PHYSICAL REVIEW D VOLUME 53, NUMBER 10 15 MAY 1996

Magnetic solutions to 2+1 gravity
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We report on a new solution to the Einstein-Maxwell equations-iti 2imensions with a negative cosmo-
logical constant. The solution is static, rotationally symmetric, and has a nonzero magnetic field. The solution
can be interpreted as a monopole with an everywhere finite energy density.
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I. INTRODUCTION the electromagnetic field outside of any finite radius di-
verges. This is most easily seen by observing the behavior of

Studying physics in spacetimes with dimensions less thathe quasilocal masgising the formalism of6]) as a function
four has often proved useful. While the study of such sysofr, Mg =M +Q2In(r/ry). The parameter, serves to deter-
tems is of intrinsic interest, one usually has the hope that thenine how much of the energy in the electromagnetic field is
properties of these lower-dimensional systems will mimicincluded in the mass parameté. Depending on the values
the properties of some corresponding four-dimensional syssf the parameters, the charged BTZ solutions may have two,
tem. Witten’s discovery1] of a black hole solution in two- one, or no horizons. It is natural to identify a charged solu-
dimensional string theory has sparked renewed interest ition with a single horizon as an extremal black hole. This
lower-dimensional gravity. This solution has been used tddentification is supported by the observation that such a so-
study problems which have been intractable in four dimeniution has zero Hawking temperature, as does the extremely
sions such as black hole information loss. charged Reissner-Nordstroblack hole.

Another lower-dimensional black hole solution that has Although the static, electrically charged solution is similar
generated a great deal of interest is the three-dimensional many ways to the Reissner-Nordstrdlack hole in four
black hole discovered by Bados, Teitelboim, and Zanelli dimensions, there are some important differences. The most
(BTZ) [2,3]. This spacetime is a solution to Einstein gravity obvious difference is that the three-dimensional black hole is
with a negative cosmological constant; it is also known thaasymptotically anti—de Sitter space, while the Reissner-
this solution can be formulated as a string theory solutiorNordstran solution is asymptotically flat. Another difference
[4]. Like the two-dimensional black hole, this solution hasthat we have just seen is that the static solution has a quasilo-
been studied with the hope of shedding light on problems ircal mass that diverges at infinity, whereas the quasilocal
four-dimensional gravity. This hope is supported by the factmass of the four-dimensional charged black hole approaches
that there are striking similarities between some of these rea constant asymptoticaly7]. An additional difference that is
cently discovered three-dimensional solutions and their fourthe consideration of this work is that the Reissner-Norastro
dimensional counterparts. However, despite these similariblack hole can have electric or magnetic charge, as well as
ties, one should bear in mind that there are some importariioth. Because of the invariance of the Maxwell equations
differences, not the least of which is that the universe we livaunder a duality transformation, the form of the metric for a
in is four dimensional. Nevertheless, in the more simplifiedReissner-Nordstmm black hole is the same for an electrically
realm of three dimensions, we might reasonably hope to obeharged solution and a magnetically charged solution. The
tain some insight into the nature of gravity and quantumreason is that in four dimensions both the Maxwell tensor
gravity in particular{5]. and its dual are two-forms. However, no such transformation

The discovery of the BTZ black hole has spawned effortsexists for the Maxwell equations in three dimensions because
to find other solutions to the three-dimensional Einsteinthe Maxwell tensor is a two-form and its dual is a one-form.
equations as well as solutions to various generalizations ddne is naturally led to ask whether the solutions to the
them coupled to a variety of matter fields. One such solutiorEinstein-Maxwell equations in three dimensions are different
is the static electrically charged black hole originally dis-if one assumes that they possess a magnetic as opposed to
cussed by BTZ2]. This solution is specified by three param- electric charge. We examine this question in this paper and
eters, a mass parametigr, a chargeQ, and a ‘“radial pa- report that the solutions are quite different. Whereas the elec-
rameter’r,. To see that one needs this radial parameter, it igric solution may be a black hole provided the charge is not
sufficient to observe that while the energy density in thetoo large, the magnetic solution that we present is not a black
electromagnetic field approaches zero asymptotically the rateole for any value of the magnetic charge. This magnetic
at which it does is sufficiently slow so that the total energy insolution is both static and rotationally symmetric. In addi-

*Electronic address: ehirsch@dolphin.physics.ucsb.edu 1in other words, for a given solution, changeshincan be com-
TElectronic address: dean@cosmic.physics.ucsb.edu pensated for by changes iig; see[2].
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tion, it has finite energy density. We interpret it as a magnetic N’'K’ L'K’ N”

monopolé? Rtt:NZLZ(W"_ Kk W)
Parenthetically, we remark that there has been some re-

cent discussion of stationary generalizations of the electri-

cally charged solutiof8,9]. For a rotating and charged so- =N?

lution, one would expect there to be both an electric and a

magnetic field. Indeed, these new rotating solutions would N'K' L'K' K"

appear to possess both. However, it was incorrectly reported Ryp=— K2|_2(_ - 4 _)

in [8] that their extremal solution has a finite angular mo- NK LK K

mentum. Charj10] showed that the angular momentum of 2

the solution in[8] actually diverges logarithmically at infin- =K2( - —2+2Er2), (2.6b

ity. Given that the mass of a static electrically charged solu- '

tion also diverges logarithmically at infinity, we believe that

2
|—2+2|32), (2.6a

the divergence in the angular momentum is not physically Rig=0
unreasonable. — —2E,B, (2.60
II. EINSTEIN EQUATIONS AND THEIR SOLUTION _ N'K’
rr
We begin with the action for Einstein gravity coupled to a NK
U(1) gauge field with a negative cosmological constant: 1/1
=1z |—2+BZ—E$), (2.60

S= %f d3x\—g(R—2A —F2), (2.2)

where the prime indicates differentiation with respeat.tin
addition, we can write the Maxwell equation as
whereA = —1/? is the negative cosmological constaRtjs

a two-form, and we have set Newton’s constant to be Ia(\N—997°g°F ) =0, (2.7)
1/47r. The equations of motion derived from the action are

the Einstein equations which, upon integration, yields

1 R (2.9
Rab_ EgabR+Agab:2Tab (2-2) oK N .
_ We have made no assumptions other than the fact that the
and the Maxwell equations spacetime is static and rotationally symmetric. Ryg equa-
tion implies that one or both of the electric and magnetic
V,F3=0, (2.3 fields must be zerd.The electric case has previously been

discussed. However, we are interested in magnetically
with the stress tensor of the electromagnetic field given by charged solutions, and so we make the assumptionGhat
# 0, which immediately implies that,=0.

g 1 ) Using our form forB, we can solve our equations as
Tab=FacFba0™" — 7 9anF". (24 follows. We make the substitution
L(r)=KNf(r), (2.9

We assume that the spacetime is both static and rotation-

ally symmetric, implying the existence of a timelike Killing wheref(r) is a function which can be freely specified. We

vector and a spacelike Killing vector. In the coordinate basigan combine2.6 and (2.60 to get an equation itN and
we use, these vectors will b#&dt and d/d¢, respectively. .

These symmetries allow us to write our metric in the form
(8] f
5 (N =ay, (2.10

ds?=—N(r)2dt>+L(r)"2dr2+K(r)?d¢2. (2.5

wherea, is an integration constant. Likewise, E&.6d) will
Using this metric and the substitutiols =(L/N)F,, and  now yield
B=(L/K)F,4 (E, andB are the components of the Maxwell
tensor measured in an orthonormal basithe Einstein- f K2) == & 2 21
Maxwell equationg2.2)—(2.4) become E( )=+t NT (2.1

For the simple choicé(r)=1/r, the metric coefficients be-
2We are using the term monopole a bit loosely here. The solutioffome
is certainly magnetic and particlelike, but the fact that we are in two
spatial dimensions suggests that the solution is perhaps a bit more
reminiscent of a Neilson-Oleson vortex solution. 3This will no longer be necessarily true for the rotating case.
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N2(r)=aqgr’+ay,

1 x?
— 2,72 2 2 2 2 2
== 5(X+ro—r +|x“+QpIn| 1+
2
20 L C2 2 FIC(+T2—12) "1 %2
K (r)_@r + —In|agre+a, |+ a,. +
0 Zh)
2 -1
This solution is asymptotic to anti—de Sitter space with cur- +Q2In| 1+ X dx? 2.15
vature —1/2. The integration constars, can be absorbed " r7-r? ’

into the other integration constants together with a rescaling

of r2, and so we will choose it to be zero. We choose awhere our coordinatex ranges between zero and infinity.
normalization oft so that as becomes largey,; approaches This coordinate system now covers the complete spacetime.
—r?/12. This is equivalent to choosina,=1/°. When the Timelike geodesics can reach the origis0, in a finite
magnetic field is zeroC,=0, this solution is a three- proper time, and null geodesics can reach the origin in a
dimensional black hole with mass equal-t@;. Therefore, finite affine parameter. The components of the Ricci tensor
we seta;=—M. Asymptotically, the Maxwell field looks Measured in an orthonormal basis that is parallel propagated
like that of a magnetic point charge, and so we se@long a timelike geodesic are well behaved everywhere. In
C,=Q,,/I? (Q,, representing the magnetic chargdhe three dimensions the curvature is completely determined by

metric (2.5) is now in the form the Ricci tensor, and so the fact that the Ricci tensor is well
behaved shows that this spacetime has no curvature singu-
ds?=—(r2/1?=M)dt>+r?(r?/1?>—M) ! larities. Similarly, the components of the electromagnetic
0 2 2o 1o field strength are well behaved in this basis.
X (r*+QgIn[r#/1—M[)~*dr However, one can see thatxat 0 we will have a conical
2 21212 2 singularity unless we identify the coordinatewith a certain
+(r*+ Quin|r¥/1*=M|)d¢*. 213 period. The period is found to be
For future convenience, we make the definitich=M12. B2
For Qn=0, the metric(2.13 is identical to the nonrotating T¢=2Wm, (2.16
BTZ solutions, as we would expect. However, the presence m

of a nonzero magnetic charge drastically changes the space- — ) ) )
time. where 8=r</Qy,. The strange thing about this period re-
The nonrotating three-dimensional black hole obtained byleals itself when we examine its behavior for IImItIng values
setting the magnetic charge to zero has an event horizon & Qm- As Qr, approaches infinity, the period becomes zero.
r=r, . However, there is no event horizon for the case offhis is what one might expect because this is the limit in
nonzero magnetic charge. In particular, we do not have #hich the magnetic charge is approaching infinity. However,
magnetically charged three-dimensional black hole. This ca@S Qm approaches zero, the same thing happens: The period
be seen as follows. Thg‘f’d’: K2 term becomes zero for of the COOI’dInath) approaches Zero again. This is very sur-

some value of which we callT. By definition, T_satisfies  Prising since theQp,=0 solution is a three-dimensional
black hole(with no magnetic chargeand this looks nothing

like the Q,,# 0 solution in the limit ax,, approaches zero.
=0. (2.14  While it often occurs that “the limit of a theory is not the
theory of the limit,” in the case considered here the differ-
ence is quite striking.

wZ__ 2

+
I 2

T2+Q2In

Clearly, r_is constraineito be betweernr, and \rZ +12.
Not only doesg,, change sign as becomes less than,
but g,, changes sign as well. One can see that naively using

these coordinates far<r leads to an apparent signature In the previous analysis we have been assuming that
change. This shows that we must choose a different contindM=0. We now briefly consider magnetic solutions with
ation forr<T [11]. We now introduce a new set of coordi- Negative M. As observed in[2], the BTZ solution for
nates that will show the spacetime is completerferr . A —1<M<O0 reduces to a solution with a naked conical sin-

“good” set of coordinates which allows Us to cover our gularity. Such solutions were studied in Ref$2,13. For
spacetime is found by letting M in this range the magnetic solutid8.13 with Q,#0 is

continued in the same way as for the case of non-negative

Ill. SPACETIME FOR NEGATIVE M

2=r2_7Z M. However, now we have?+12|M| appearing in the loga-
rithm in (2.13, and sor is constrained to be between 0 and
The metric with this new coordinate then becomes [V1=[M].

ForM = —1 the BTZ solution is anti—de Sitter space. It is
interesting to observe that the magnetic solution with
“There can also be another solution to this equation depending oMl = —1 is already complete with no apparent signature
the relative values af, andl. However, as we will see below, our change in the metric. Equivalently, the analysis in the previ-
spacetime ends at, and should the other solution exist, it will be ous section applies, but with=0. In particular, note that
irrelevant in this spacetime. the period of¢ needed to avoid a conical singularity is
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2 ence of a negative cosmological constant. It is static, rota-
TyM=-1)= m (3.9 tionally symmetric, and magnetically charged. The nature of
m the spacetime is very different from that for the electrically
for M=—1. This period still approaches zero €, ap- charged BTZ solution. In the latter case, for a nonzero region
proaches infinity, but a,, approaches zer¢3.1) goes to a  Of parameter space the solution is a black hole. In contrast,
constant. This behavior of the period #fis what intuition  the magnetic case has no event horizon and is particlelike.
tells one it should béone should bear in mind that the co-  There are several other things one might like to know
ordinate¢ is not identified for anti—de Sitter space about this solution. One possibility would be to understand
Finally, consider the magnetic solution with<<—1. This  the motion of magnetically charged particles in this space-
space is incomplete if one only considers non-negative valtime. Another interesting question would be whether this so-
ues ofr?. To complete this space we must allof to be-  |ution could be generalized to one that included rotation.
come negative. This is not as strange a thing to do as it may Note added in proofAfter this paper was submitted for
seem(in particular, it does not require us to consider com-puyblication, it was brought to our attention that this solution

plex coordinatels Note thatr in (2.13 only appears as®;  has appeared in Refil4,15. We thank the authors for in-
this indicates that®> may be a more natural radial coordinate forming us of their work.

(see also the transformations[#1). The coordinate transfor-

mationr?=x2—12|M| leads to the desired result. If we allow

X to range over all non-negative vaIue;, the space will be ACKNOWLEDGMENTS
complete. The remainder of the analysis carries through as
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