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Transient waves, like all other acoustic waves, will diffract around solid objects, such as measure-

ment instrumentation. A derivation of an impulse response function on the surface of a rigid sphere,

based on linear, classical scattering theory, is presented. The theoretical impulse response function

is validated using an experiment with blast noise. An application of the impulse response function

to a rocket noise measurement is discussed. The impulse response function shows that the presence

of the rigid sphere significantly affects the measurement and estimation of rocket-noise waveforms,

power spectral densities, and statistical measures. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4883381]
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I. INTRODUCTION

One method to characterize complicated sources, such

as the supersonic jets associated with solid rocket motors

and military aircraft, is to map the acoustic intensity sur-

rounding the source.1 Instruments that estimate intensity, or

intensity probes, by acoustical measurement must necessar-

ily be placed in the sound field and will therefore generate a

scattered field which will affect measurements of the field.

While there is a large body of published research concerning

the diffraction of time-harmonic signals by instrumenta-

tion,2,3 there is significantly less published concerning the

diffraction of transient signals, such as acoustic shocks. This

paper contains an analysis of the measurement of transient

plane waves by an intensity probe consisting of a tetrahedral

array of microphones embedded in a rigid sphere. This probe

was chosen because of its simple geometry and the easily

calculable diffraction of sound about it.4

The diffraction of sound pulses was studied as early as

1901 by Sommerfeld5 and 1910 by Lamb.6 Lamb used a

Fourier analysis technique to study the diffraction of pulses

by a semi-infinite plane but could only obtain a closed form

for incident pulses with known Fourier transforms. Mitzner7

was able to use numerical methods to find the scattered field

of an arbitrary transient wave by an arbitrarily shaped hard

surface using a retarded potential technique, and presented

the case of a Gaussian pulse incident upon a rigid sphere as

an example. Soules and Mitzner calculated the diffraction of

a pulse by a rigid sphere using numerical Fourier transforma-

tion in 1966, but since the study is unpublished, the details

are unknown. All of these studies have been confined to

smooth pulses, and they do not explicitly consider the pres-

sure on a rigid sphere due to arbitrary waves, specifically

waves containing rapid transients such as those present in

acoustic shock waves. On the other hand, Tanno et al.,8

experimentally found the pressure on the surface of a rigid

sphere due to an incident shock wave using a shock tube.

Feuillade9 used numerical Fourier transformations to calcu-

late the impulse response from rigid, pressure release, and

movable fluid spheres to create educational animations of

scattering from spheres, but he limited the calculation of the

impulse response to a far-field measurement location.

The purpose of this paper is to present a method by

which diffraction effects on the measurement of acoustic

waves with shock-like features on the surface of a rigid

sphere may be quantitatively described. The term “shock-

like” is used because the mathematical treatment of the scat-

tering will be purely linear. A secondary purpose of this

study is to help develop intuition about the time-domain

effects of the scattering of shocks due to instrumentation.

First, classical linear scattering theory is used to develop an

impulse response function for the measurement of progres-

sive plane waves by a sphere. While the approach used in

this paper—using numerical inverse Fourier transformation

on several harmonic solutions to the rigid-sphere problem—

is not new, the advances in computational power since

Lamb’s work enable this approach to be a viable option. The

validity of the impulse response function is shown by com-

paring blast noise measured by a stand-alone microphone

with blast noise measured by a spherical intensity probe.

Finally, an analysis of a measurement of noise radiating

from a GEM-60 solid rocket motor by a spherical intensity

probe is presented. The effects of the presence of the probe

on the estimation of the pressure waveforms, spectra, and

time-domain statistics are discussed.

II. DEVELOPMENT OF THE IMPULSE RESPONSE
FUNCTION ON THE SURFACE OF A RIGID SPHERE

A. Theory

The probe studied for this paper has been described by

Gee et al.,1,10 and it is shown in Fig. 1. The probe has a

spherical aluminum casing, a diameter of 2.54 cm, and four

1/4 in. (6.35 mm) G.R.A.S. 40BH microphones embedded in
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it such that the diaphragms are flush with the aluminum cas-

ing (no grid caps are used). A thin, hollow, aluminum stem

(diameter of 4 mm) for the wiring of the electronics inside

the probe is attached to the probe. The mounting point of the

stem is referred to as the bottom of the sphere. A microphone

is located on the top and, along with the other three micro-

phones, forms a tetrahedral array. We model the probe as a

uniform, stationary, rigid sphere. The rigid-sphere model

neglects the effects of radiation pressure on the microphone

diaphragms, the presence of the wiring stem, the finite impe-

dances of the aluminum casing and the microphones, and the

fact that the microphone diaphragms are flat surfaces embed-

ded in a sphere, as well as any geometrical deviations from a

perfect sphere. We assume that all incident waves are planar.

This is a reasonable assumption if the sound source is far

from the probe.

Acoustic shock propagation is inherently nonlinear, so

the choice to analyze the scattering of shocks using linear

theory should be justified. The effects of the nonlinearity can

be separated into cumulative effects and local effects.11

Cumulative nonlinear effects increase with propagation dis-

tance and are usually characterized by some nonlinear distor-

tion length, such as the shock formation distance of an

initially sinusoidal signal propagating without losses.11

Since we are interested only in the scattering of a wave in

the space close to the instrumentation and because the probe

dimensions are much smaller than the shock formation dis-

tance of initially sinusoidal waves with similar amplitudes

and characteristic frequencies as the waves considered, cu-

mulative nonlinear effects will be neglected for this study.

Local nonlinear effects do not vary based on propagation

distance. An example of a phenomenon involving local non-

linear distortion is the reflection of high-amplitude sound

waves from a rigid surface. Local nonlinear effects only

become significant with amplitudes much higher than those

considered in this paper (the pressure due to a 160 dB re

20 l Pa plane wave normally incident on a flat surface dif-

fers from the linear theory by less than 1%),12 and so these

effects will be neglected as well. It is possible that the local

nonlinearities associated with scattering of shocks from

curved surfaces (such as a rigid sphere or a long berm13) are

not negligible, but these will not be considered for the pres-

ent study. Therefore, all analyses presented here are based

on linear approximations.

The diffraction of time-harmonic plane waves by a rigid

sphere has been studied extensively.14–16 The solution for

the total field at any distance r � a from the sphere, where a
is the radius of the sphere, is given by

p̂T ¼ p̂I þ p̂S ¼ Âe�ikrcos hð Þ

�Â
X1
n¼1

2nþ 1ð Þ in j0n kað Þ
h 2ð Þ

n
0 kað Þ

h 2ð Þ
n krð ÞPn cos hð Þð Þ

(1)

where p̂T is the total complex pressure field, p̂I

¼ Â exp �ikrcos hð Þð Þ is the incident complex pressure field,

p̂S is the complex scattered pressure field, Â is the complex

amplitude of the incident field, k is the wave number, h is

the polar angle such that h ¼ 0 is the direction the incident

wave propagates from (see Fig. 2 for geometry), jn xð Þ is the

nth order, spherical Bessel function of the first kind, h 2ð Þ
n xð Þ

is the nth order, spherical Hankel function of the second

kind [that is, h 2ð Þ
n xð Þ ¼ jn xð Þ � iyn xð Þ, where yn xð Þ is the nth

order, spherical Neumann function], the primes denote dif-

ferentiation with respect to the argument of the function, and

Pn xð Þ are the Legendre polynomials. The incident time-

harmonic plane wave propagating in the positive z direction

is described as eixt�ikz.

The plots in Fig. 3 show the magnitude of the nth term

of p̂S relative to the largest term in the p̂S series for angles

h ¼ 0� and 90�, and for values of ka ¼ 0:1, 1, and 25. The

maximum value of ka used for the experiments below is

23.8 based on a sampling rate of 204 800 samples/s, so

ensuring that the series converges for ka ¼ 25 is sufficient

FIG. 1. (Color online) (a) A picture of the spherical probe used in this paper.

(b) A schematic of the tetrahedral array of microphone positions used in the

probe.

FIG. 2. Schematic of the orientation of a spherical probe relative to an

incoming plane wave with wavelength k. The sphere has a radius of a, and

the angle on the surface of the sphere relative to the angle of normal inci-

dence is h.
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for the purposes of this paper. If we require that all terms

greater than 10�10 times the largest term in the series are

included, then the results presented in Fig. 3 suggest that the

inclusion of 50 terms in the series yields sufficient precision.

We refer to the ratio of the total pressure on the surface

of the sphere to the incident pressure as the angle-dependent

frequency response function, H f ; hð Þ. The frequency

response function predicts what phase and amplitude will be

measured on the surface of a rigid sphere of radius a at a

given angle h due to an incident sinusoidal wave with fre-

quency f ¼ c=k. It is more convenient to analyze the fre-

quency response function in terms of the dimensionless

quantity ka ¼ 2pfa=c, rather than the frequency directly.

Therefore, the frequency response function H ka; hð Þ has

been plotted in Fig. 4 for five angles of interest—normal

incidence, or the front of the sphere (0�), grazing incidence

(90�), the back of the sphere (180�), and the two intermedi-

ate angles (45� and 135�). As can be seen in Fig. 4, low fre-

quency (ka) measurements (ka < 0:2) are not significantly

affected by the presence of the sphere while higher fre-

quency measurements (ka > 0:5) are significantly affected

by the presence of the sphere.

Performing an inverse Fourier transform on H f ; hð Þ
with respect to f produces an impulse response function for

measurements on the sphere, h t; hð Þ. The impulse response

function (IRF) on the surface of a sphere can be studied as a

function of the nondimensional time ct=a. Figure 5 shows

h ct=a; hð Þ evaluated for several angles of interest. The IRF

was produced with 220 frequencies, ranging from

6409 600 Hz, and a sphere of radius 1.27 cm. The IRFs con-

sist of a large peak and, for angles less than 90�, surrounding

oscillations, which are due to the leakage associated with

using a finite number of frequencies. The time associated

with the peak of hðct=a; hÞ indicates the time at which a

wavefront would arrive at the surface of the sphere relative

to the time the same wavefront would arrive at the origin

(center of the sphere) if the sphere were not present. For

example, since the location of the 0� measurement is a dis-

tance a from the origin in a direction parallel to the direction

of propagation, the peak of h ct=a; 0�ð Þ would be expected to

be at �1, which is the case in Fig. 5. Similarly, since the

location of the 90� measurement is in the direction perpen-

dicular to the direction of propagation relative to the origin,

the expected value of ct=a would be 0, which is the case in

Fig. 5 as well. However, the time of arrival associated with

the location at 180� on the sphere surface is not at 1, since

all acoustic energy that reaches that location must be dif-

fracted around the sphere, increasing the propagation dis-

tance. For very small angles, the expected pressure response

is significantly higher than unity due to the wave reflected

from the sphere. Note that without the sphere, the pressure

response would be one. The response continues to decrease

with increasing angle until the angle approaches 180�, which

corresponds the back of the sphere, as can be seen in Fig. 5.

There are two ways that the results from this rigid-

sphere model are used to analyze measured time-domain

data. First, estimates of the incident waveform can be made

by removing the effects of scattering from measurements of

the pressure on the surface of the sphere. Second, an incident

FIG. 3. (Color online) Convergence of the scattering pressure series. The

curves in (a) are the absolute value of the mth term in the scattering series

(Sm) divided by the maximum term in the series (Smax), evaluated at h ¼ 0�

and for three values of ka. The curves in (b) are the same as in (a), but eval-

uated at h ¼ 90�.

FIG. 4. (Color online) Frequency response function on a rigid sphere [FRF,

or H k; hð Þ] as a function of ka, and evaluated at the five angles listed in the

legend on the sphere relative to the incident sound field.

FIG. 5. (Color online) Impulse response function on the surface of a rigid

sphere [IRF, or h ct=a; hð Þ]. Given an incident pressure wave in the form of a

unit delta function, the IRF h ct=a; hð Þ is what would be measured on the

sphere at angle h.
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pressure waveform can be convolved with the IRF to esti-

mate what the pressure on the surface of a sphere would be.

In both cases, it is important to remember the assumptions

used to obtain the IRF. The incident field should be approxi-

mately planar near a sensor with spherical geometry, and the

amplitudes must be low enough that local and cumulative

nonlinear effects can be neglected in the neighborhood of

the sphere. The direction of the incident field must also be

known so that an appropriate coordinate system can be cho-

sen. The actual convolution and deconvolution calculations

have been carried out using Fourier transforms of the IRF

and the pressure data.

Methods for convolution are well known; the method

that is implemented in this paper consists of multiplying the

Fourier transform of the IRF for the location of interest on

the surface of the rigid sphere and the Fourier transform of

the incident pressure waveform together, and then perform-

ing an inverse Fourier transform on the product. Removing

the effects of scattering consists of a deconvolution, per-

formed directly or by using the Fourier transform.

B. Validation of theory

Blast noise was used to validate the impulse response

function (IRF) described in Sec. II A. Balloons filled with

acetylene and oxygen can be used as consistent and rela-

tively safe sources of blast noise,17 and they were used as the

blast noise source of the validation experiment. The experi-

ment was conducted in conjunction with another, as yet

unpublished, study performed on the Bonneville Salt Flats.

The Bonneville Salt Flats is a salt pan located in western

Utah, and it is considered an approximate infinite rigid plane

for the purposes of this study. A 43 cm diameter balloon,

filled with a mixture of 0.42 mol of acetylene and 1.05 mol

of oxygen was attached to the top of an extendable tripod,

raised to a height of 4 m above the ground, and ignited. The

spherical probe was placed 30.5 m (100 ft) from the balloon

ignition location, and raised 1.5 m above the ground. The

probe was oriented using the geometry in Fig. 1(b) such that

Mic. 1 was vertical and the measurement angles were

h ¼ 90�, 57�, 57�, and 161�, with some possible uncertainty

(< 5�) due to alignment error in the field A reference micro-

phone, approximately 4 m away from the spherical probe but

with the same radius to the explosion site, also measured the

blast noise. The measurements were made in somewhat

gusty wind conditions with a light breeze between gusts of

wind. In order to minimize the presence of wind noise, meas-

urements were made between the gusts of wind. The acoustic

data were acquired at 204 800 samples/s (4.9 ls/sample)

using a National Instruments (Austin, TX) PXI-based

system using 24-bit PXI-4462 cards controlled by labview-

based (National Instruments, Austin, TX) software. Post-

processing of the data was performed using MATLAB.

The waveform recorded by the reference microphone is

shown in Fig. 6(a), and a more detailed plot of the leading

shock waveform, normalized by the peak amplitude of the

leading shock p0, is shown in Fig. 6(b). Both the leading

shock (which arrives at 0 ms) and a secondary, reflected

shock (the reflection from the ground, which arrives at

1.3 ms) are clearly evident in the waveform shown in

Fig. 6(a).

Portions of the blast waveforms measured by the spheri-

cal probe microphone are shown in Fig. 7(a)), and a more

FIG. 6. (Color online) (a) A blast wave of an exploding acetylene and oxy-

gen balloon measured by a reference microphone. The amplitude of the

waveform in (b) has been normalized by the peak measured shock

amplitude.

FIG. 7. (Color online) Measured blast wave of an exploding acetylene and

oxygen balloon. The waveforms were recorded by an array of four micro-

phones embedded in a spherical probe of radius 1.27 cm. The amplitudes of

the waveforms in (b) have been normalized by the peak shock amplitude of

the reference microphone, and the time array has been normalized by the

probe radius and the sound speed.
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detailed plot of the leading shock waveform, normalized by

the peak amplitude of the leading shock p0 measured by the

reference microphone, is shown in Fig. 7(b). The angle de-

pendent effects of scattering are clearly apparent in the

waveforms. The microphones positioned closer to the bal-

loon show significantly higher peak shock amplitudes than

the microphones positioned farther from the balloon. In addi-

tion, the arrival times of the shocks change depending on

where the microphone is located.

Estimates of the leading and secondary shock arrival

time, leading and secondary shock strength, and leading and

secondary shock rise times from each of the probe micro-

phones and the reference microphone (for comparison) are

given in Table I and Table II. The arrival times for each

shock are adjusted such that the leading shock measured by

the top microphone arrives at 0 ms. The shock strength is a

non-dimensional parameter used to characterize the ampli-

tude of a shock, and is defined by Temkin18 as

d ¼
p2 � p1ð Þ

p1 þ patm

; (2)

where p2 is the peak shock pressure, p1 is the pressure just

before the shock, and patm is the atmospheric pressure. Since

there are two large shocks present in the waveforms, the

leading shock strength will be denoted dL and the secondary,

reflected shock strength will be denoted dS. The rise time of

a shock is the difference between the time of arrival of the

peak of a shock and the time of arrival of the base of the

shock. Shock arrival and rise times are restricted to integer

multiples of 4.9 ls, due to the temporal resolution of the

experiment.

Estimates of the incident blast can be found from each

of the four microphones by numerically deconvolving the

IRF of the rigid sphere from the waveforms measured by the

probe, thus estimates of the incident blast can be calculated

for each of the four microphones. Since the reflected shock

wave arrives significantly after the direct wave relative to

the noticeable duration of the impulse response function (the

impulse response functions in Fig. 4 appear to fall off to

nearly 0 by about ct=a ¼ 5 and the reflected shock arrives at

ct=a > 100), the presence of the reflected shock will not alter

the deconvolution in any significant manner. The estimates

of the incident waveform are shown in Fig. 8(a), a more

detailed plot of the leading shocks are shown, normalized by

the reference microphone peak amplitude, in Fig. 8(b), and

the quantitative metrics describing the shocks are given in

Table I and Table II as the quantities in parentheses. While

the deconvolved waveforms are not identical to each other,

they are more similar to each other than the original wave-

forms in Fig. 7. Comparing the metrics associated with the

original waveforms and the numerically deconvolved wave-

forms shows that all of the measures are much more uniform

after the numerical deconvolution. For example, the esti-

mates of dL and dS from the measured waveforms are 23%,

37%, 43%, and �11% for Microphones 1–4, respectively,

greater than the reference estimates of dL and dS. Whereas

TABLE I. A summary of various metrics used to describe the leading shock

wave radiating from an exploding balloon. The waveforms used were meas-

ured by four microphones embedded in a 2.54 mm diameter, aluminum

sphere. The metrics for the waveforms that have the effects of rigid-sphere

scattering numerically removed are given in parentheses.

Probe Array

(a¼ 2.5 cm)

Angle

(�)
Arrival

time (ls) dL

Rise

time (ls)

Mic. 1 90 0 (0) 0.0107 (0.0098) 14.6 (9.8)

Mic. 2 57 �90 (4.9) 0.0119 (0.0073) 14.6 (4.9)

Mic. 3 57 �100 (4.9) 0.0125 (0.0083) 14.6 (9.8)

Mic. 4 161 54 (0) 0.0077 (0.0082) 39.1 (9.8)

Reference Mic. 0.0087 19.5

TABLE II. A summary of various metrics used to describe the secondary

shock wave radiating from an exploding balloon. The waveforms used were

measured by four microphones embedded in a 2.54 mm diameter, aluminum

sphere. The metrics for the waveforms that have the effects of rigid-sphere

scattering numerically removed are given in parentheses. The arrival time is

relative to the arrival time of the leading shock.

Probe Array

(a¼ 2.5 cm)

Angle

(�)
Relative

arrival time (ms) ds

Rise

time (ls)

Mic. 1 90 1.02 (1.0) 0.0085 (0.0071) 29.3 (19.5)

Mic. 2 57 1.03 (1.0) 0.0122 (0.0075) 9.8 (9.8)

Mic. 3 57 1.02 (1.0) 0.0123 (0.0081) 14.6 (9.8)

Mic. 4 161 0.96 (1.0) 0.0068 (0.0090) 112 (9.8)

Reference Mic. 1.3 0.0066 24.4

FIG. 8. (Color online) Estimated incident waveforms found by deconvolv-

ing the impulse response function of a rigid sphere from the waveforms

measured by the spherical probe (shown in Fig. 6). The amplitudes of the

waveforms in (b) have been normalized by the peak shock amplitude of

microphone 1 from the reference array, and the time array has been normal-

ized by the probe radius and the sound speed.
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the estimates for dL and dS for the deconvolved waveforms

measured at Microphones 1–4 are only �13%, 16%, 4.6%,

and 5.7%, respectively, greater than the reference shock

strength estimate. The uniformity of the waveforms and met-

rics for the deconvolved waveforms suggests that the IRF

described above is an appropriate method to describe the

time-domain effects of the measurement of shock pressures

on a rigid sphere.

In addition to removing the effects of the rigid sphere,

the IRF can be used to predict the effects of a rigid sphere on

an incident wave. For example, by convolving the reference

pressure waveform shown in Fig. 6 with the IRF calculated

to remove the effects of the probe, an estimate of the scat-

tered field may be obtained. These predictions for the pres-

sure on the surface of a rigid sphere at the three

measurement angles are shown in Fig. 9. The convolutions

show the expected delays in the shock arrival time. For

example, the shock measured by the microphone at 57� is

predicted to arrive a value of ct=a of 0.66 prior to the shock

measured at 90�, while the value measured above is 0.50,

and for the shock measured at 167� the predicted normalized

time of arrival is 1.19, compared to the measured value of

1.21. Also, the shock strengths dL vary by 15%, 54%, and

0.6% relative to the incident shock for the predicted wave-

forms at 90�, 57�, and 161� on the surface of the sphere,

respectively. The predicted waveforms therefore have

greater phase changes and higher amplitudes than the meas-

ured waveforms. These errors may be due to the different

measurement locations or the presence of wind in the mea-

surement. However, notwithstanding these differences, the

predicted shock fronts are sufficiently similar to those meas-

ured using the spherical probe to validate the use of an IRF

derived from rigid-sphere scattering to assess the time-

domain effects of shock measurements.

The above analyses show the validity of describing the

measurement of shocks on a spherical probe with a linear

scattering theory. Convolving the IRF derived from rigid

sphere scattering with a reference shock waveform is able to

predict the effects of rigid sphere scattering on the shock

strengths and arrival times to within 30% (and usually better

than that) of the measured values despite some uncertainty

in measurement angles. In addition, the numerical removal

of the effects of the sphere allow estimates of the incident

sound field, where the differences between the estimates

from the different microphones are relatively small and

allow for checks of self-consistency. These findings indicate

that using the IRF on a rigid sphere would be an appropriate

method to analyze the effect of shock measurements in the

study of more complicated sources which may have more

complicated waveforms containing shocks, such as noise

radiating from solid rocket motors.

III. APPLICATION TO ROCKET NOISE

We now consider the application of this method to

acoustical measurements that were taken during a static fir-

ing of a GEM-60 solid rocket motor, which is an 827 kN

(186 000 lb) thrust motor designed to be used with a Delta

IV orbital launch vehicle. Details of this test, which was con-

ducted at the ATK T-6 test facility near Promontory, UT,

were reported previously by Gee et al.1 The spherical probe

described above was placed 24 m downstream from the

rocket nozzle exit and 9 m from the estimated shear layer

edge. Portions of the waveforms measured by the four

microphones embedded in the probe are shown in Fig. 10.

The angles listed are the angles on the sphere assuming the

sound field is locally planar and propagating in the direction

of the maximum sound pressure level of far-field measure-

ments (60� from the downstream direction). Since a rocket

plume represents a distributed source whose extent and

directionality varies with frequency and the surrounding ter-

rain is nonuniform,1 the plane wave-assumption may be

poor. The direction of propagation was chosen based on near

field-intensity estimates.1,19

The delay in the arrival times and the variation in the

peak shock amplitudes are similar to the predictions made

for the balloon experiment described above, notwithstanding

the fact that the simplified scattering model described in Sec.

II does not fully apply to near-field rocket noise due to the

complicated nature of the source and terrain. For example,

consider the large shock near 0.6 ms in Fig. 10. The

FIG. 9. (Color online) A model of a blast wave radiating from an exploding

balloon and the predicted response of microphones embedded in a spherical

probe at three angles. The amplitudes have been set such that the peak shock

amplitude of the incident wave is unity.

FIG. 10. (Color online) Portions of waveforms of noise radiating from a

GEM-60 solid rocket motor measured by a spherical probe consisting of

four microphones embedded in a rigid sphere.
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microphones on the sphere surface at 90�, 24�, 136�, and 94�

estimate a shock strength of 0.0712, 0.1362, 0.0460, and

0.0852, respectively, and arrive 0, �14.6, 58.6, and 1.3 ls

relative to the 90� microphone’s arrival time, respectively.

Similar to the above analysis, the microphone at the smallest

angle predicts the largest shock strength, and the shock

strengths decrease with increasing angle. Therefore, it is

likely that deconvolving the impulse response function (IRF)

for a rigid sphere from the rocket noise data will yield more

accurate estimates of the true time-domain characteristics of

the shock content in the rocket noise field at the location of

the spherical probe.

The estimates of the incident waveform, found by

deconvolving the IRF from the rocket noise data, are shown

in Fig. 11. The estimates look qualitatively much more simi-

lar to each other than the original waveforms did. The esti-

mates of the shock strength of the large shock around 0.6 ms

become 0.0604, 0.0780, 0.0660, and 0.0679 for the micro-

phones at 90�, 24�, 136�, and 94�, respectively, with time

delays relative to the 90� microphone of 0, 19.5, 24.4, and

0 ls, respectively. There are still some discrepancies

between the waveforms in Fig. 11, especially away from

shocks. For example, from 1 ms to 1.5 ms the general trend

of all four waveforms is to start decreasing then slightly start

increasing, but each waveform appears to have distinct,

uncorrelated noise, varying by as much as 1 kPa from the

other waveforms. It is interesting to note that similar uncor-

related noise has been observed in military aircraft noise.20

This discrepancy and others like it may be due to the com-

plexity of the environment and the source. Other factors that

may cause these discrepancies are the nonlinearity (both cu-

mulative and local) of the sound field, the response of the

microphones used in the probe, and the electronics associ-

ated with the probe and data acquisition.

In addition to studying portions of the GEM-60 wave-

forms, studying aggregate quantities, such as spectra and sta-

tistical metrics, is also useful to visualize and quantify

average behavior of time-domain phenomena for an entire

waveform. First, the one-third octave band spectra are pre-

sented and discussed, followed by an analysis of the densities

of the pressure amplitudes and time-derivatives. The four one-

third octave band spectra calculated from the spherical probe

measured waveforms are presented in Fig. 12(a), and the spec-

tra for the deconvolved estimates of the incident waveform

based on the measured spectra are shown in Fig. 12(b). As

expected from the frequency response function presented ear-

lier, the main differences occur for high frequencies. The four

spectra are nearly identical up to 1 kHz, and remain quite sim-

ilar until about 4 kHz, after which the four diverge signifi-

cantly from each other, differing by about 15 dB at 100 kHz.

As predicted by the frequency response function analysis

shown in Sec. II above, the microphone that measures the

greatest levels for high frequencies is the microphone with the

smallest angle relative to the assumed location of normal inci-

dence (h ¼ 24�), and since none of the measurement locations

is close to the back of the sphere, the high frequency levels

tend to decrease for greater values of h.

The spectra of the incident pressure wave estimates are

much more similar to each other at high frequencies than the

direct measurements, differing by less than 5 dB at 100 kHz.

The spectra are not necessarily expected to be identical to

each other, since the approximations necessary for this anal-

ysis may not be appropriate for this complicated system.

It is important to note that power spectra do not provide

information on the time-domain statistics of a waveform.

Another method of characterizing a waveform that does pro-

vide time-domain statistical information is the probability

density function (PDF) of the pressure amplitudes. The PDFs

of the pressure amplitudes of the waveforms measured by the

spherical probe are shown in Fig. 13(a), and the distributions

of incident-field estimates are shown in Fig. 13(b). As can be

seen in Fig. 13(a), there is not much variation between the

PDFs measured at different angles below 5 kPa. Above 5 kPa,

the PDFs become slightly more varied—differing by up to a

factor of 3 from each other—with the most dramatic differ-

ence being the higher probability of very high amplitudes for

the h ¼ 24� microphone, due to the pressure increase associ-

ated with reflections. These slight differences are nearly gone

FIG. 12. (Color online) One-third octave band spectra of noise radiating

from a static GEM-60 solid rocket motor firing (a) measured by a spherical

probe and (b) the estimates of the incident field obtained by deconvolving

the IRF from the waveforms measured on the surface of the probe.

FIG. 11. (Color online) Estimates of the incident rocket noise waveform

found by deconvolving the rigid-sphere impulse response function from the

waveforms shown in Fig. 9.
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in Fig. 13(b), indicating that the high-amplitude differences

are, indeed, due to the presence of the rigid sphere.

As shown by Muhlestein et al.,21 the pressure amplitude

PDF does not vary significantly for nonlinearly propagating

waves. The PDF of the time-derivatives of the pressure

amplitudes is much more sensitive to the evolution of high-

amplitude waveforms due to the growth and evolution of

shocks. The PDFs of the time-derivative of the pressure

amplitudes of the waveforms measured by the spherical

probe are shown in Fig. 14(a), and the PDFs of incident-field

estimates are shown in Fig. 14(b). The values of the time-

derivatives studied for this paper were estimated using a

finite-difference scheme. There are dramatic differences

between the tails of the four measured PDFs shown in Fig.

14(a), with variations of more than an order of magnitude.

Recalling that the presence of the sphere tends to increase

shock strength for small angles and decrease shock strength

for angles in the shadow region of the sphere, it makes sense

that the measurement with the largest probability of very

large time-derivatives is the h ¼ 24� measurement, and the

measurement with the lowest probability of large time-

derivatives is the h ¼ 136� measurement. Also, notice the

PDFs of the time-derivative of the incident-field pressure

estimates shown in Fig. 14(b) are very similar to each other,

further indicating that the variations in Fig. 14(a) are likely

due to the presence of the rigid spherical probe.

In order to quantitatively compare PDFs, various statis-

tical measures have been defined. The mean and variance

are well known. For example, acoustic processes are by defi-

nition zero-mean processes, and the variance of a zero-mean

process is the mean-square of the process, which is used in

the definition of the overall sound pressure level. The

skewness of a PDF (Sk xf g for a PDF of the variable x) is a

normalized measure of the asymmetry of the PDF. If a PDF

has a long tail on the positive side of the PDF (for example,

the PDFs of the time-derivative of pressure amplitudes),

then the PDF has a positive skewness, and if the tail is on the

negative side of the PDF, then the PDF has a negative skew-

ness. Ffowcs Williams identified the skewness of the pres-

sure as an indicator of “crackle” in high-velocity jet noise.22

However, Gee et al. have shown that “crackle” is more likely

due to the presence of shocks generated by finite-amplitude

effects.23,24 Since shocks have rapid pressure rises, the skew-

ness of the time-derivative of the pressure has also been

identified as a way to quantify the effects of nonlinearity on

jet noise.25,26 The variance of the pressure amplitude and

time-derivative of pressure amplitude PDFs, both with and

without the effects of the spherical probe, are given in Table

III and the skewness of the pressure amplitude and time-

derivative of pressure amplitude PDFs, both with and

FIG. 13. (Color online) Estimates of the probability density function of the

pressure amplitudes of noise radiating from a GEM-60 solid rocket motor,

(a) measured by a spherical probe and (b) the same for the estimates of the

noise field incident upon the sphere.

FIG. 14. (Color online) Estimates of the probability density function of the

time-derivative of the pressure amplitudes of noise radiating from a GEM-

60 solid rocket motor, (a) measured by a spherical probe and (b) the same

for the estimates of the noise field incident upon the sphere.

TABLE III. Summary of the variance values for the distributions of the

pressure amplitude and of the time-derivative of the pressure amplitudes.

The subscript inc indicates the incident field estimate obtained from the

variable.

h 90� 24� 136� 94�

Var pðh; tÞ
� �

ðkPaÞ2 1:62 1:66 1:52 1:61

Var pðh; tÞinc

� �
ðkPaÞ2 1:62 1:55 1:55 1:61

Var
@pðh; tÞ
@t

� �
Pa

s
� 107

� �2 8:53 22:3 3:09 1:15

Var
@pðh; tÞ
@t

����
inc

( )
Pa

s
� 107

� �2 5:44 6:48 8:27 8:09
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without the effects of the spherical probe, are given in Table

IV. The statistical measures are much more similar for the

incident field estimates, especially the variance of the esti-

mates of the incident time-derivative of pressure. This simi-

larity suggests that the impulse response function for a plane

wave on a sphere developed in Sec. II is an appropriate way

to model the effects of the rigid spherical intensity probe on

these pressure measurements of a rocket noise field.

IV. CONCLUSIONS

A method to describe the pressure measured on the surface

of a rigid sphere due to an incident arbitrary linear planar

waveform has been developed using Fourier techniques. This

method is encapsulated in the measurement-angle dependent

impulse response function (IRF) on the surface of a rigid

sphere. This method of describing diffraction was validated by

comparing blast noise from an exploding balloon measured by

an array of microphones embedded in a rigid sphere with the

measurement of a reference microphone. The IRF performs

well, but it requires a large number of frequencies to resolve

transient signals. The application of the IRF to propagating

shock waves can help guide the intuition of those studying the

diffraction of shock waves around instrumentation by showing

the effect of shock reflection from curved surfaces and of

shadow zones on the measurement of peak pressure values and

rise times associated with shocks. The IRF on the surface of a

rigid sphere was applied to rocket noise measurements in order

to describe diffraction around a spherical intensity probe. The

estimations of the incident wave were very similar to each

other in terms of the shape of the waveforms, location of

shocks, and the pressure and time-derivative of pressure statis-

tics in addition to intensity estimates.

The accuracy and ease of numerical implementation of

this relatively simple model suggests that other Fourier-based

approaches to the scattering of shocks from objects may be

similarly beneficial in reducing the effect of measurement

equipment on data and improving the quality of measurements.

Using boundary-element and finite-element modeling, the pres-

sure due to incident shock waves on the surface of objects

more complicated than a rigid sphere may be estimated.
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