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We examine the gravitational collapse of a nonlinears model in spherical symmetry. There exists a family
of continuously self-similar solutions parametrized by the coupling constant of the theory. These solutions are
calculated together with the critical exponents for black hole formation of these collapse models. We also find
that the sequence of solutions exhibits a Hopf-type bifurcation as the continuously self-similar solutions
become unstable to perturbations away from self-similarity.@S0556-2821~97!00220-8#
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I. INTRODUCTION

The last few years have seen a renewed interest in gravi-
tational collapse, particularly with regard to what numerical
relativity is able to teach us about the general phenomenon.
Choptuik’s initial discovery of criticality and other behavior
strikingly similar to that seen in statistical mechanical sys-
tems has suggested a deep property of the gravitational field
equations.

A good deal of recent work has shown the existence of
collapse solutions exactly at the threshold of the formation of
a black hole for a variety of matter fields. These include both
real and complex scalar fields@1,2#, vacuum gravity@3#, a
perfect fluid @4#, and an axion-dilaton model from low-
energy string theory@5#. In each of these models, some com-
mon behavior emerges. For example, the growth of the black
hole mass just off threshold is described by a power-law
relation

MBH~p!}H 0, p<p* ,

~p2p* !g, p.p* , ~1!

wherep is any parameter which can be said to characterize
the strength of the initial conditions andp* is the threshold
value, i.e., the value for the critical solution. The critical
exponentg is universal within a particular class of matter
fields. For example,g'0.37 for the real scalar field,g'0.36
for perfect fluid collapse, andg'0.2641066 for the axion-
dilaton ~axiodil! system@6#. The solutions may also exhibit
an echoing behavior in that the features of the exactly critical
solution are repeated on ever decreasing time and length
scales. This self-similar behavior of the solutions has been
found in both discrete and continuous versions. In particular,
for vacuum gravity, discrete self-similarity, and echoing are
observed, while in fluid collapse, continuous self-similarity
with no echoing emerges. In scalar field collapse, both types
have been shown to be present.

The main results of this paper unify the discrete vs con-
tinuous self-similarity known in the above models. Specifi-
cally, we examine a particular nonlinears model which
smoothly interpolates between the complex scalar field
model @2# and the axion-dilaton model@5# as the value of a
certain dimensionless coupling constantk varies. We find a
family of continuously self-similar solutions parametrized by
k. Using linear perturbation theory, we study the stability of
these solutions, and find that the sequence of solutions un-
dergoes a bifurcation at a particular value,k'0.0754, where
the continuously self-similar solutions go from being stable
to being unstable. The free complex scalar field (k50) is
found to be on the unstable side of this bifurcation, while the
axion-dilaton field (k51) is on the stable side. This is in
agreement with previous results for both of these matter
fields. Further, we find that for negative valuesk&20.28,
the self-similar solutions become ever more unstable hinting
at the possibility of further bifurcations and more compli-
cated dynamics. Since we work only in perturbation theory,
we cannot confirm these latter possibilities here, but our re-
sults are somewhat suggestive of the existence of more ex-
otic behavior than may have previously been observed. For
this reason, full scale numerical work on these models would
undoubtedly be a very enlightening undertaking.

Prior to our work, Choptuik and Liebling@7,8# studied an
apparently different model, namely, Brans-Dicke gravity
coupled to a free real scalar field, for various values of the
dimensionless Brans-Dicke coupling constant23/2,vBD
,`. They use a spherical collapse code, and their main re-
sult is a change of stability atvBD'0. After the continu-
ously self-similar solution was found in the collapse of an
axion-dilaton field@5#, they realized that it was their more
general Brans-Dicke model for a particular value ofvBD . In
fact, we find that their Brans-Dicke model is equivalent to
some range of our nonlinears model (̀ .k>0), with
vBD5` corresponding to the free complex scalar field and
vBD5211/8 corresponding to the axion-dilaton field. The
bifurcation in stability we find here in linear perturbation
theory then coincides with the change of stability previously
found by Choptuik and Liebling; in particular, we agree with
their result that, for axion-dilaton collapse, the continuously
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self-similar critical solution is stable and appears to be the
attractor. The rangek,0 is not present in the Brans-Dicke
model, however.

Hamade, Horne, and Stuart@6# gave both full numerical
results and perturbation results on axion-dilaton collapse in
spherical symmetry. Our results in linear perturbation theory
for k51 agree with theirs with regard to real modes and
critical exponents. They also find by their numerical collapse
code that the continuously self-similar critical solution is
stable and is the attractor, in agreement with the work of
Choptuik and Liebling; this is also consistent with our results
below on the complex modes fork51. This change in sta-
bility which occurs nearvBD'0 appears to be a ‘‘Hopf bi-
furcation,’’ as it is known in the dynamics literature@9#.

The outline of this paper is as follows. In Sec. II, we give
general arguments on what kinds of self-coupling of a scalar
field may show new critical phenomena in gravitational col-
lapse; likely candidates are the nonlinears models. In Sec.
III, we introduce the particular nonlinears model to be stud-
ied in this paper, and discuss its relationship to matter fields
which have been studied previously. Section IV introduces
the equations of motion, derives their form in the presence of
a continuous self-similarity, and sketches our numerical ap-
proach to solving them. Section V discusses the perturbation
of the continuously self-similar solutions and the question of
stability of these solutions. Section VI presents our results
and conclusions. Appendix A summarizes our equations in
detail. Finally, in Appendix B we provide a short bibliogra-
phy on the related issue of nonlinears models in flat space-
time.

II. CRITICAL BEHAVIOR AND SELF-INTERACTION

With the important exception of@3#, all the work so far on
critical phenomena in gravitational collapse has assumed
spherical symmetry. In spherical symmetry, there is no
gravitational collapse without matter, from Birkhoff’s theo-
rem. Therefore one might expect that critical behavior would
depend importantly on the model of the matter. Indeed, the
critical phenomenology and exponents differ among matter
models such as real scalar field, ideal gas, complex scalar
field, axiodil, . . . . However, studying a real scalar fieldf,
Choptuik found that inclusion of a nonlinear interaction term
V(f) in the action

Lmatter5
1

2
¹af¹af2V~f!, ~2a!

V~f![m2f2/21lf4/4 ~2b!

made no difference in the critical solution itself or in its
phenomenology.

We can understand this result as follows. At least in all
known cases, the critical solution is either ‘‘echoing’’~dis-
cretely self-similar! or continuously self similar@~CSS! —
admitting a homothetic Killing vector field#. In either case,
by dimensional analysis, the solution cannot depend on any
dimensionful parameters. Here we use dimensional analysis
appropriate to classical general relativity, with a unit of
length l in some system of units where Newton’s gravita-
tional constantG[1. A scalar fieldf ~real or complex! then

has dimensionsl 0, while a Lagrangian must have unitsl 22.
It follows that the parametersm and l above have dimen-
sions different from zero; in particular,m is just the inverse
compton wavelength of the particle. Since these parameters
are dimensionful, the critical solution cannot depend on
them, consistent with the numerical results.1

For this reason we turn attention to a different kind of
self-coupling, one which multiplies the kinetic term instead
of adding to it. The general form is

1

2
GIJ~fK!¹af I¹afJ ~3!

where there are now some numberN of scalar fieldsf I

(I 51 . . .N), and whereGIJ is some function of the fields,
fixed once and for all to specify the model. The nonlinear
functionsGIJ take the form of a Riemannian metric on the
internal space of thef I , the target space.Such models are
called nonlinears models~or ‘‘harmonic map’’ models, as
discussed by Misner@10#!, and much is known about them in
high-energy physics, not least because they often appear in
the low-energy limit of superstring theory. By dimensional
analysis, the scalar fieldsf I are of dimensionl 0, as is the
target space metricGIJ . Therefore any parameters appearing
in GIJ may also be taken as dimensionless, and we can ex-
pect the critical solution to depend on them.

What is the simplest nonlinears model we can study? If
N51 then the matter action can be reduced to that of a free
field by a field redefinition; a one-dimensional Riemannian
space is always flat. So the simplest nontrivial value isN52,
wherein the two real scalar fields can be grouped into a
single complex scalar fieldf. For the target space metric, the
simplest cases are the spaces of constant curvature, namely
the two-sphere, flat two-space, or the two-hyperboloid, all
with homogeneous metrics. This is the model we shall study.

III. THE MODEL

We work with a model defined by the action

S5E d4xA2gS R2
2u¹Fu2

~12kuFu2!2D . ~4!

The complex fieldF(xm) is a scalar coupled to Einstein
gravity with k a real dimensionless coupling constant:

2`,k,`. ~5!

The model given by Eq.~4! is a nonlinears model. As
mentioned above, the target space of the model is a two-
dimensional space of constant curvature. The curvature of
this internal space is proportional to2k so that the space is
hyperbolic fork.0 and a two-sphere fork,0. For the par-

1Choptuik has also tried adding a conformal couplingjRf2 to the
matter Lagrangian. In contrast,j is dimensionless, so that that criti-
cal solution should depend on it. This point deserves more investi-
gation.
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ticular casek51, our model becomes the axion-dilaton~ax-
iodil! field t̃ coupled to gravity2:

F5
11 i t̃

12 i t̃
. ~6!

It turns out in quantum field theory that the valuek51 is not
affected by quantum corrections, as it is protected by ex-
tended supersymmetry. Fork50 the model~4! reduces~af-
ter a further trivial rescaling of the field! to the free complex
scalar field coupled to gravity. Thus this general model
smoothly interpolates between the two particular matter
models that we have already considered. In fact, for
0,k,` we find that this nonlinears model is equivalent to
the model of a massless real scalar field coupled to Brans-
Dicke theory. Liebling has recently examined this theory us-
ing a version of Choptuik’s adaptive mesh refinement algo-
rithm. He finds behavior qualitatively similar to that found
by Choptuik for the real scalar field@7#. The connection be-
tween the two theories can be seen in the relationship be-
tween the Brans-Dicke coupling constant@11# vBD and our
constantk:

vBD52
3

2
1

1

8k
, 0<k,`. ~7!

This means that the axion-dilaton model (k51) corresponds
to vBD5211/8, while the free complex scalar field (k50)
corresponds tovBD51`. Also, asvBD→23/21, we have
k→1`; however this may be a singular limit of the theory.
For 2`,k,0 the model~4! appears not to be equivalent to
any Brans-Dicke model; in particular Eq.~7! does not apply.
The model behaves in a smooth way ask passes through
zero.

Returning to the model for general realk, the field equa-
tions in covariant form as derived from the action in Eq.~4!
are

Rab5
1

~12kuFu2!2~¹aF¹bF* 1¹aF* ¹bF !, ~8a!

¹a¹aF5
22kF*

12kuFu2
¹aF¹aF. ~8b!

In this form, these equations are manifestly invariant under a
global U~1! group of transformations, parametrized by a real
constantL:

F85eiLF, 2`,L,` ~9!

and which leave the metric unchanged.
For k.0, this model also has a larger global symmetry

not present in general relativity, namely, an SL(2,R) symme-
try that acts onF, but leaves the spacetime metric invariant;
this is a classical version of the conjectured SL(2,Z) sym-
metry of heterotic string theory calledS duality @12#. For the
axiodil, k51, this symmetry acts ont̃ as

t̃→
a t̃ 1b

c t̃ 1d
, ~10!

where (a,b,c,d)PR with ad2bc51, while leavinggmn in-
variant. The corresponding transformation ofF for general
k.0 is

F→
1

Ak

aAkF1b

b* AkF1a*
, ~11!

where (a,b)PC with uau22ubu251. The transformations of
Eq. ~9! form a special case.

In the case wherek50, the larger global symmetry con-
sists of rigid translations and rotations in the two flat direc-
tions of the target space, the group E~2!. Finally, for k,0,
the group of motions on the two-sphere, SO~3!, constitutes
the larger global symmetry.

IV. THE CONTINUOUSLY SELF-SIMILAR SOLUTIONS

We briefly review the process of setting up the equations
such that they are compatible with a continuous self-
similarity. To begin, we work in spherical symmetry so the
metric can be taken as

ds25~11u!@2b2dt21dr2#1r 2dV2, ~12!

where b(t,r ) and u(t,r ) are the metric functions. This is
essentially Choptuik’s metric in radial gauge with some mi-
nor redefinitions. The timelike coordinatet is chosen so that
the collapse on the axis of spherical symmetry happens at
t50 and the metric is regular fort,0.

We are interested in finding collapsing solutions of our
model. In particular we ask whether, as in the complex sca-
lar, axiodil, and fluid collapse cases, there exist continuously
self-similar ~CSS! solutions to these equations for arbitrary
k. That a spacetime admits a continuous self-similarity is
described covariantly by the existence of a homothetic Kill-
ing vector fieldj satisfying

Ljgab5¹ajb1¹bja52gab , ~13!

whereL denotes the Lie derivative. A coordinate system
better adapted to our assumption of self-similarity involves
the coordinatesz52r /t andt5 lnu2tu. In these coordinates,
the metric takes the form

ds25e2t$~11u!@2~b22z2!dt212zdtdz1dz2#

1z2dV2%, ~14!

and the homothetic Killing vector is then expressed simply in
these coordinates as

ja]a5]t . ~15!

In these coordinates, Eqs.~8! can be written as

zu82u̇5
z~u11!

r2 @F8~zF82Ḟ !* 1F8* ~zF82Ḟ !#,

~16a!

2Notation: We uset̃ here for the axiodil field, instead oft as in
@5#, to avoid confusion with logarithmic time coordinatet below.
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u85
z~u11!

r2 F uF8u21
1

b2 uzF82Ḟu2G2
u~u11!

z
,

~16b!

b85
ub

z
, ~16c!

05F9D2F̈12zḞ81F8Fz~u22!1
b2

z
~u12!2z

ḃ

b
G
~16d!

1ḞS ḃ

b
112uD 1

2k

r
F* ~DF8212zF8Ḟ2Ḟ2!,

~16e!

where the overdot here means]/]t and the prime denotes
]/]z and we define the functions

D5b22z2, r512kuFu2. ~17!

For completeness, we include the field equations in (t,r )
coordinates in Appendix A. However, they are not crucial to
our current discussion.

The boundary conditions we use are that the solution is
regular on the time axisz50 and on the so called similarity
horizonD5b22z250. Regularity on the time axisz50 at
the center of spherical symmetry allows us to write the
boundary conditions for the metric functionsb(t,z) and
u(t,z) as

b~t,0!51, u~t,0!50. ~18!

The hypersurface defined byD50 is where the homothetic
Killing vector becomes null. As this hypersurface is in the
Cauchy development of the initial data, we expect everything
to be perfectly regular there even though this is a singular
point of Eqs.~16!.

The existence of the homothetic Killing vector simplifies
these equations somewhat. For the general collapse problem
without self-similarity, the metric coefficientsu and b will
be functions ofz andt, but our assumed symmetry restricts
these coefficients to be functions ofz alone. We could also
let the dimensionless fieldF be invariant under the action of
the vector fieldj, but that would then fail to incorporate the
SL(2,R) symmetry which the field equations also possess.
We therefore assume thatj act onF with an arbitrary infini-
tesimal SL(2,R) transformation, which generates some U~1!
subgroup of SL(2,R). Without loss of generality, we can
assume that this U~1! transformation acts by a pure phase
rotation ofF, so that

LjF5ja]aF5 ivF, ~19!

wherev is a real constant. This allows us to give the form of
F under our assumption of self-similarity as

F~t,z!5eivt f ~z!. ~20!

The continuously self-similar~CSS! fields are now

F~t,z!5eivt f 0~z!, ~21a!

b~t,z!5b0~z!, ~21b!

u~t,z!5u0~z!, ~21c!

wherev is a real eigenvalue, determined by solving the field
equations. The subscript zero that we have appended denotes
unperturbed values in anticipation of the perturbation calcu-
lation below in Sec. V.

Our equations are now just Eqs.~16! with the t deriva-
tives of u(z) and b(z) vanishing,F and F8 being replaced
by f 0 and f 08 , and Ḟ and F̈ being replaced byiv f 0 and

2v2f 0, respectively. Note that withu̇050, we can eliminate
u08 and we are left with an algebraic relation foru0(z). The
equations of motion now reduce to3

b085
b0u0

z
~22a!

D0f 095 f 08S 22ivz2z~u022!2
b0

2

z
~u012!2

4ikvz

r0
u f 0u2D
~22b!

2 f 0@v21 iv~12u0!#2
2k

r0
f 0* ~D0f 08

21v2f 0
2!, ~22c!

where we have defined

D05b0
22z2, ~23a!

r0512ku f 0u2, ~23b!

u05
z2

r0
2S 1

b0
2 u iv f 02z f08u

21u f 08u
2D ~23c!

1
z

r0
2 @ f 08~ iv f 02z f08!* 1 f 08* ~ iv f 02z f08!#

~23d!

and where the prime now denotesd/dz.
The boundary conditions atz50 for the CSS problem

now reduce to

b0~0!51, f 05 free real constant, f 08~0!50, ~24!

where we have used our U~1! phase symmetry to fixf 0 as
real. We define the value ofz whereD0 vanishes asz2. As
mentioned earlier, we demand regularity atD0(z2)50 and
this leads to the additional boundary conditions

b0~z2!5z25 free real const, f 0~z2!5 free complex const,
~25!

with the constantf 08(z2) being determined by Eq.~22! at the
similarity horizon.

Now with the equations and boundary conditions, we can
numerically integrate these equations. Once we reduce our

3Our notation here more closely follows the paper@5# on the ax-
iodil, k51, and not the earlier papers@2,13# on the complex scalar
field, k50.
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second order ordinary differential equation~ODE! to two
first order ODE’s and include the real eigenvaluev we have
five real equations and five real unknowns. We use our stan-
dard technique of solving this two-point boundary value
problem by shooting with an adaptive ODE solver from both
boundary points to a pointz1 in the middle. The free bound-
ary values are then found using a Newton’s solver for the
nonlinear matching conditions@14#.

We then follow the CSS solution ask varies, and we find
that a CSS solution exists for

20.60&k,1`; ~26!

for k50,1 the CSS solution is the same one found in previ-
ous work. Our computations only extend tok<15, but the
behavior is smooth and the CSS solutions seem likely to
extend all the way tok5`. On the other hand, our calcula-
tions of CSS solutions appear to terminate somehow at
k'20.60. We are unsure what exactly goes wrong there,
but we tend to believe that our numerical routine fails and it
is not the case that the CSS solutions cease to exist for
smallerk. It is, however, worth recalling that Maison@15#
found that his sequence of CSS gas collapses terminated at a
maximal valuekmax'0.88, wherek appears in the equation
of state for an Eulerian fluidp5kr. The reason in his case
was a change in the nature of the eigenvalues associated with
the singular sonic point. Atkmax, two of the eigenvalues
degerate. But we have no evidence that a similar thing occurs
here.

As far as we know, there is only one eigenvaluev pos-
sible for the CSS solution for a givenk; however, we have
not looked very carefully for others. We also mention that
although we describe the spacetime only up to the similarity
horizon, the spacetime can be continued in these coordinates
to z51`. This corresponds to the spacelike hypersurface
t50. We expect everything to be regular on this hypersur-
face except at the axis of spherical symmetry since it too is in
the Cauchy development of the initial data. Thus the appar-
ent singularity in our equations atz51` is merely a coor-
dinate singularity. By changing coordinates, we can continue
the spacetime throught50. We will not detail the explicit
construction of this extension here. It is similar to that found
in @2,5#. Suffice it so say that we have made this construction
and the spacetime is indeed extendible for all values ofk for
which we find a solution. Hence the spacetime can be con-
tinued to and beyond the future similarity horizon.

V. PERTURBATIONS AND STABILITY

As interesting as the CSS solutions are, they do not tell us
everything we would like to know about the gravitational
collapse. After all, these are the exactly critical solutions
p5p* and comprise a set of measure zero in the space of
initial conditions of the collapse. To reach them, the initial
conditions must be tuned with exquisite care. In addition,
such things as the critical exponents of the black hole scaling
relation are found only with information gained by collapse
slightly away from the critical solution.

For these reasons, we look to perturbation theory for ad-
ditional understanding of the CSS solutions. It too is not the
last word, but it can shed some light on questions of stability

and in particular allow us to calculate the critical exponents
of the black hole growth.

As described in@13#, the very construction of a Choptuon
involves stabilization — a balancing between subcritical dis-
sipation and supercritical black hole formation with the criti-
cal exponentg measuring the strength of this black hole or
dissipation instability. More specifically, for initial data close
to, but not exactly on the critical solution, the critical solu-
tion serves as an intermediate attractor with near-critical so-
lutions approaching it but eventually running away from it to
form a black hole or dissipate the field to infinity. However,
in addition to this particular instability, we would like to
know if there areadditional instabilities which would rather
drive the near-critical solutions completely away from the
Choptuon to another, perhaps very different, attractor. Thus
by appealing to perturbation theory, we are looking for both
the black hole instability~i.e., the critical exponent! and pos-
sibly other instabilities indicating the existence of other,
stronger attractors.

So, with the continuously self-similar solutions in hand,
we now carry out a linear perturbation analysis of the CSS
solutions, still in spherical symmetry. We define the per-
turbed fields as

b~t,z!'b0~z!1eb1~t,z!, ~27a!

u~t,z!'u0~z!1eu1~t,z!, ~27b!

F~t,z!'eivt@ f 0~z!1e f 1~t,z!#, ~27c!

where again, the subscript zero denotes the zeroth order criti-
cal solution, the subscript one denotes the first order pertur-
bation,v is the~unique! eigenvalue of the unperturbed equa-
tions~which depends on the coupling constantk), and where
e.0 is an infinitesimal constant, a measure of how far away
the solution is from the critical solution in the space of initial
conditions. Using Choptuik’s terminology, we consider the
supercritical regime for infinitesimal

e}p2p* . ~28!

We now perturb the Einstein equations through first order
in e, to obtain a set of linear partial differential equations for
the perturbed fieldsb1, u1, f̂ 1, in the independent variablest,
z. Following the standard approach, we Fourier transform the
1st order fields with respect to the ignorable coordinate
t5 ln(2t):

û1~s,z!5E eistu1~t,z!dt, ~29a!

b̂1~s,z!5E eistb1~t,z!dt, ~29b!

f̂ 1~s,z!5E eist f 1~t,z!dt; ~29c!

throughout, a caret will denote such a Fourier transform. The
transform coordinates is in general complex. The first order
field equations now become ordinary differential equations
~ODE’s! in z, and under appropriate boundary conditions,
become an eigenvalue problem fors. Solutions of the eigen-
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value problem are then normal modes of the critical solution.
Generally speaking, there will be many different normal
modesf̂ 1, each belonging to a different eigenvalues. Eigen-
values in the lower half plane Ims,0 belong to unstable
~growing! normal modes. Eigenvalues in the upper halfs
plane correspond to quasinormal~dying! modes of the criti-
cal solution. The eigenvalues is related to the critical expo-
nent byg521/Ims. @15,16,13#

We now want to integrate our equations numerically so
we need to determine the boundary conditions. It is impor-
tant to bear in mind that in addition to solving the equation
for f̂ 1(s,z), we must also solve the analogous equation for
f̂ 1(2s* ,z)* . Thus, we will have two second order ODE’s
which must be reduced to four first order ODE’s, we will
have a total of six complex equations to integrate. For the
perturbation problem, the boundary conditions atz50 are
found to be

b̂1~0!50, û1~0!50, f̂ 18~s,0!50, f̂ 18* ~2s* ,0!50,
~30!

f̂ 1~s,0!5 free complex const,

f̂ 1* ~s* ,0!5 free complex const. ~31!

At the similarity horizon,z5z2, the boundary conditions are
as follows. Bothb̂1(z2) and û1(z2) are free complex con-
stants. Eitherf̂ 1(s,z2) or f̂ 18(s,z2) is a free complex con-
stant with the other describable in terms of the other bound-
ary conditions atz2. We chose to letf̂ 18(s,z2) to be free and

f̂ 1(s,z2) fixed as this facilitated examining the lower half
complex s plane. The same is true for the values
f̂ 18(2s* ,z2)* and f̂ 1(2s* ,z2)* . Counting the eigenvalue
s, we now have seven pieces of complex boundary data to
go with the six complex equations we need to integrate.
Since the perturbation equations are linear, we expect the
solutions to scale, so the extra piece of data is merely a
reflection of the linearity of the equations. Solutions will
come in families which will be parametrized by a single
complex parameter. Thus we have an eigenvalue problem
which is well posed and which should yield a discrete spec-
trum of eigenvaluess.

To solve the first order problem we used a Runge-Kutta
integrator with adaptive step size as part of a standard two
point shooting method@14#, shooting fromz50 and from
both boundaries and matching in the middlez5z1. For con-
venience we solved the zeroth order system, Eqs.~22!, and
the first order system, Eqs.~A2!, simultaneously with the
same steps inz. As discussed elsewhere, the similarity hori-
zonz2 is a demanding place to enforce a boundary condition,
and a second order Taylor expansion of the regular solution
was used for this purpose.

To solve the first order system, we collected all the
boundary values buts into a complex six-vector

X[@ f̂ 1~s,0!, f̂ 1~2s* ,0!* ,b̂1~z2!,û1~z2!,

f̂ 18~s,z2!, f̂ 18~2s* ,z2!* ].

Because the equations are linear, the matching conditions
at z5z1 are likewise linear in the boundary values. A solu-
tion is found when the values atz1 of @ b̂1 ,û1 , f̂ 1(s),
f̂ 1(2s* )* , f̂ 18(s), f̂ 18(2s* )* ] upon integrating fromz50
match with those found by integrating fromz5z2, for some
boundary valuesX. We can express this matching condition

A~s!X50, ~32!

whereA(s) is a 636 complex matrix which is a nonlinear
function ofs, constructed numerically by integrations of the
first order equations, Eqs.~A2!, for six linearly independent
choices of boundary valuesX. The condition ons for a
solution is then

detA~s!50. ~33!

Once a value fors was found that satisfies this condition, the
corresponding boundary valuesX were found as a zero ei-
genvector of the matrixA; these come in one~complex!
parameter families, as observed above. Solution of Eqs.~A2!
with boundary valuesX yields the normal mode itself. Now,
A(s) has been carefully constructed so that it is a complex
analytic solution of s. This follows from the fact that all
equations leading toA contains but nots* , together with
some standard theorems about ODE’s. Moreover,A(s) has
no singularities in the closed lower halfs plane. These prop-
erties allow us to use a number of ideas from scattering
theory to study detA(s). In particular, there is a theorem for
counting the numberNC of zeros of detA within any closed
contourC in the closed lower halfs plane:

DCargdetA52pNC ~34!

where argdetA is the phase of detA, and DCargdetA is the
total phase wrap~in radians! around the closed contourC, a
result similar to Levinson’s theorem for counting resonances
in quantum scattering theory.

Furthermore, a conjugacy relation holds,

A* ~2s* !5A~s!, ~35!

which means thatA need only be evaluated for Res>0 in
the lower half plane.

The nonlinear equation detA(s)50 was solved by the
secant variant of Newton’s method@14#. The equation being
complex-analytic, the one-complex-dimensional realization
of the method was used, and it performed well.

Since our field equations possess gauge invariance due to
general coordinate invariance, and also possess a three-
dimensional group of global invariances acting onF, some
unphysical pure gauge modes will appear at first order, to the
extent that the gauge conditions implicit in our boundary
conditions Eqs.~30!,~31! fail to be unique.

A pure gauge mode arises from an infinitesimal phase
rotationf→ei ef in the zeroth order critical solution

b̂1~z!50, ~36a!

û1~z!50, ~36b!

f̂ 1~z!5 i f 0~z!. ~36c!
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This gives a time independent solution of Eqs.~A2! that
satisfies the boundary conditions; hence it corresponds to an
unphysical mode ats50.

Another pure gauge mode results by adding an infinitesi-
mal constant to timet→t1e at constantr in the zeroth order
critical solution. This is possible because our coordinate con-
ditions, Eqs.~18! normalizet to proper time along the nega-
tive time axis (t,0,z50), but the zero of time is not speci-
fied. Then the solution is perturbed by

b1~t,z!5]b0 /]tur52~z/t !b8~z!5e2tzb8~z!, ~37a!

u1~t,z!5]u0 /]tur52~z/t !u8~z!5e2tzu8~z!, ~37b!

f 1~t,z!5e2 ivt]~eivt f 0!/]tur5e2t@2 iv f 0~z!1z f08~z!#.
~37c!

This pure gauge mode has time dependencee2 ist5e2t and
so has negative imaginarys52 i .

There are also two more gauge modes which appear as a
pair on the real axis. In the casek50, these come from the
addition of an infinitesimal complex constantc to our zeroth
order solution:F→F1ec. The perturbed fields are then

b1~t,z!50, ~38a!

u1~t,z!50, ~38b!

f 1~t,z!5ce2 ivt. ~38c!

This mode has a time dependence ofe2 ist5e2 ivt and so
hass5v. Of course, since we haveA* (2s* )5A(s), the
value s52v will also solve the equation detA50 and be
the fourth gauge mode.4 A similar but more complicated ar-
gument shows that two gauge modes persist at the same
frequency even forkÞ0.

Thus, for all values ofk, there exist four gauge modes in
the s plane, and it can be shown that there are no others.
These modes should appear as numerical solutions—
therefore serving as calibrations—but are unphysical.

VI. RESULTS AND CONCLUSIONS

On integrating and solving for the eigenvaluess(k), we
found some novel behavior. We confirmed the existence of
the gauge modes thereby checking the consistency of our
method. We also found the critical exponentg(k) over the
range ofk values for which we found a solution. Figure 1 is
a graph of this exponent as a function of the coupling con-
stant. As can be seen, the critical exponent for the CSS so-
lution depends strongly on the value of the coupling con-
stant.

In addition, we evaluated detA(s) around a large rectan-
gular contour in the lower half plane and used Eq.~34! to
count the zeros lying within. This allowed us to determine if
there were additional modes in the lower halfs plane. Our
results were as follows. We did find many more modes in the

complexs plane. These additional modes are initially in the
upper half plane for large positivek and approach the real
axis ask decreases. Once one of these modes crosses the
axis into the lower half plane we infer that the leading nor-
mal mode of the CSS solution has a change of stability. This
first occurs atk'0.0754. We thus have

0.0754&k,1`, CSS stable, ~39a!

20.60&k&0.0754, CSS unstable. ~39b!

This confirms the discovery by Choptuik and Liebling of a
change of stability atvBD'0; from Eq.~7! the value would
be vBD'0.158 @7,8#. Note that these results are in good
agreement with earlier work. The CSS solution for the com-
plex scalar field (k50) was shown to be unstable by a simi-
lar analysis@13# while the CSS solution for the axion-dilaton
field (k51) was shown in@6# to be the attractor in gravita-
tional collapse and hence agrees with what we have found
here, namely that the solution found in@5# is stable. An
important question is if the CSS solution becomes unstable at
k'0.0754, what is the attractor for the collapse. Our conjec-
ture, borne out by collapse calculations of Choptuik and Lie-
bling, is that the attractor between 0,k&0.0754 ~i.e.,
vBD*0) is the more dynamically interesting discretely self-
similar ~DSS! or echoing solution analogous to the echoing
solution originally seen by Choptuik in the collapse of a real
scalar field.

Since everything in our model is smooth atk50, as we
decreasek below zero, we expect the relevant attractor for
the collapse to continue to be the echoing solution. However,
the above mentioned unstable mode turns out not to be the
only mode to move into the lower half plane. We have some
evidence for more eigenvalues going unstable byk'20.28.
We have constructed the corresponding perturbation modes
and they appear to be legitimate solutions of the perturbation
equations and not numerical artifacts. These additional

4When we did a similar analysis@2,13# for the complex scalar
field, we were insensitive to these modes, since we worked with the
derivatives off(t,z), and these modes vanished identically.

FIG. 1. The critical exponentg, as in Eq.~1!, of the continu-
ously self-similar solution as a function ofk. See text.

4702 56ERIC W. HIRSCHMANN AND DOUGLAS M. EARDLEY



modes suggest that the model becomes ever more unstable,
that is more nonlinear, ask decreases. So what happens in
gravitational collapse ask decreases below'20.28? The
CSS solution will certainly not be the attractor but, we
speculate, the existence of similar unstable modes may trig-
ger further bifurcations in the echoing solution. Since our
calculations in this paper are limited to perturbation theory,
we cannot pursue this question further here, but a possibility
is that the echoing solution becomes unstable and bifurcates
into an even more dynamically complicated solution. One
way to determine what happens here with greater assurance
would be to take a numerical solution for the DSS solution
and perform a perturbation analysis. That this would be fea-
sible is suggested by Gundlach’s results in which he calcu-
lates the echoing solution as an eigenvalue problem resulting
from the assumption of discrete self-similarity in the collapse
of a real scalar field@17#. However, another, more direct
approach would be to perform a full scale numerical collapse
calculation in order to understand what is going on in this
regime.

In this paper, we have combined a few of the previously
studied models of gravitational collapse into a single model
of a self-coupled complex scalar field. The model is param-
eterized by a single coupling constantk. In Table I, we give
a summary of some of the key values ofk. As the value of
the coupling constant decreases, the continuously self-similar
solution which we find undergoes a change in stability. For
the regime where the CSS solution is unstable, we believe
that the attractor for gravitational collapse is an echoing and
discretely self-similar solution. This change in stability
which occurs neark50.0754 appears to be a ‘‘Hopf bifur-
cation,’’ as it is known in the dynamics literature@9#. As k
continues to decrease, we find evidence for additional insta-
bilities in the model, suggesting that another bifurcation of
the collapsing solution may exist. From the lore on other
dynamical systems, this further conjectural bifurcation might
lead to a doubly periodic attractor, or might lead to full
blown dynamical chaos in gravitational collapse. Additional
work will be able to determine whether this is indeed the
case.

As this paper was being readied for publication, there
were indications in Liebling’s work that the attractor in this
region of parameter space, though DSS, is different from the
family of DSS solutions originally discovered in the Brans-
Dicke model@18#.
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APPENDIX A: EQUATIONS OF MOTION
AND THEIR PERTURBATION

In this appendix, we list some equations that were too
cumbersome for the main portion of the paper. We have the
general collapse equations for our model~4! in the usual
(t,r ) coordinates:

u̇5
r ~u11!

r2 @ Ḟ* F81ḞF8* #, ~A1a!

u85
r ~u11!

r2 F uF8u21
1

b2 uḞu2G2
u~u11!

r
, ~A1b!

b85
ub

r
, ~A1c!

05r 2S 1

b
F̈2

ḃ

b2
Ḟ D 2~r 2bF912rbF81r 2b8F8!

~A1d!

2
2kr 2

r
F* S bF822

1

b
Ḟ2D , ~A1e!

where an overdot means]/]t and a prime means]/]r , and
where

r512kuFu2.

The Eqs.~16! when perturbed as given in Eqs.~27! be-
come our original set as well as the following Fourier-
transformed first order equations:

zû181 isû1 ~A2a!

5
z~u011!

r0
2 @ f 08„z f̂182 i ~v1s* ! f̂ 1…*

1 f 08* „z f̂182 i ~v2s! f̂ 1… ~A2b!

1 f̂ 18~z f082 iv f 0!* 1 f̂ 18* ~z f082 iv f 0!] ~A2c!

1
z~u011!

r0
2 S û1

u011
2

2r̂1

r0
D @ f 08~z f082 iv f 0!*

1 f 08* ~z f082 iv f 0!], ~A2d!

TABLE I. Range of the model~parametrized byk), its relation
to the Brans-Dicke/scalar model~parametrized byvBD), critical
exponentg, and stability.

Nonlinear BD/scalar
s,k vBD g Stability of CSS

1` 23/2 &0.14(?) stable?
10.0 21.4875 0.1469 stable
1 211/8 0.2641 Stable
&0.0754 *0.158 *0.373 becomes unstable
0 1` 0.3871 unstable
&20.28 n/a *0.435 more modes become unstable?
&20.60 n/a ~not known if CSS exists!

56 4703CRITICALITY AND BIFURCATION IN THE . . .



û185
z~u011!

r0
2 F f 08 f̂ 18* 1 f 08* f̂ 182

2b̂1

b0
3

uz f082 iv f 0u2

1
1

b0
2[ ~z f082 iv f 0!„z f̂182 i ~v1s* ! f̂ 1…* ~A2e!

1[ ~z f082 iv f 0!* „z f̂182 i ~v2s! f̂ 1…] G ~A2f!

1
z~u011!

r0
2 S û1

u011
2

2r̂1

r0
D S u f 08u

21
1

b0
2 uz f082 iv f 0u2D ,

~A2g!

b̂185
1

z
~u0b̂11u1b0! ~A2h!

05 f̂ 19D01 f̂ 18H 2izF ~v2s!1
2kv

r0
u f 0u2G1

1

z
@z2~u022!

1b0
2~u012!#1

4kD0

r0
f 0* f 08J ~A2i!

1 f̂ 1H ~v2s!F „v2s1 i ~12u0!…1
4k

r0
f 0* ~ iz f081v f 0!G

~A2j!

1
2k2

r0
2 f 0*

2@b0
2f 08

21~ iz f081v f 0!2#% ~A2k!

1 f̂ 1*
2k

r0
2 $b0

2f 08
21~ iz f081v f 0!2% ~A2l!

1b̂1H 2b0f 091
4kb0

r0
f 0* f 08

21
s

b0
~v f 01 iz f08!

1
2b0

z
~u012! f 08J ~A2m!

1û1H 2 iv f 01z f081
b0

2

z
f 08J , ~A2n!

APPENDIX B: GLOBAL EXISTENCE THEORY
OF NONLINEAR s MODELS IN FLAT SPACETIME

The nonlinears models can of course be studied in flat
spacetime, as a nonlinear wave equations in their own right.
There is a considerable literature on them, both in physics
and mathematics. For present purposes the important issue is
the possible evolution if singularities in the field from regular
initial conditions. After all, a curved spacetime containing a
matter field should not be considered a counterexample to
cosmic censorship of that same matter field can evolve a
singularity in flat spacetime. A related question of consider-
able interest is the possible existence of critical solutions and
similarity solutions, which typically are singular.

In mathematics, SO(k11) nonlinear s models
(k51,2,3, . . . ) are studied in general (n11)-dimensional
spacetimes, with much attention on the casek5n, where
there exist nontrivial topological configurations, such as the
‘‘equivariant wave maps’’ — these are approximately the
same as what the physicists call ‘‘texture.’’ Similarity solu-
tions are known to exist in the casen535k and these solu-
tions are singular. A recent paper that contains both exten-
sive results and a thorough discussion of previous literature
is @19#.

In physics, SO~3! nonlinears models have been studied
as models of ‘‘texture’’ in~311!-dimensional cosmology.
Texture can collapse, and the analytic form of the similarity
solution is known@20#.

In our paper we have used the SO~3! nonlinears model
in ~311! dimensions. One naturally wonders whether or not
the flat-spacetime restriction of this particular model admits
similarity solutions, or admits singularites at finite time that
evolve from regular initial conditions. However, these ques-
tions appear to remain open, except of course in the case
k50, where the model becomes the free wave equation.
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