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INTRODUCTION

There has been considerable research performed relative to applications involving active
attenuation of the sound field in enclosures. Much of this work has focused on the optimal number
and locations of the control sources and error sensors. Typically, a number of microphones are
used as the error sensors, and the sound field is controlled by minimizing the sum of the squared
pressures from these microphones. In recent years, an alternative sensing approach has been
developed, based on minimizing the acoustic energy density at the error sensor location(s)*2. This
new approach has been tested both numerically and experimentally, with the results indicating that
one can often achieve improved global attenuation of the field by minimizing the acoustic energy
density, rather than the sum of the squared pressures.

Previous results from minimizing the energy density at the error sensors have concentrated
on investigating the control that can be achieved by looking at the global energy in the field before
and after control, and also by looking at the attenuation that can be achieved as a function of
frequency. However, it has also been found that additional insight can be gained by examining the
acoustic field in terms of the acoustic modes contributing to the acoustic field. This paper will
present some of the numerical results obtained by performing a modal decomposition of the field
with no control, as well as with several different control methods. These results provide insight
into the control mechanisms and provide indications as to why one can often achieve improved
global attenuation by minimizing the acoustic energy density rather than the squared pressure.

MODAL REPRESENTATION OF THE FIELD

The pressure field in a rectangular enclosure can be represented in terms of the modes of the
enclosure as

p(x) = E (AN-"BNQC)IPN(-?) . 1)

N=0
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Here, N denotes a triple sum over the indices (/,m,#) corresponding to the x-, y-, and z- directions.
The functions ¥y correspond to the eigenfunctions of the enclosure, ), designates the complex
control source strength, and the coefficients 4, and B, are the modal coefficients associated with
the primary field and the secondary control field, respectively. (The source strength of the primary
source is included in the 4, coefficients, and a single primary source and control source are
assumed here for simplicity.)

In this paper, three different performance functions are investigated in terms of the modal
decomposition of the acoustic field. The first performance function corresponds to the global
potential energy in the enclosure, which will correspond to the minimum possible energy in the
enclosure for the given source configuration. The second performance function investigated
corresponds to the squared pressure at a discrete location. While this approach is very
straightforward for experimental implementation, it often leads to the production of localized zones
of silence, rather than the broad global attenuation desired. The third performance function
investigated corresponds to minimizing the total energy density at a discrete location. This
approach also makes use of a local measurement, but prior research has indicated that minimizing
the energy density often yields more global attenuation than minimizing the squared pressure.

Using the expression for the squared pressure in Eq. (1), the three performance functions
can be minimized to yield the optimal control source strengths for each of the control methods.
The results of this minimization can be expressed as
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From these expressions, it can be seen that the optimal control source strength for each of the
control methods depends on the modal amplitudes of the acoustic field in a different manner. In
addition, the methods of minimizing the squared pressure (Q, ») and the energy density (0, ) both
depend on the sensor location, in conjunction with the modal amplitudes, while the method of
minimizing the potential energy does not depend on any sensor location. By investigating the
control results in terms of the modal amplitudes, it is possible to gain some insights into some of
the control effects associated with each of these control methods. This in turn may yield
understanding related to why minimizing the energy density may yield improved global attenuation
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over minimizing the squared pressure.

NUMERICAL RESULTS

The dimensions of the enclosure modeled here are 1.93 m x 1.54 m x 122 m, and rigid wall
boundary conditions have been assumed. The lowest order modes corresponding to this enclosure
are presented in Table 1. For the results presented here, the primary source is located at
(0.1,0.4,0.4) and the secondary control source is located at (1.4,1.0,1.0). For the methods of
minimizing the squared pressure and the energy density, the error sensor is located at (1.2,0.6,0.6).
Two results are presented here to illustrate two of the control mechanisms. The first case is for an
excitation frequency of 166.3 Hz, which corresponds to the (1,0,1) mode (sixth mode), while the
second case is for an excitation frequency of 125 Hz and lies between the (0,1,0) mode (third
mode) and the (0,0,1) mode (fourth mode). The attenuation of the global potential energy in the
enclosure achieved using each of the three control methods investigated is shown in Table 2.

The first case, with an excitation frequency of 166.3 Hz, corresponds to an on-resonance
excitation condition. The results of the modal decomposition for the uncontrolled field and for the
various control methods are shown in Figs. 1 and 2. It can be seen that the sixth mode (1,0,1) is
dominant in this case. The method of minimizing the potential energy, using O, o Tesults in a field
where the dominant mode has been attenuated with only minor effects on the other modal
amplitudes and phases. The method of minimizing the squared pressure leads to poor results in this
case, largely due to the fact that the error sensor is near a nodal plane at this frequency. As a result,

Table 1. Mode Frequencies of the Rectangular Enclosure.

Mode Number Mode Indices Modal Frequency (Hz)

1 (0,0,0) 0

2 (1,0,0) 88.9
3 (0,1,0) 111.4
4 (0,0,1) 140.6
5 (1,1,0) 142.5
6 (1,0,1) 166.3
7 (2,0,0) 177.7
8 (0,1,1) 1793
9 (1,1,1) 200.1
10 (2,1,0) 209.7
11 (0,2,0) 29379
12 (2,0,1) - 226.6

Table 2. Attenuation of the Global Potential Energy (dB).

Frequency (Hz) Potential Energy Squared Pressure Energy Density

125 14.3 -13.6 11.2
166.3 0.15 -20.9 0.15
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the effect of the control is to increase virtually all of the modal amplitudes shown here.
Minimizing the energy density leads to control that is comparable to minimizing the potential
energy in terms of the global attenuation. It can be seen, however, that there is some error in
achieving the proper phase for the sixth mode, leading to an overall attenuation that is about 3 dB
less than when minimizing the potential energy. Thus, in this case where the control mechanism
is modal attenuation, the energy density method is able to successfully attenuate the field, while
the square pressure method is not successful, due to the poor sensor location. Of course, one could
optimize the error sensor location for the given frequency and largely overcome this difficulty, but
for complex fields with many frequency components, this could be difficult to achieve for all
frequencies. -

The results for the off resonance case (125 Hz) are shown in Figs. 3 and 4. By examining
the results obtained when minimizing the potential energy, it can be seen that the control
mechanism involved is primarily that of modal redistribution. i.e. the modal amplitudes are not
changed significantly, but the modal phases are adjusted to lead to some destructive interference
between the modes. Given the off resonance condition, it is also not possible to achieve significant
attenuation for this source configuration. When controlling the energy density, it can be seen that
the controlled field is very similar in terms of the amplitudes and phases of the modes of the
enclosures. Thus, this approach is able to redistribute the modes in an optimum fashion to yield
maximum attenuation of the potential energy. However, when controlling the squared pressure,
the resulting amplitudes and phases of the modes are significantly different, and lead to a control
solution that greatly increases the global energy in the enclosure.

CONCLUSIONS

It has been demonstrated that in controlling an enclosed field, the desired mechanism of control
sometimes corresponds to modal attenuation and at other times corresponds to modal redistribution.
The results presented here indicate how the method of controlling the energy density is able to
often more faithfully achieve the desired control condition in terms of the modal characteristics of
the field. If one is minimizing the squared pressure, one can achieve the desired control results by
carefully optimizing the number of sensors and their locations. However, when minimizing the
energy density, the attenuation achieved is generally much less sensitive to the sensor locations,
and thus the method is often able to achieve the desired control without the careful sensor
optimization required for minimizing the squared pressure.
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| Figure 1. Modal amplitudes for an excitation frequency of 166.3 Hz. a)
uncontrolled, b) By coefficients, ¢) minimization of potential energy, d)
minimization of squared pressure, €) minimization of energy density.
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Figure 2. Modal phases for an excitation frequency of 166.3 Hz. a)
uncontrolled, b) By coefficients, ¢) minimization of potential energy, d)
minimization of squared pressure, €) minimization of energy density.
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Figure 3. Modal amplitudes for an excitation frequency of 125 Hz. a)
uncontrolled, b) By coefficients, ¢) minimization of potential energy, d)
minimization of squared pressure, e) minimization of energy density.

0 5 10
a) Mode Number

10

d) Mode l?!umber
Figure 4. Modal phases for an excitation frequency of 125 Hz. a)
uncontrolled, b) By coefficients, c) minimization of potential energy, d)
minimization of squared pressure, €) minimization of energy density.
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