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Criticality and bifurcation in the gravitational collapse of a self-coupled scalar field
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We examine the gravitational collapse of a nonlineanodel in spherical symmetry. There exists a family
of continuously self-similar solutions parametrized by the coupling constant of the theory. These solutions are
calculated together with the critical exponents for black hole formation of these collapse models. We also find
that the sequence of solutions exhibits a Hopf-type bifurcation as the continuously self-similar solutions
become unstable to perturbations away from self-similaf$p556-282(97)00220-§

PACS numbd(s): 04.20.Dw, 04.20.Jb

I. INTRODUCTION The main results of this paper unify the discrete vs con-
tinuous self-similarity known in the above models. Specifi-
The last few years have seen a renewed interest in graveally, we examine a particular nonlinear model which
tational collapse, particularly with regard to what numericalsmoothly interpolates between the complex scalar field
relativity is able to teach us about the general phenomenomnodel[2] and the axion-dilaton modéb] as the value of a
ChOthik,S initial diSCOVGry of Crltlcallty and other behavior certain dimensionless Coup"ng constanvaries. We find a
strikingly similar to that seen in statistical mechanical sys-tamily of continuously self-similar solutions parametrized by
tems has suggested a deep property of the gravitational field ysing linear perturbation theory, we study the stability of

equations. these solutions, and find that the sequence of solutions un-

I'IA good (Ijet‘_"‘l of recetrln V\ﬁ;‘k Tﬁs Sf?ol"c;’ n ft?he $X|stertl_ce 0Fergoes a bifurcation at a particular valkey 0.0754, where
collapse solutions exactly at the threshold ot the formation Oy, continuously self-similar solutions go from being stable

a black hole for a variety of matter fields. These include both[0 being unstable. The free complex scalar fiekd=0) is
;ia:]ltee(\:?dflﬁic:jnﬁzl]exaitéalga ffi(i[:r;_z(]j’n;%%uur? Ogg?vflrtg[rﬁ]’l gw- found to be on the unstable side of this bifurcation, while the
. axion-dilaton field ¢=1) is on the stable side. This is in

energy string theor}5]. In each of these models, some com- ; ,
mon behavior emerges. For example, the growth of the b|acggreement with previous results for both of these matter

hole mass just off threshold is described by a power-lawfi€lds. Further, we find that for negative values —0.28,

relation the self-similar solutions become ever more unstable hinting
at the possibility of further bifurcations and more compli-

0, p<p*, cated dynamics. Since we work only in perturbation theory,

Meu(P)> (p—p*)", p>p*, (1)  we cannot confirm these latter possibilities here, but our re-

sults are somewhat suggestive of the existence of more ex-
otic behavior than may have previously been observed. For
wherep is any parameter which can be said to characterizéhis reason, full scale numerical work on these models would
the strength of the initial conditions amd is the threshold undoubtedly be a very enlightening undertaking.
value, i.e., the value for the critical solution. The critical  Prior to our work, Choptuik and Lieblinfy,8] studied an
exponenty is universal within a particular class of matter apparently different model, namely, Brans-Dicke gravity
fields. For exampley~0.37 for the real scalar field;~0.36  coupled to a free real scalar field, for various values of the
for perfect fluid collapse, ang~0.2641066 for the axion- dimensionless Brans-Dicke coupling constanB/2<wgp
dilaton (axiodil) system[6]. The solutions may also exhibit <. They use a spherical collapse code, and their main re-
an echoing behavior in that the features of the exactly criticabult is a change of stability abgp~0. After the continu-
solution are repeated on ever decreasing time and lengiusly self-similar solution was found in the collapse of an
scales. This self-similar behavior of the solutions has beeaxion-dilaton field[5], they realized that it was their more
found in both discrete and continuous versions. In particulargeneral Brans-Dicke model for a particular valuewgfs . In
for vacuum gravity, discrete self-similarity, and echoing arefact, we find that their Brans-Dicke model is equivalent to
observed, while in fluid collapse, continuous self-similarity some range of our nonlinear model (>«=0), with
with no echoing emerges. In scalar field collapse, both typesgp= corresponding to the free complex scalar field and
have been shown to be present. wpp= —11/8 corresponding to the axion-dilaton field. The
bifurcation in stability we find here in linear perturbation
theory then coincides with the change of stability previously
*Electronic address: ehirsch@dirac.ph.utexas.edu found by Choptuik and Liebling; in particular, we agree with
Electronic address: doug@itp.ucsb.edu their result that, for axion-dilaton collapse, the continuously
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self-similar critical solution is stable and appears to be thehas dimensiong®, while a Lagrangian must have unifs 2.
attractor. The rang& <0 is not present in the Brans-Dicke |t follows that the parameters and\ above have dimen-
model, however. sions different from zero; in particulay, is just the inverse

Hamade, Horne, and Stud@] gave both full numerical compton wavelength of the particle. Since these parameters
results and perturbation results on axion-dilaton collapse ire dimensionful, the critical solution cannot depend on
spherical symmetry. Our results in linear perturbation theoryhem, consistent with the numerical resdlts.
for k=1 agree with theirs with regard to real modes and For this reason we turn attention to a different kind of
critical exponents. They also find by their numerical collapseself-coupling, one which multiplies the kinetic term instead
code that the continuously self-similar critical solution is of adding to it. The general form is
stable and is the attractor, in agreement with the work of
Choptuik and Liebling; this is also consistent with our results 1
below on the complex modes far=1. This change in sta- =G Ve'V ¢’ ©)
bility which occurs neawgp~0 appears to be a “Hopf bi- 2
furcation,” as it is known in the dynamics literatufg].

The outline of this paper is as follows. In Sec. II, we give Where there are now some numierof scalar fieldsg'
general arguments on what kinds of self-coupling of a scalat! =1 - . .N), and whereG,; is some function of the fields,
field may show new critical phenomena in gravitational col-fixed once and for all to specify the model. The nonlinear
lapse; likely candidates are the nonlineamodels. In Sec. functionsG,; take the form of a Riemannian metric on the
Ill, we introduce the particular nonlinear model to be stud-  internal space of the', the target spaceSuch models are
ied in this paper, and discuss its relationship to matter field§alled nonlinears models(or “harmonic map” models, as
which have been studied previously. Section IV introducegliscussed by Misndi0]), and much is known about them in
the equations of motion, derives their form in the presence ofligh-energy physics, not least because they often appear in
a continuous self-similarity, and sketches our numerical apthe low-energy limit of superstring theory. By dimensional
proach to solving them. Section V discusses the perturbatioAnalysis, the scalar fieldg' are of dimension’®, as is the
of the continuously self-similar solutions and the question oftarget space metrig,; . Therefore any parameters appearing
stability of these solutions. Section VI presents our resultdn G,;; may also be taken as dimensionless, and we can ex-
and conclusions. Appendix A summarizes our equations iPect the critical solution to depend on them.
detail. Finally, in Appendix B we provide a short bibliogra- ~ What is the simplest nonlinear model we can study? If
phy on the related issue of nonlineamodels in flat space- N=1 then the matter action can be reduced to that of a free
time. field by a field redefinition; a one-dimensional Riemannian
space is always flat. So the simplest nontrivial valud is2,
wherein the two real scalar fields can be grouped into a
single complex scalar fielgh. For the target space metric, the

With the important exception ¢B], all the work so far on  simplest cases are the spaces of constant curvature, namely
critical phenomena in gravitational collapse has assumethe two-sphere, flat two-space, or the two-hyperboloid, all
spherical symmetry. In spherical symmetry, there is nowith homogeneous metrics. This is the model we shall study.
gravitational collapse without matter, from Birkhoff's theo-
rem. Therefore one might expect that critical behavior would
depend importantly on the model of the matter. Indeed, the
critical phenomenology and exponents differ among matter \We work with a model defined by the action
models such as real scalar field, ideal gas, complex scalar

II. CRITICAL BEHAVIOR AND SELF-INTERACTION

Ill. THE MODEL

field, axiodil, ... . However, studying a real scalar fietd 2|VF|2
Choptuik found that inclusion of a nonlinear interaction term S=f d4x\/—g(R—(l_K|F| 2] (4)

V(¢) in the action

1 The complex fieldF(x*) is a scalar coupled to Einstein
L matier=5 V¢V o= V() (28 gravity with x a real dimensionless coupling constant:
V(¢)=u2p2+ N 14 (2b) —o< K<, ®)

made no difference in the critical solution itself or in its The model given by Eq(4) is a nonlineare model. As
phenomenology. mentioned above, the target space of the model is a two-
We can understand this result as follows. At least in alldimensional space of constant curvature. The curvature of
known cases, the critical solution is either “echoinédis-  this internal space is proportional tox so that the space is
cretely self-similay or continuously self similaf(CSS —  hyperbolic fork>0 and a two-sphere for<0. For the par-
admitting a homothetic Killing vector field In either case,
by dimensional analysis, the solution cannot depend on any
dimensionful parameters. Here we use dimensional analysis'Choptuik has also tried adding a conformal coupliityp? to the
appropriate to classical general relativity, with a unit of matter Lagrangian. In contrast,is dimensionless, so that that criti-
length /" in some system of units where Newton'’s gravita- cal solution should depend on it. This point deserves more investi-
tional constanG=1. A scalar fieldy (real or complexthen  gation.
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ticular casex=1, our model becomes the axion-dilat@x-
iodil) field 7 coupled to gravit$:

1+i7
F:

1-i7

(6)

It turns out in quantum field theory that the valde: 1 is not

affected by quantum corrections, as it is protected by ex-

tended supersymmetry. Far=0 the model(4) reducegaf-
ter a further trivial rescaling of the fieldo the free complex
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ar+b
cr+d’

T—

(10

where @,b,c,d) e R with ad—bc=1, while leavingg,,, in-
variant. The corresponding transformation Foffor general
k>0 is

1 aJkF+p

" B ra w

scalar field coupled to gravity. Thus this general model

smoothly interpolates between the two particular matteWhere (@, B) e C with ||~

|2=1. The transformations of

models that we have already considered. In fact, fofEd-(9) form a special case.

0< k<o we find that this nonlineasr model is equivalent to

In the case whera=0, the larger global symmetry con-

the model of a massless real scalar field Coupled to Bran§jsts of I’Igld translations and rotations in the two flat direc-
Dicke theory. Liebling has recently examined this theory usions of the target space, the grouf2E Finally, for k<0,
ing a version of Choptuik’s adaptive mesh refinement algothe group of motions on the two-sphere, (S constitutes

rithm. He finds behavior qualitatively similar to that found
by Choptuik for the real scalar field]. The connection be-

the larger global symmetry.

tween the two theories can be seen in the relationship be-Iv. THE CONTINUOUSLY SELF-SIMILAR SOLUTIONS

tween the Brans-Dicke coupling constdfil] wgp and our
constantx:

1

, O0=k<ow,
8k

__3 + 7
wpp— 2 ( )
This means that the axion-dilaton model= 1) corresponds
to wgp= —11/8, while the free complex scalar field € 0)
corresponds tagp= +. Also, aswgp— — 3/2", we have
k— +; however this may be a singular limit of the theory.
For —oo< k<0 the model4) appears not to be equivalent to
any Brans-Dicke model; in particular E(f) does not apply.
The model behaves in a smooth way agasses through
Zero.

Returning to the model for general real the field equa-
tions in covariant form as derived from the action in E4).
are

1
Rab:m(vaFva*—"vaF*va)a (8a)
_ *
a _ a
VOV = 1 e VaF VF. 8b)

In this form, these equations are manifestly invariant under

global U1) group of transformations, parametrized by a real

constantA :

F'=eAF, —o<A<w 9)

and which leave the metric unchanged.

For k>0, this model also has a larger global symmetry

not present in general relativity, namely, an SIRRsymme-

try that acts orf, but leaves the spacetime metric invariant;

this is a classical version of the conjectured SE()2sym-
metry of heterotic string theory callegiduality [12]. For the

axiodil, k=1, this symmetry acts on as

’Notation: We usér here for the axiodil field, instead of as in
[5], to avoid confusion with logarithmic time coordinatebelow.

We briefly review the process of setting up the equations
such that they are compatible with a continuous self-
similarity. To begin, we work in spherical symmetry so the
metric can be taken as

ds?=(1+u)[ —b?dt®+dr?]+r2dQ? (12)
where b(t,r) and u(t,r) are the metric functions. This is
essentially Choptuik’s metric in radial gauge with some mi-
nor redefinitions. The timelike coordinatés chosen so that
the collapse on the axis of spherical symmetry happens at
t=0 and the metric is regular fdar0.

We are interested in finding collapsing solutions of our
model. In particular we ask whether, as in the complex sca-
lar, axiodil, and fluid collapse cases, there exist continuously
self-similar (CS9 solutions to these equations for arbitrary
k. That a spacetime admits a continuous self-similarity is
described covariantly by the existence of a homothetic Kill-
ing vector field¢ satisfying

L9ab= Vaépt Vbéa=20ap, (13
where £ denotes the Lie derivative. A coordinate system
better adapted to our assumption of self-similarity involves
fhe coordinateg= —r/t and 7= In|]—t|. In these coordinates,
the metric takes the form

ds?=e?"{(1+u)[— (b?—z%)d72+ 2zdrdz+ d 7]
+22d0?}, (14)

and the homothetic Killing vector is then expressed simply in
these coordinates as

£29,=4,. (15)
In these coordinates, Eq&) can be written as
. z(u+1) . .
zu' —u= . [F'(zF' =F)*+F'*(zF' —F)],
(163
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, zZ(u+ L 1 L u(u+1) b(7,z)=by(z), (21b)
u'=—>— |F |2+52-|z|: —F|? -—
(16b) u(7,2)=uqg(2), (2190
ub wherew is a real eigenvalue, determined by solving the field
b’ == (160 equations. The subscript zero that we have appended denotes

unperturbed values in anticipation of the perturbation calcu-
lation below in Sec. V.

Our equations are now just Eq4.6) with the 7 deriva-
tives of u(z) andb(z) vanishing,F andF’ being replaced
(16d by f, and f;, andF and F being replaced bywf, and

— w?f,, respectively. Note that with,=0, we can eliminate

2

. : b
0=F"A—F+2zF' +F'|z(u—2)+ ?(u+2)—25

+FE 9+1—u + 2—KF*(AF’2+22F’F—F2), T anq we are Ieft with an algebsraic relation fog(z). The
b P equations of motion now reduce’to
(169
. , boug
where the overdot here meansir and the prime denotes bo=7 (229
dldz and we define the functions
—h2_ 2 _ 2 b2 dikwz
A=b*-2%  p=1-«[F|% @D Aofg=fo| —2iwz—2(Ug=2)~ —(ug+2)~ |fol?

For completeness, we include the field equations tim)( (22b)

coordinates in Appendix A. However, they are not crucial to
our current discussion.

The boundary conditions we use are that the solution is
regular on the time axizg=0 and on the so called similarity
horizon A=b?—2z2=0. Regularity on the time axisz=0 at Where we have defined
the center of spherical symmetry allows us to write the

2
—fo[w2+iw(l—uo)]—p—ng(Aof(’)Zerzfﬁ), (220
0

_h2 2

boundary conditions for the metric functiorg r,z) and Ap=Dbp—77, (233
u(r,z) as )

pozl_K|f0| ’ (23b)

b(7,00=1, u(r,0)=0. (18) ,
S T _f2 112

The hypersurface defined ky=0 is where the homothetic uo—pg bg"“’fo zfol“+fol (230
Killing vector becomes null. As this hypersurface is in the
Cauchy development of the initial data, we expect everything z ) Y )
to be perfectly regular there even though this is a singular + [ foliwfo—2zfy)* +f5* (iwfo—2fy)]
point of Egs.(16). Po (230)

The existence of the homothetic Killing vector simplifies
these equations somewhat. For the general collapse problegmnd where the prime now denote&dz.
without self-similarity, the metric coefficients andb will The boundary conditions a=0 for the CSS problem
be functions ofz and 7, but our assumed symmetry restricts now reduce to
these coefficients to be functions pfalone. We could also
let the dimensionless field be invariant under the action of bo(0)=1, f,= freereal constant, f;(0)=0, (24
the vector field, but that would then fail to incorporate the
SL(2R) symmetry which the field equations also possesswWhere we have used our(l) phase symmetry to fif, as
We therefore assume théatact onF with an arbitrary infini- ~ real. We define the value af whereA, vanishes ag,. As
tesimal SL(2R) transformation, which generates somegly  mentioned earlier, we demand regularity &§(z,) =0 and
Subgroup of SL(R) Without loss of genera“ty, we can this leads to the additional bOUndary conditions
assume that this (1) transformation acts by a pure phase

rotation of F, so that bo(z,)=z,= free real const, fy(z,)= free complex const,

(29

— ¢a —1
LF =g F=ioF, (19 with the constant(z,) being determined by Eq22) at the

wherew is a real constant. This allows us to give the form of Similarity horizon. o
F under our assumption of self-similarity as Now with the equations and boundary conditions, we can
numerically integrate these equations. Once we reduce our

F(r,z)=€"“"f(2). (20)

The continuously self-similafCS9 fields are now 30ur notation here more closely follows the pap&} on the ax-
_ iodil, k=1, and not the earlier pap€f@,13] on the complex scalar
F(r,z)=¢€"“"fy(2), (219 field, x=0.
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second order ordinary differential equatig®DE) to two  and in particular allow us to calculate the critical exponents
first order ODE’s and include the real eigenvalueve have  of the black hole growth.

five real equations and five real unknowns. We use our stan- As described if13], the very construction of a Choptuon
dard technique of solving this two-point boundary valueinvolves stabilizatio — a balancing between subcritical dis-
problem by shooting with an adaptive ODE solver from bothsipation and supercritical black hole formation with the criti-
boundary points to a poirg; in the middle. The free bound- cal exponenty measuring the strength of this black hole or
ary values are then found using a Newton’s solver for thedissipation instability. More specifically, for initial data close

nonlinear matching conditior{4.4]. to, but not exactly on the critical solution, the critical solu-
We then follow the CSS solution asvaries, and we find tion serves as an intermediate attractor with near-critical so-
that a CSS solution exists for lutions approaching it but eventually running away from it to
form a black hole or dissipate the field to infinity. However,
—0.60s k< + 0 (26) in addition to this particular instability, we would like to

know if there areadditional instabilities which would rather
for k=0,1 the CSS solution is the same one found in previdrive the near-critical solutions completely away from the
ous work. Our Computations On|y extend k=15, but the Choptuon to another, perhaps very different, attractor. Thus
behavior is smooth and the CSS solutions seem likely t®Y appealing to perturbation theory, we are looking for both
extend all the way tac=oo, On the other hand, our calcula- the black hole |nStab|l|ty|e, the critical eXponeiﬂand pos-
tions Of CSSs So|utions appear to terminate Somehow ﬁlbly Othel’ inStabi”tieS indicating the existence Of Other,
k~—0.60. We are unsure what exactly goes wrong thereStronger attractors. o o
but we tend to believe that our numerical routine fails and it S0, with the continuously self-similar solutions in hand,
is not the case that the CSS solutions cease to exist fo¥e NOw carry out a linear perturbation analysis of the CSS
smaller . It is, however, worth recalling that Maisdd5] ~ Solutions, still in spherical symmetry. We define the per-
found that his sequence of CSS gas collapses terminated afébed fields as
maximal valuek,,~0.88, wherek appears in the equation

of state for an Eulerian fluigg=kp. The reason in his case b(7,2)~Dbo(2) + €by(7.2), (279
was a change in the nature of the eigenvalues associated with -

the singular sonic point. Ak, two of the eigenvalues u(7.2)~Uo(2) + eUn(7.2), 279
degerate. But we have no evidence that a similar thing occurs F(7,2)~€9Tfy(2)+ ef4(7,2)] (270

here.

As far as we know, there is only one eigenvalieos-  where again, the subscript zero denotes the zeroth order criti-
sible for the CSS solution for a gives; however, we have ca| solution, the subscript one denotes the first order pertur-
not looked very Carefu”y for others. We also mention thatbation,w is the(unique eigenva|ue of the unperturbed equa-
although we describe the spacetime only up to the similarityjons (which depends on the coupling constadf and where
horizon, the spacetime can be continued in these coordinatgs. g is an infinitesimal constant, a measure of how far away
to z=+c0. This corresponds to the spacelike hypersurfacghe solution is from the critical solution in the space of initial

t=0. We expect everything to be regular on this hypersurconditions. Using Choptuik’s terminology, we consider the
face except at the axis of spherical symmetry since it too is igupercritical regime for infinitesimal

the Cauchy development of the initial data. Thus the appar-

ent singularity in our equations at= +« is merely a coor- exp—p*. (28
dinate singularity. By changing coordinates, we can continue . . ) .
the spacetime through=0. We will not detail the explicit We now perturb the Einstein equations through first order

construction of this extension here. It is similar to that foundin €, to obtain a set of linear partial differential equations for
in [2,5]. Suffice it so say that we have made this constructiorthe perturbed fieldb,, uy, 4, in the independent variables

and the spacetime is indeed extendible for all values ffr ~ z. Following the standard approach, we Fourier transform the
which we find a solution. Hence the spacetime can be conitst order fields with respect to the ignorable coordinate
tinued to and beyond the future similarity horizon. 7=In(—t):

V. PERTURBATIONS AND STABILITY al(g,z):f &7, (r,2)dr, (299

As interesting as the CSS solutions are, they do not tell us
everything we would like to know about the gravitational
collapse. After all, these are the exactly critical solutions
p=p* and comprise a set of measure zero in the space of
initial conditions of the collapse. To reach them, the initial n o
conditions must be tuned with exquisite care. In addition, fl("’z)zf e7f1(7,2)dr; (299
such things as the critical exponents of the black hole scaling
relation are found only with information gained by collapsethroughout, a caret will denote such a Fourier transform. The
slightly away from the critical solution. transform coordinate is in general complex. The first order

For these reasons, we look to perturbation theory for adfield equations now become ordinary differential equations
ditional understanding of the CSS solutions. It too is not th(ODE’s) in z, and under appropriate boundary conditions,
last word, but it can shed some light on questions of stabilitypecome an eigenvalue problem tor Solutions of the eigen-

bi(o,2)= f e'’"b,(7,2)d7, (29b
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value problem are then normal modes of the critical solutionBecause the equations are linear, the matching conditions
Generally speaking, there will be many different normalat z=z; are likewise linear in the boundary values. A solu-

modesf ;, each belonging to a different eigenvakmeEigen-  tion is found when the values at, of [by,u;,f;(0),
values in the lower half plane ln<O belong to unstable fl(_g*)*,fi(g),fi(_g*)*] upon integrating fromz=0

(growing normal modes. Eigenvalues in the upper half match with those found by integrating from- z,, for some

plane correspond to quasinormialing) modes of the criti-  poundary valueX. We can express this matching condition
cal solution. The eigenvalug is related to the critical expo-

nent by y=—1/Imo-. [15,16,13 A(o)X=0, (32
We now want to integrate our equations numerically so . . o )

we need to determine the boundary conditions. It is imporWhereA(o) is a 6x6 complex matrix which is a nonlinear

tant to bear in mind that in addition to solving the equationfunction of o, constructed numerically by integrations of the

for f,(o,2), we must also solve the analogous equation fOIﬁrst_order equations, EQ#A2), for six Ilne_a'rly independent

A i choices of boundary valueX. The condition ono for a

f1(—o*,2)*. Thus, we will have two second order ODE’s

. . > solution is then
which must be reduced to four first order ODE’s, we will

have a total of six complex equations to integrate. For the detA(o)=0. (33
perturbation problem, the boundary conditionszatO are
found to be Once a value forr was found that satisfies this condition, the
corresponding boundary valueswere found as a zero ei-
b,(0)=0, U0 (0)=0, fi(c,0=0, F;*(—0c*,0=0, genvector of the matrid; these come in onécomplex

(30)  parameter families, as observed above. Solution of &d.
with boundary valueX yields the normal mode itself. Now,
A(o) has been carefully constructed so that it is a complex
analytic solution of o. This follows from the fact that all
equations leading té containo but noto*, together with
some standard theorems about ODE’s. Moreorérr) has
o ) - no singularities in the closed lower halfplane. These prop-
At the similarity horizonz=z,, the boundary conditions are grties allow us to use a number of ideas from scattering
as follows. Bothb,(z,) andu,(z,) are free complex con- theory to study de¥(o). In particular, there is a theorem for
stants. Eitherf,(0,2,) or f;(o,2,) is a free complex con- counting the numbeN¢ of zeros of deA within any closed
stant with the other describable in terms of the other boundcontourC in the closed lower halé plane:
ary conditions at,. We chose to Ieﬂ(a,zz) to be free and
f1(o.,2,) fixed as this facilitated examining the lower half
complex ¢ plane. The same is true for the valueswhere argdel is the phase of dét andA.argdeA is the
fi(—g* ,Z,)* and fl(—g* ,Z,)*. Counting the eigenvalue total phase wraygin radiang around the closed contodt a
o, we now have seven pieces of complex boundary data teesult similar to Levinson’s theorem for counting resonances
go with the six complex equations we need to integratein quantum scattering theory.
Since the perturbation equations are linear, we expect the Furthermore, a conjugacy relation holds,
solutions to scale, so the extra piece of data is merely a N L
reflection of the linearity of the equations. Solutions will A*(=0*)=A(0), (35)
come in families which will be parametri_zed by a single which means thaa need only be evaluated for Re=0 in
complex parameter. Thus we have an eigenvalue proble%
which is well posed and which should yield a discrete spec- e lower ha_1|f plane. .

The nonlinear equation d&fc)=0 was solved by the

trum of eigenvalues. secant variant of Newton's meth¢#l4]. The equation being
: . : . 6homplex—analytic, the one-complex-dimensional realization
integrator with adaptive step size as part of a standard tW8f the method was used, and it performed well

Eglﬂtbsohuonodtg]rigegqgr?c]jogg%hisr?o?r?rt]r?efigirgdz;g aggr gng Since our field eql_Jations possess gauge invariance due to
9 L general coordinate invariance, and also possess a three-

venience we solved the zeroth order system, 2@, and dimensional group of global invariances acting Bnsome

the f'rsi ordgr ?/stde_m, Eq$§\2)|, smultan;ous_ly .:N't.? tﬁe. unphysical pure gauge modes will appear at first order, to the
Same SIeps 1d. AS CISCUSSed elsewnere, the simitarity norl- o0t that the gauge conditions implicit in our boundary

zonz, is a demanding place to enforce a boundary Conditionconditions Eqs(30),(31) fail to be unique
and a second order Taylor expansion of the regular solution A pure gauge r’node arises from an. infinitesimal phase

was used for this purpose. : ey : s :
) rotation €'“¢ in the zeroth order critical solution
To solve the first order system, we collected all the $—ee

boundary values buf into a complex six-vector B,(2)=0 (363

f,(c,0)= free complex const,

f’{ (o*,0)= free complex const. (31

AcargdeA=27N, (39

X=[f1(0,0),F1(—0*,00* b1(2,),U1(2y), Uy(2)=0, (36b)

f1(0.20),F1(— 0*,25)*]. t.(2)=ifo(2). (360
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This gives a time independent solution of E@¢82) that
satisfies the boundary conditions; hence it corresponds to a
unphysical mode atr=0.

Another pure gauge mode results by adding an infinitesi-
mal constant to timé—t+ e at constant in the zeroth order
critical solution. This is possible because our coordinate con- 94
ditions, Egs(18) normalizet to proper time along the nega-
tive time axis €<0,2=0), but the zero of time is not speci-
fied. Then the solution is perturbed by 03

0.5

by(7,z)=dbg/dt|,=—(z/t)b'(2)=€e" "zb'(2), (373
Uy(7,2)=3aug/dt|, = —(zIt)u’(z2)=e" "zU'(2), (37b 0.2

fi(r,2)=e7 79" o)/ dt), =e T—iwfy(z)+2f)(2)].
(379 0.1

This pure gauge mode has time dependencé™=e ™" and
so has negative imaginagy= —i.

There are also two more gauge modes which appear as  ©
pair on the real axis. In the cage=0, these come from the ©
addition of an infinitesimal complex constanto our zeroth
order solutionF—F + ec. The perturbed fields are then

v
LA N A ) L L AN N L R
o b e e b e e by

o
o))

10

FIG. 1. The critical exponeny, as in Eq.(1), of the continu-
ously self-similar solution as a function af See text.

bi(7,2)=0, 38 . T
i(72) (389 complexo plane. These additional modes are initially in the
_ upper half plane for large positive and approach the real
u.(7,2)=0, (38b !
axis ask decreases. Once one of these modes crosses the
f,(r,2)=ce e, (389 axis into the lower half plane we infer that the leading nor-

mal mode of the CSS solution has a change of stability. This
This mode has a time dependenceedf’"=e '“7 and so first occurs atk~0.0754. We thus have
haso=w. Of course, since we haw* (—o*)=A(0), the

value o= — » will also solve the equation dét=0 and be 0.0754s K<+, CSSstable, (399
the fourth gauge modeA similar but more complicated ar-
gument shows that two gauge modes persist at the same —0.60=x=0.0754, CSSunstable. (39

frequency even fok#0.

Thus, for all values of, there exist four gauge modes in This confirms the discovery by Choptuik and Liebling of a
the & plane, and it can be shown that there are no othergzhange of stability atgp~0; from Eq.(7) the value would
These modes should appear as numerical solutions-€ wgp~0.158[7,8]. Note that these results are in good

therefore serving as calibrations—but are unphysical. agreement with earlier work. The CSS solution for the com-
plex scalar field £=0) was shown to be unstable by a simi-
VI. RESULTS AND CONCLUSIONS lar analysiq13] while the CSS solution for the axion-dilaton

field (k=1) was shown if6] to be the attractor in gravita-

On integrating and solving for the eigenvalueé«), we  tional collapse and hence agrees with what we have found
found some novel behavior. We confirmed the existence ohere, namely that the solution found |B] is stable. An
the gauge modes thereby checking the consistency of oumportant question is if the CSS solution becomes unstable at
method. We also found the critical exponeritx) over the  «~0.0754, what is the attractor for the collapse. Our conjec-
range ofx values for which we found a solution. Figure 1 is ture, borne out by collapse calculations of Choptuik and Lie-
a graph of this exponent as a function of the coupling conbling, is that the attractor between<0¢=<0.0754 (i.e.,
stant. As can be seen, the critical exponent for the CSS sasgp=0) is the more dynamically interesting discretely self-
lution depends strongly on the value of the coupling con-similar (DSS or echoing solution analogous to the echoing

stant. solution originally seen by Choptuik in the collapse of a real
In addition, we evaluated d&fc) around a large rectan- scalar field.
gular contour in the lower half plane and used E34) to Since everything in our model is smooth a0, as we

count the zeros lying within. This allowed us to determine ifdecreasec below zero, we expect the relevant attractor for
there were additional modes in the lower haliplane. Our the collapse to continue to be the echoing solution. However,
results were as follows. We did find many more modes in thehe above mentioned unstable mode turns out not to be the
only mode to move into the lower half plane. We have some
evidence for more eigenvalues going unstablecby— 0.28.
“When we did a similar analysig2,13] for the complex scalar We have constructed the corresponding perturbation modes
field, we were insensitive to these modes, since we worked with thand they appear to be legitimate solutions of the perturbation
derivatives of¢(7,z), and these modes vanished identically. equations and not numerical artifacts. These additional
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=<0.0754 =0.158 =0.373 becomes unstable

0 +oo 0.3871 unstable APPENDIX A: EQUATIONS OF MOTION

=-0.28 n/a =0.435 more modes become unstable? AND THEIR PERTURBATION

=-0.60 n/a (not known if CSS exists

In this appendix, we list some equations that were too
cumbersome for the main portion of the paper. We have the
general collapse equations for our modé) in the usual
modes suggest that the model becomes ever more unstabfe,r) coordinates:
that is more nonlinear, a8 decreases. So what happens in
gravitational collapse ag decreases below —0.28? The .or(u+l) . .

CSS solution will certainly not be the attractor but, we U=—pr[F*F'+FF'*], (Ala)
speculate, the existence of similar unstable modes may trig-

ger further bifurcations in the echoing solution. Since our
calculations in this paper are limited to perturbation theory, u’
we cannot pursue this question further here, but a possibility

is that the echoing solution becomes unstable and bifurcates

into an even more dynamically complicated solution. One , ub

way to determine what happens here with greater assurance b e (Alc)
would be to take a numerical solution for the DSS solution

and perform a perturbation analysis. That this would be fea- ,
sible is suggested by Gundlach’s results in which he calcu- O:r2<}|'j_ BF) —(r?bF"+2rbF’ +r2b'F")

lates the echoing solution as an eigenvalue problem resulting b- p2

from the assumption of discrete self-similarity in the collapse (Ald)
of a real scalar field17]. However, another, more direct

approach would be to perform a full scale numerical collapse 2kr?
calculation in order to understand what is going on in this -
regime.

In this paper, we have combined a few of the previously
studied models of gravitational collapse into a single mode
of a self-coupled complex scalar field. The model is param-
eterized by a single coupling constantin Table I, we give
a summary of some of the key values «f As the value of
the coupling constant decreases, the continuously self-similar : .
solution which we find undergoes a change in stability. For The Eqs.(lﬁ) when perturbed as given in Eq(§_7) be—.
the regime where the CSS solution is unstable, we believfOme our or!g|nal set as vyeII ?S the following Fourier-
that the attractor for gravitational collapse is an echoing an fansformed first order equations:
discretely self-similar solution. This change in stability

1 .
F'HZ

u(u+1l)

r(u+1)
= - (Alb)

_pz

F'[?+

1.
F*(bF’z— BFZ), (Ale)

here an overdot meargdt and a prime meang/Jr, and
here

p=1—«|F|2.

which occurs neak=0.0754 appears to be a “Hopf bifur- zu+iouy (A23)
cation,” as it is known in the dynamics literatuf@]. As «

continues to decrease, we find evidence for additional insta- Z(Up+1) ., . . -

bilities in the model, suggesting that another bifurcation of :T[fO(Zfl_l(w+U*)fl)*

the collapsing solution may exist. From the lore on other 0

dynamical systems, this further conjectural bifurcation might +i*(ZH—i(0—0)f)) (A2b)

lead to a doubly periodic attractor, or might lead to full
blown dynamical chaos in gravitational collapse. Additional

work will be able to determine whether this is indeed the +H(zfo—iwfe)* +11* (zfo—iwfg)] (A20¢)

case.
As this paper was being readied for publication, there z(up+1)( Uy 2p4 L
were indications in Liebling’s work that the attractor in this + T U+l o [fo(zfo—iwfg)*
0

region of parameter space, though DSS, is different from the
family of DSS solutions originally discovered in the Brans- e
Dicke model[18]. +fo" (zfg—iwfo)], (A2d)



4704
~ zZ(up+1)| . . 2b
ugz—( ° ) fg,f;*+f5*f1——;|zf(;—iwf0|2
Po by
1 , . .
+F[(zféﬂwfo)(zfi—l(ero*)fl)* (A2¢)
0
+[(zfg—iwfo)*(z?i—i(w—o)%l)]] (A2f)

Z(up+1)[ Uy 2;71) P 2
—_— —_—— J’_ J— —
p% U0+1 Po |f0| bngfo waol ’
(A29)
~ 1
bi:E(Uob1+ u1bo) (A2h)

1 2
+2[2Up=2)

- - ) 2Kkw
O:fE[AO-Ffi[ 2iz| (w— o)+ p—|f0|2
0

2 AO * g/ .
+bg(ug+2)]+ 516 (A2i)
X . 4e .,
+f1i(w—0)| (w—a+i(1l—ug))+ Efo(lzfo-f-a)fo)
(A2))
2k* 2P 2120 (i 2
+ — 15 bsfe + (izfy+ wfo) ]} (A2k)
Po
2 PP 5
+ 11 —{bgfo + (izfi+ wfo)?} (A21)
Po
A 4kbg , O )
+by{ 2bfg+ fofo +—(wfot+izfy)
Po bo
2bg
+T(U0+2)f6 (A2m)
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2

+0p] —iwfo+zfy+ ?Of(’) , (A2n)

APPENDIX B: GLOBAL EXISTENCE THEORY
OF NONLINEAR o MODELS IN FLAT SPACETIME

The nonlinearc models can of course be studied in flat
spacetime, as a nonlinear wave equations in their own right.
There is a considerable literature on them, both in physics
and mathematics. For present purposes the important issue is
the possible evolution if singularities in the field from regular
initial conditions. After all, a curved spacetime containing a
matter field should not be considered a counterexample to
cosmic censorship of that same matter field can evolve a
singularity in flat spacetime. A related question of consider-
able interest is the possible existence of critical solutions and
similarity solutions, which typically are singular.

In mathematics, SQ(+1) nonlinear ¢ models
(k=1,2,3...) arestudied in general n(+1)-dimensional
spacetimes, with much attention on the c&sen, where
there exist nontrivial topological configurations, such as the
“equivariant wave maps” — these are approximately the
same as what the physicists call “texture.” Similarity solu-
tions are known to exist in the case= 3=k and these solu-
tions are singular. A recent paper that contains both exten-
sive results and a thorough discussion of previous literature
is [19].

In physics, S@3) nonlinearc models have been studied
as models of “texture” in(3+1)-dimensional cosmology.
Texture can collapse, and the analytic form of the similarity
solution is known 20].

In our paper we have used the @Pnonlinearoc model
in (3+1) dimensions. One naturally wonders whether or not
the flat-spacetime restriction of this particular model admits
similarity solutions, or admits singularites at finite time that
evolve from regular initial conditions. However, these ques-
tions appear to remain open, except of course in the case
k=0, where the model becomes the free wave equation.
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