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We investigate the stability of a family of spherically symmetric static solutions in vacuum Brans-Dicke
theory~with v50) recently described by van Putten. Using linear perturbation theory, we find one exponen-
tially growing mode for every member of the family of solutions, and thus conclude that the solutions are not
stable. Using a previously constructed code for spherically symmetric Brans-Dicke theory, additional evidence
for instability is provided by directly evolving the static solutions with perturbations. The full nonlinear
evolutions also suggest that the solutions are black-hole-threshold critical solutions.@S0556-2821~97!00810-2#

PACS number~s!: 04.25.Dm, 04.25.Nx, 04.50.1h, 04.70.Bw

Recently van Putten has proposed a one-parameter family
~parametere) of solutions to spherically symmetric Brans-
Dicke theory for use in numerical relativity as an approxi-
mate black hole@1#. These solutions have the attractive prop-
erty that for small values of this parameter, the ‘‘exterior’’
solution approaches that of Schwarzschild. However, the
event horizon of Schwarzschild is replaced with a high red-
shift horizon and all metric components remain finite at this
horizon. In addition to regularizing the horizon, these solu-
tions have a global timelike coordinate.

As van Putten stresses, these solutions could have prom-
ise for numerical relativity because of the difficulties that
arise when dealing numerically with boundary conditions at
the horizon of a black hole. To be useful as approximate
black holes, however, the solutions, like Schwarzschild solu-
tions, must be stable.

In this paper, we recompute the solutions considered by
van Putten and carry out a linear perturbation analysis about
them. In so doing we find, for generice, modes which grow
exponentially in time. We also directly evolve perturbations
on the background of these solutions and confirm the insta-
bility predicted by linear theory. Thus, although of some
theoretical interest, these solutions are unlikely to be of di-
rect use in the context of mocking-up a black hole in general
relativity.

To begin, let us review the static family of solutions con-
sidered by van Putten. We note that they were first written
down by Brans and Dicke@2# but in an isotropic coordinate
system as opposed to the Schwarzschild-like coordinates that
van Putten uses.

We work in Brans-Dicke theory and assume spherical
symmetry. We choose a coordinate system such that the met-
ric has the form

ds252en~r ,t !dt21el~r ,t !dr21r 2dV2. ~1!

Using f(r ,t) for the Brans-Dicke field, the field equations
are @2#

Gmn5
8p

f
Tmn , ~2!

where, in vacuum, the Brans-Dicke stress tensor is given by

Tmn5
v

8pf S f ,mf ,n2
1

2
gmnf ,rf ,rD1

1

8p
~f ;mn2gmnhf!,

~3!

and v is the Brans-Dicke coupling constant@3#. The field
f satisfies the covariant wave equation@3#

hf5
8p

2v13
Tmatter50. ~4!

This equation, along with van Putten’s restriction tov50,
simplifies Eq.~3! to Tmn5f ;mn/8p. As the stress tensor is
traceless, the field equations may then be written in the
simple form

Rmn5
f ;mn

f
, ~5!

whereRmn is the usual Ricci curvature tensor.
We introduce a new fieldc(r ,t) such that

ec~r ,t !5
A

rf~r ,t !
, ~6!

whereA is a constant@4#. The field equations are
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where overdots and primes denote derivatives with respect to
t and r , respectively. The first three equations above corre-
spond to the tr anduu components of Eq.~5!, and the wave
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equation, respectively. The final equation is a convenient lin-
ear combination of thett andrr components of Eq.~5!, and
the wave equation.

To find the time-independent solutions as van Putten
does, all time derivatives appearing in Eqs.~7! are set to
zero, yielding

c81
1

2
~l82n8!5

2el

r
,

c85
1

r
~2Z21!,

l81n852ZS 2r 1n8D , ~8!

whereZ[1/2ec1(l2n)/2 and is identical to that defined by
van Putten@1#. Details regarding the solution of this system
of equations can be found in@1#; here we will only quote the
results. The metric components are

el5124Z1
1

e
Z~12Z![

1

e
~Z11Z!~Z22Z!,

en5F 12
Z

Z2

11
Z

Z1

G 1/~Z11Z2!

,

wheree is an integration constant, and the constantsZ1 and
Z2 are given by

Z152e2 1
2 1

1

2
A124e116e2,

Z2522e1 1
2 1

1

2
A124e116e2. ~9!

The fieldZ is found from the transcendental equation

uZuZ11Z2

uZ22ZuZ1uZ1Z1uZ2
5r2~Z11Z2!. ~10!

Note that the fieldc can be recovered onceZ, l, andn are
known.

As van Putten points out, Eq.~10! has four solutions, only
one of which is Schwarzschild-like in its exterior~van
Putten’s type Ia@1#!. For this solution we havee.0 and
Z→Z2 as r→0 while Z→0 asr→`.

It is worthwhile to consider the smallr behavior of these
fields. In terms of the integration constante, this behavior is
found to be

el'
Z2
2

e S Z2
Z11Z2

D ~Z2/Z1! 21

r Z2/e ~Z11Z2!en

'S Z2
Z11Z2

D ~Z2/Z1!/~Z11Z2!S Z1
Z11Z2

D 1/~Z11Z2!

r Z2/e.

~11!

If in addition to smallr , we consider the limit of smalle,
these expressions reduce to

el'
1

ee
r2511/e, en'

e

e
r2311/e. ~12!

Figure 1 displays the solution to Eqs.~8! subject to the initial
conditions derived from Eq.~11! for e51/100 ~the same
value shown in@1#!.

Having constructed these static solutions, we can now ad-
dress the question of their stability. For a givene, such a
time-independent solution used in numerical relativity as an
approximate black hole, were it not stable, would either col-
lapse to a black hole or possibly disperse leaving flat space.

To investigate stability, we perform a standard linear per-
turbation analysis. As such, we consider the case that the
fields do possess a small time-dependent part and make the
following expansion for smalld:

c→c0~r !1dc1~r ,t !, n→n0~r !1dn1~r ,t !,

l→l0~r !1dl1~r ,t !, ~13!

where subscripts 0 and 1 denote the unperturbed and per-
turbed fields, respectively.

We substitute the expansion~13! into the full set of Eqs.
~7!, keeping only terms to linear order. Because the unper-
turbed fields satisfy Eq.~7! by construction, we are left with
the linear equations for (c1, n1, l1):
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l15c181

1

2
~l182n18!,

FIG. 1. Unperturbed fields fore50.01. As e→0, the fieldZ
approaches a step function~see Fig. 3! and the fieldel becomes
more sharply peaked. This value ofe is chosen to correspond with
Fig. 2 of @1#.
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We perform the standard Fourier decomposition of
c1(t,r ),

ĉ1~r ,s!5E eistc1~r ,t !dt, ~15!

and the other perturbed fields. On substitution into Eq.~14!,
the defining relation forĉ1 then decouples froml̂1 and n̂1,
yielding a single equation

05ĉ191ĉ18
1

r F11el0
3Z021

Z021 G
1ĉ1Fs2el02n02

Z0
r ~Z021!S n081

4Z0
r Del0G , ~16!

which can be solved for the modeĉ1(r ). We have thus re-
duced the perturbation problem to a single one-dimensional
ordinary differential equation~ODE! with the undetermined
eigenvalues2.

Solution of Eq.~16! requires appropriate boundary condi-
tions on ĉ1(r ). It is common to enforce regularity at the
origin of a spherically symmetric spacetime, but in the cur-
rent case the unperturbed solution is itself irregular. Thus,
assuming regularity of the perturbation might seem im-
proper. However, althoughc0 is logarithmically divergent at
r50, exp(c0) is regular at the origin, going to zero as a
positive power ofr . Hence, it is not unreasonable to impose
regularity on the field ec. Further, because exp(c)
5exp(c01dc1)5exp(c0)(11dc1), it is reasonable to assume
the regularity ofĉ1 at the origin. At most, the modeĉ1 could
have a logarithmic divergence, however, if we can find an
unstable mode with the stricter criterion of regularity, then
the solutions are still, in general, unstable.

Enforcing the assumption of regularity ofĉ1 allows us to
find a series expansion forĉ1 near the origin. For very small
r , Eq. ~16! becomes

05ĉ191ĉ18
1

r
1s2Cĉ1r

p. ~17!

The positive coefficientC is determined from Eq.~11! and
depends one. The exponentp5(Z2 /e)(Z11Z221) like-
wise depends only one and in such a way thatp.22 for
e.0. We can now find an expansion forr!1:

ĉ1~r !5ĉ1~0!F12
s2C

21p
r 21p1S s2C

21pD
2

r 412p1••• G .

Because of the linearity of the problem,ĉ1(0) can be arbi-
trarily chosen as it reflects the scaling in the problem. It turns
out that we need to use only the first couple of terms in the
expansion to get accurate results.

Given a background solution to Eq.~8! for a particular
e, we can now solve the eigenvalue problem~16! for the
modes ĉ1(r ) and corresponding characteristic frequencies
s2. In our particular case, the instability of the original soli-
ton solutions is indicated by the existence of one or more
exponentially growing modes. These are solutions to the per-
turbation equations with negative eigenvalues:s2,0.

In practice, we integrate the unperturbed equations and
the perturbation equation simultaneously fromr'0 to large
r , looking for a solution which has a negative eigenvalue and
obeys the boundary conditions. Specifically, we demand that
the mode be finite at the origin and vanish asymptotically.
We use a standard ODE integrator and standard shooting
techniques in our search.

Although our search has not been exhaustive, we generi-
cally find precisely one growing mode for each value ofe.
This is sufficient for us to conclude that the static solutions
are unstable. The eigenvalues found for these solutions are
shown in Fig. 2.

Having found the perturbation modes, looking at the limit
e→0 is instructive. As this limit is approached, the unper-
turbed solution becomes more and more Schwarzschild-like
in the exterior, and this resemblance is precisely the reason
why the family has been proposed as a good model of a
black hole. With this in mind, one may wonder why Fig. 2
shows that ase→0, there is still a growing mode. Certainly
these results do not show Schwarzschild solutions to be un-
stable; rather we point out that within the ‘‘effective hori-
zon’’ of this approximate black hole, the solution is very
different from the interior Schwarzschild solution for alle
~see Fig. 3!. Hence, it is reasonable to assert that the solution
is unstable for anye, including the solutione50.

Further, since it is the case that to an outside observer, the
e50 solution is indistinguishable from that of Schwarzs-
child, it is logical to assume that any perturbation of the
solution will not change the view of this observer. In other
words, ase→0, any perturbation should have decreasing
support outside the ‘‘effective horizon’’ of the approximate
black hole. Indeed, we observe this kind of behavior. As one
decreasese, the profile of the modeĉ1 is seen to approach

FIG. 2. Plot of the unstable eigenvaluess2 versus parameter
e. The cross marks and open circles represent data from two inde-
pendent evaluations of the modes. Their correspondence indicates a
quite small uncertainty. The vertical dotted line denotes the value of
e for which Figs. 4, 5, and 6 are computed.
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that of ad function at the position where the apparent hori-
zon would asymptotically form.

We find additional evidence for instabilitty by evolving
the static solutions~with small perturbations added! using
the full time-dependent equations of motion@5#. This has the
added benefit of providing information concerning the states
to which the static solutions evolve when perturbed. To this
end, we have adapted a previously developed spherically
symmetric code for Brans-Dicke theory@5# which allows us
to evolve these solutions. Because the evolutions in@5# are
performed in the Einstein conformal frame~as compared to
the Brans-Dicke frame in which van Putten works and in
which we have worked thus far!, we transform the fields
used above to the Einstein frame. In this frame, the field
equations are equivalent to those for a massless scalar field
minimally coupled to gravity.

After recovering the static solutions in the Einstein frame
and inputing a transformed solution into the code, we intro-
duce a small ingoing perturbation to the fields at large radius.
For generic values ofe, we find that van Putten’s solution
either collapses or disperses after the perturbation reaches the
high-redshift horizon. Figure 4 clearly demonstrates the in-
stability for a specifice. In this case, the perturbation induces
collapse to a black hole.

In order to facilitate comparison of the perturbation re-
sults with those of the fully nonlinear evolution, we first
define the quantities below in terms of the fields found in@5#

ā15a~r ,t !2a~r ,0!,

F̄15Fj~r ,t !2Fj~r ,0!,

P̄15Pj~r ,t !2Pj~r ,0!, ~18!

such that fields with a bar and a subscripted 1 denote non-
linear deviations from the unperturbed solution~nonlinear
modes!. By transforming the modes found from linear per-

turbation theory to the Einstein frame, we may now compare
directly the linear modes with the nonlinear modes (P̄1,
ā1, F̄1). In Fig. 5 we show all the modes rescaled to the unit
interval. From the near congruence, we conclude that we are
observing the actual evolution of the growth of these pertur-
bation modes.

In addition to confirming our perturbative results, the full
evolution provides evidence that these static solutions repre-
sent critical solutions to black hole formation. By this we
mean that these solutions represent a boundary in the space
of solutions between those that form black holes and those
that do not. To demonstrate this criticality we begin with an

FIG. 3. The unperturbed fieldZ0(r ) for 0.025<e<0.24 ~uni-
form in e). The field Z0(r ) approaches a step function ase is
decreased. The approach of the unperturbedZ0 to zero at largez
signifies the approach to the Schwarzschild solution in that region.
For z,0, however, the solution clearly is not Schwarzschild-like.

FIG. 4. Series of snapshots of the productrPj ~related to the
time derivative ofc) in the Einstein frame. A small perturbation
(DM /M50.018%) at large radius is introduced to the initially
static solution (e50.127). The perturbation passes through the sin-
gularity at r50 ~betweent524 and 28) and escapes tor5`. As
the perturbation passes the redshift horizon~as it propagates in-
wards, the perturbation is seen to experience a blueshift!, the exci-
tation of a growing mode is clearly seen.

FIG. 5. Comparison of modes computed in perturbation theory
~solid lines! with modes computed from the full nonlinear evolution
~dashed lines!. The nonlinear modes were computed by taking a
late-time profile from the evolution and subtracting the initial data
for that field, as defined in Eq.~18!. Perturbative modes have been
numerically transformed to the Einstein frame. All fields are re-
scaled to the interval@0•••1# and are plotted with respect tor .
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unperturbed solution in the Einstein frame and add a pertur-
bation to the fields. In this case instead of the arbitrary per-
turbation at larger shown in Fig. 4, we add the predicted
mode found in the perturbation analysis~solid lines of Fig.
5!. When this mode is added with some small positive am-
plitude, we invariably see collapse of the van Putten approxi-
mate black hole to a genuine black hole~see the solid lines in
Fig. 6!. In contrast, when the perturbation is added with a
small negative amplitude, we see dispersal of the solution

~see the dashed lines in Fig. 6!. Thus it would appear that
this solution sits at the threshold between solutions that form
black holes and those that disperse@6#.

Having found evidence that these are threshold solutions,
we are led to ask if they are attracting. For them to represent
attracting critical solutions~intermediate attractors! the un-
stable~relevant! mode which we find must be shown to be
unique @7#. Because both the perturbation analysis and the
full evolution appear to indicate the presence of only a single
unstable mode~see Fig. 5!, we suspect that these solutions
might well represent an intermediate attractor for black hole
formation. We plan to address this issue in future work.

From the results presented here, these solutions would
appear to be analagous to then51 Bartnik-McKinnon~BM!
solution in the Einstein-Yang-Mills~EYM! system@8#. This
static solution was found to be an intermediate attractor in
the gravitational collapse of spherically symmetric SU~2!
fields with one side of the threshold being black hole forma-
tion and the other dispersion of the Yang-Mills field@9#.

After completion of this work, we became aware of other
work which had considered solutions similar to those exam-
ined here. Static, spherically symmetric solutions to the
minimally coupled Einstein-Klein-Gordon equations were
studied by Buchdahl@10# and later by Wyman@11#. These
solutions were written down in the Einstein frame in contrast
to van Putten who works in vacuum Brans-Dicke~which is
conformally equivalent to the Einstein-Klein-Gordon sys-
tem!. In addition, Jetzer and Scialom were able to show that
Wyman’s solutions are generically unstable by establishing
the existence of a negative upper bound for the lowest eigen-
value of the perturbation@12#.

Note added:After this paper was submitted, we discov-
ered yet another paper which discusses the static solutions of
Einstein-Klein-Gordon@13#.
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FIG. 6. Uniform-in-time series of the solution when initially
perturbed with the predicted mode (DM /M50.004%,e50.127).
Shown here is the fieldPj ~related to the time derivative ofc). The
evolution shown in solid results in collapse to a black hole. The
dashed line shows the evolution resulting from switching the sign of
the perturbation at the initial time. That the initial sign of the intro-
duced perturbation separates eventual collapse from dispersal indi-
cates that the unperturbed solution is critical.
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