurations that disperse from th
that form an infinitesimal black hole. The filled hexagons repres
the new black hole critical solutions separating the generalized
I and type II collapse dynamics as described in the text. Th
critical solutions are then51 colored black holes. They are param
etrized by their horizon radius, such that as the ‘‘triple point’’
approached along the critical line, the radius of the black holes g
to zero.
1-6
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NEW CRITICAL BEHAVIOR IN EINSTEIN-YANG- . . . PHYSICAL REVIEW D 60 124011
critical behavior. These include a massive scalar field and~it
is conjectured! a massive, charged scalar field@6#. These
latter systems are particularly intriguing in light of the resu
presented here because though they do exhibit type I
type II critical behavior, no-hair theorems suggest that th
systems will not have static black hole solutions other th
Kerr ~or Schwarzschild, in spherical symmetry!. It should
thus be of interest to investigate the nature of the sup
critical regime for these, and possibly other, systems.
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APPENDIX

We collect here some of the details involved in derivi
the equations of motion used in the paper, and to prese
somewhat more general framework for future work on
Einstein-Yang-Mills system~EYM!. The action for our
model is

S5E d4xA2gF R

16pG
2

1

g2 Fmn
a FamnG ~A1!

FIG. 5. This is aschematicplot of the final black hole mass a
a function of the two initial data parameters. One should comp
this plot with Fig. 4. If one imagines looking at a 3 dimensional
version of that figure viewed from the upper right hand corner,
result should be something like this. The zero~flat! portion of the
graph corresponds to dispersion of the collapsing fields. Exa
type II critical solutions sit along the left side of the critical lin
with the masses of super-critical black holes forming a continu
transition from it. Exactly type I critical solutions~which are not
black holes! sit on the right side of the critical line which marks th
discontinuity in the black hole masses of super-critical black ho
Finally, the new transition is also a discontinuous one with
colored black holes sitting on the threshold between black h
formed via generalized type I and type II collapse.
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whereFmn
a is the Yang-Mills field strength tensor. As usua

Greek indices range over the four spacetime dimensions
Latin indices indicate group indices. Spacetime indices
raised and lowered by the metricgmn while we will not lower
group indices. Thus, repeated upper group~Latin! indices
will be summed over.

The equations of motion are found by varying the acti
with respect to the fields. Varying with respect to the met
yields the Einstein equations

1

16pG
Gmn5Tmn5

1

g2 S 2Fml
a Fn

al2
1

2
gmnFab

a FaabD .

~A2!

Varying with respect to the connectionAm
a gives

DmFamn5¹mFamn1eabcAm
b Fcmn50. ~A3!

With the general equations in hand we are in a position
make some simplifying assumptions. To begin, we assu
that we have anSU(2) gauge field. In addition we will as
sume spherical symmetry. The most general parametriza
of the spacetime metric is then

ds25~2a21a2b2!dt212a2bdtdr1a2dr21b2r 2dV2

~A4!

where the metric coefficientsa, b, a andb will depend on
the temporal and radial coordinatest and r and dV2 is the
usual metric on the unit two-sphere. Likewise, the most g
eral parametrization of the gauge connection is now

A5u t rdt1v t rdr1~w tu1w̃ tf!du

1~cotu t r1w tf2w̃ tu!sinudf.

where the coefficientsu, v, w and w̃ will all depend ont
and r. The ta are the spherical projection of the Pauli sp
matrices and form an anti-Hermitian basis for the gro
SU(2) satisfying@ta,tb#5eabctc with a,b,cP$r ,u,f%. We
note that this connection is invariant under a gauge trans
mation of the formU5ec(t,r )tr

. The field strength derived
from this connection is

F5t r~ v̇2u8!dt`dr1@~ẇ2uw̃!dt1~w82vw̃!dr#

`~tudu1tfsinudf!1@~ ẇ̃1uw!dt1~w̃81vw!dr#

`~tfdu2tusinudf!2~12w22w̃2!t rdu`sinudf.

~A5!

With these assumptions, the equations of motion for
Yang-Mills fields can now be written in first order~in time!
form as

Ṗ5FbP1
a

a
FG81uP2vS bP1

a

a
QD

1
aa

b2r 2 w~12w22w̃2! ~A6!
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Ṗ5FbP1
a

a
QG82uP1vS bP1

a

a
F D

1
aa

b2r 2w̃~12w22w̃2! ~A7!

Y85w̃P2wP ~A8!

Ẏ5
a

a
~w̃F2wQ!1b~w̃P2wP! ~A9!

where we have used the definitions

P5
a

a
@ẇ2uw̃2b~w82vw̃!# ~A10!

F5w82vw̃ ~A11!

P5
a

a
@ ẇ̃1uw2b~w̃81vw!# ~A12!

Q5w̃81vw ~A13!

Y5
b2r 2

2aa
~ v̇2u8!. ~A14!

We also have evolution equations forF andQ:

Ḟ5Faa P1bFG81uQ2vFaa P1bQG2w̃
2aa

b2r 2 Y

~A15!

Q̇5Faa P1bQG82uF1vFaa P1bFG1w
2aa

b2r 2 Y,

~A16!

which follow from differentiation of~A11! and ~A13! with
respect to time, and elimination of explicit time derivativ
using the definitions~A10!–~A14!.

Finally, the relevant Einstein equations are the evolut
equations for the metric components and the componen
the extrinsic curvature, together with the Hamiltonian a
momentum constraints, as follows:

ȧ52aaKr
r1~ab!8 ~A17!

ḃ52abKu
u1

b

r
~rb !8 ~A18!

K̇r
r5bK r

r81aKr
rK2

1

a S a8

a D 8
2

2a

arb F ~rb !8

a G8
14pGa@S2r22Sr

r # ~A19!

K̇u
u5bKu

u81aKu
uK1

a

~rb !2 2
1

a~rb !2 S arb

a
~rb !8D 8

14pGa@S2r22Su
u# ~A20!
12401
n
of

d

2
2

arb H S ~rb !8

a D 8
1

1

rb F S rb

a
~rb !8D 8

2aG J
14Kr

rK
u

u12K u
u2516pGr ~A21!

2
~rb !8

rb
~Ku

u2Kr
r !2Ku

u854pG jr . ~A22!

Here, r is the energy density,j r is the momentum density
andSr

r , Su
u andSf

f are the stress energy components p
jected onto our spacelike hypersurface. Explicitly, we ha

r5
1

4g2 H 4Y2

b4r 41
~12w22w̃2!2

b4r 4

1
2

b2r 2a2@Q21F21P21P2#J ~A23!

Sr
r5

1

4g2 H 2
4Y2

b4r 42
~12w22w̃2!2

b4r 4

1
2

b2r 2a2@Q21F21P21P2#J ~A24!

Su
u5

1

4g2H 4Y2

b4r 41
~12w22w̃2!2

b4r 4 J ~A25!

Sf
f5Su

u ~A26!

j r52
1

g2ab2r 2 ~PF1PQ!. ~A27!

As can be seen, we have chosen to write things in a fa
general form. Indeed, this is the most general EYM the
we could consider in spherical symmetry. We can thus c
sider more general matter configurations, together with
greater variety of coordinate systems than have been con
ered to date. Subsets of these equations have been inv
gated before in different contexts. For example, static v
sions of these equations have been studied in orde
understand particle-like solutions and colored black holes
addition, @5# evolved a version of these equations in po
(Ku

u50), areal (b51) coordinates with the additional as
sumption on the Yang-Mills field that the connectionAm

a

was purely magnetic.
For our work here, we will also make this ‘‘magnet

ansatz.’’ More specifically, we will assume that the electr
charge density,Y, is identically zero. In addition to thisan-
satz, we also make the following gauge choice:v50. Mak-
ing this gauge choice leaves the connection invariant und
gauge transformation of the formU5ec(t)tr

. From the defi-
nition for Y in Eq. ~A14! we see that the functionu, by these
assumptions, depends only ont. However, the residual gaug
freedom implies thatu is arbitrary up to a function oft. We
can thus fix the remaining gauge freedom in the followi
way. Choosingu50 fixes the gauge up to a constant gau
1-8
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transformation of the formU5ectr
wherec is now a con-

stant. This has the effect of sendingw and w̃ into linear
combinations of each other. such that choosing a value foc
~such as zero! picks out a particular combination of thes
remaining connection coefficients. Thus, without loss of g
erality, we can choosew̃50 and we see that in the context
this particular problem, the magneticansatzhas effectively
set all the fields butw to zero.

As discussed in the body of the paper, we want to be a
to evolve the system for long times to the future of any bla
hole formation. To this end, we choose a coordinate sys
with maximal slicing:K5Kr

r1Ku
u1Kf

f50. We will re-
tain the choice of areal, or radial, coordinates (b51) so that
the coordinater is immediately related to the area of origin
centered two-spheres.

Given all these assumptions, the equations which we m
solve simplify considerably. The evolution equations are

Ṗ5FbP1
a

a
FG81

aa

r 2 w~12w2! ~A28!

Ḟ5Faa P1bFG8 ~A29!

ẇ5
a

a
P1bw8 ~A30!

and the constraint equations are
y

12401
-

le
k
m

st

w85F ~A31!

a95a8S a8

a
2

2

r D1
2a

r 2 S a2211
2ra8

a D
14pGa~S23r! ~A32!

a85a
12a2

2r
1

3

2
ra3Ku

u214pGrar ~A33!

Ku
u852

3

r
Ku

u14pGS PF

g2ar2D ~A34!

where the matter stress-energy terms are given by

S23r5
a2~12w2!2

2g2r 4 1
1

g2r 2~F21P2! ~A35!

r5
a2~12w2!2

4g2r 4 1
1

2g2r 2~F21P2!. ~A36!

Finally, we have an algebraic condition for the no
vanishing component of the shift vector

b5arK u
u, ~A37!

which follows from ~A18! with b(r ,t)[1.
’’
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