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Quantum electrodynamics based on self-energy: Lamb shift
and spontaneous emission without field quantization
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The theory of radiative processes in quantum theory is formulated on the basis of self-energy, in

analogy to classical radiation theory, and is explicitly carried out for the calculation of the Lamb
shift and spontaneous emission.

INTRODUCTION

In classical electrodynamics the radiative processes are
calculated from the self-energy of the electron in external
fields. In contrast, in quantum electrodynamics, the self-
energy is first thrown away and one begins with bare par-
ticles; then the self-energy is put back in photon by photon,
hence the use of perturbation theory. Recently, it has
been argued that. one ought also to be able to develop a
quantum electrodynamics based on the self-energy, ' and
the general principles of such a theory have been given in
the relativistic case.

The purpose of this work is to carry out explicitly the
calculations using the full self-energy. Pe shall derive
formulas for the Lamb shift and for spontaneous emis-
sion, which are here calculated simultaneously. They are
the real and the imaginary parts of a complex energy
shift. We use a nonrelativistic wave equation for the elec-
tron, as it is simpler to see the main developments. How-
ever, it turns out that the final formulas have exactly the
same structure for both the nonrelativistic and relativistic
cases. In fact the relativistic terms dependent on the spin
matrices split nicely. However, we have written this pa-
per so that it can be read independently of the relativistic
calculations.

There are several fundamental features of the present
theory which one should emphasize at the beginning.

(1) First of all, the matter field g is described by a
first-quantized wave function. As we shall see, for one-
body problems, like the Lamb shift or the anomalous
magnetic moment, it is not necessary to quantize the P
field. The electromagnetic field A& is eliminated between
the coupled Maxwell-Dirac equations; hence its quantiza-
tion does not enter into the calculations either. We work
throughout with nonperturbative Coulomb-like wave
functions, which we never have to expand into "virtual"
free-particle states and hence do not need the second-
quantization formalism applied to free virtual particles.

(2) The main problem in quantum electrodynamics is to
make the renormalization procedure finite. And as ex-
pected, the renormalization procedure is quite different
for the calculations which starts with the self-energy than

for those which use perturbation theory. We separate the
self-energy integrals into terms which renormalize the pa-
rameters of the theory and other terms which are finite
and observables. Actually even the renormalization in-
tegrals are finite since they use for example, Coulomb
wave functions and not plane waves. The nonlinear equa-
tions which include the self-energy can be linearized, after
renormalization, by an iterative process that starts from
Coulomb wave functions. We find then the formula for
the Lamb shift as given by Bethe. To this lowest order
of iteration, which is sufficient for practical purposes, the
only infinity comes from the infinitely many Coulomb
states of the bare problem. Thus for a system with finite-
ly many states (e.g., a two-level atom) all the results are
finite. It can be hoped that even for the Coulomb prob-
lem the theory can be made finite if the widths of the
states can be taken into account. There is, furthermore, .

no infrared problem in the present formulation. We have
additional terms which after regularization give the
vacuum polarization effects.

(3) We proceed from and perform all the calculations in
terms of an action rather than the equations of motion.
The theory based on the action is more direct and much
simpler, and the bound-state and scattering problems can
be treated in a unified manner from the action. In gen-
eral, the dimensionless action is related to the scattering
amplitude 6 per unit space and time for scattering prob-
lems, and to the total invariant energy 8' of the system for
the bound-state problems as (there is an infinite 5-
function proportionality factor)

Wf; =(2ir) 5(Pf —P;)G, 8'f; =2m5(Ef —E;)8' .

(4) Finally, an important feature of the present theory is
the simplification it brings to the understanding of radia-
tive processes. All the calculations proceed exactly paral-
lel to classical radiation theory where radiative terms are
also obtained nonperturbatively in closed form. One can
attribute quantum effects either to the external quantized
field A" which has vacuum fluctuations or to the elec-
tron itself which has fluctuations due to Zitterbewegung.
Here we take the-second approach, namely, we assume the
electron itself is the source of radiation as well as radia-
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II. THE ACTION PRINCIPLE

For a Schrodinger (or Pauli) field P coupled to the elec-
tromagnetic field Az the action is (c =Pi= 1, dx =d4x)

dx i *, eAo

1 (V+ie A)P~. (V ie A—)P — F&„F"—"1

2m 4 pv

The Euler-Lagrange equations, when 8' is varied with
respect to P~ and A&, are

and

iB,P=eA P+ ( i V eA)—( —i V eA)/- —
2m

tive corrections. Thus the correct equation of motion for
the radiating electron is not the Dirac or Schrodinger
equation for a bare electron, but an equation with an addi-
tional nonlinear self-energy term, just like the Lorentz-
Dirac equation for a classical radiating electron with the
Larmor term. There are also a number of significant
technical simplifications. One calculates just with wave
functions, instead of with field operators.

F""„=—ej",
where the current j& has the components

J"= '0*0 0* e
2mi m

By substituting everywhere (V+ieA) u for V+ieA we
obtain the Pauli action and the Pauli equations.

In Appendix A we give also a limiting process of how
to go from a Dirac action to a Klein-Gordon action and
then to the Schrodinger action so that one can carry out
the present calculation in any one of these cases.

In what follows, the potential consists of two terms

AD=AD+AS A= A +A',
an external given field A which is not a dynamic vari-
able, and a self-field A originating from the current of
the charges which therefore vanishes at infinity. The
sources of the external field A'& are not included in our
problem, hence it can be'considered as a solution of the
homogeneous Maxwell's equation (excluding the source
points). In a genuine two-body problem such as positroni-
um we include also the external field as a dynamic vari-
able.

The contribution of the dynamic field action
—~F&„F""can be rewritten using Maxwell's equations
and the divergence theorem as

——, f dx F„.F""=——,
' f dx(As~~") „+—,

' f «g~~~ „

=—' f dx ~.'J."

=—f d» 4*0 f «A—'P*(VP) f dx y*—y(V. A')
2 2ml 4mi

+ f dx p~pA A + f dx
~ p ~

2(As)~, (6)

where partial integration has b en used. Pa~lal integration in the third te~ of (1) gives, on the other hand,

dx (V+ieA)P» (V ieA).P=—f dx P*(A ieV A 2i—eA V. e—A )P .. —2 2

2m 2m
(7)

From (6) and (7) the total action can be written in terms of P and Az s only. The final result is

h

8'= f dx P* iB,Q eAog ——Hog+ P — (V A )P — (V A )P — A '(VP) — A '(V0)
2 2m 2m 4m m 2m

2 2

(A )P — A AP
2m 2m
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Had we started from the Pauli action the commutation re-
lations for the operators p, cr, A would have led to the ad-
ditional term

prPauli prschrod J d y a e .( V ~ AE)
2m

shift.
By inserting (10) into (8) we have expressed the action

W (besides the given external field A&) entirely in terms
of the matter field P, which now has nonlinear and nonlo-
cal terms coming from Eq. (10). We shall write these
terms in the next section in terms of a set of Fourier coef-
ficients.

cr (VITAE) P . IV. FOURIER EXPANSION
OF THE TOTAL MATTER FIELD

III. ELIMINATION OF THE SELF-FIELD

A&(x)=e J dx'D»(x —x')j (x') . (10)

This formula is derived and discussed in Appendix B,
where we also give the explicit form of the Green's func-
tions D»(x —x') in different gauges. The final result is,
as it should be, gauge invariant. We shall choose the
Coulomb gauge (B12) in order to compare our results with
the standard nonrelativistic calculations of the Lamb

The first step in our study of the action JY in (8) is to
eliminate the self-field Az, i.e., to express it in terms of
the current j& of the p field by the formulas

The action 8' being an integral over all space and time,
expresses all possible interactions between the matter field

P and electromagnetic field A„. It guarantees that the
equations of motion are consistent with the conservation
laws. In order to separate individual processes of definite
energies we perform, as a second step in our analysis, a
Fourier expansion of P in the time coordinate:

P(x, t) = )f„P„(x)e

We shall show that the coefficients P„correspond to the
physical wave functions. The action expressed in terms of
the Fourier components p„, yet to be determined, be-
comes, using (B12),

W= I dx
~ „ itp„(x)e "Xigm(x)e

'Ens 'ErsX e 'Ernie
'Est

e ik(x —x'iy —(X)+. . .
n, m, r, s

(12)

~here

Xi =Em —e~o+ — (V A )
ie

2m 2m

2
AE.(V ) ( AE)z

m 2m

and

Contrary to the relativistic - case, the nonrelativistic
current (5) still contains the field Az. Strictly speaking
(B2) is still an integral equation to be solved for A&. In
this respect the relativistic problem is much simpler.
However, the terms in 8'coming from this A dependence
of the current are successively higher order in e; hence
the action can be truncated in an iterative solution. In the
case of an external field which has only a zero component

, like the Coulomb potential of an H atom, this com-
plication does not arise. In what follows we shall set
AE 0 and obtain

Xz ——— P„(x')P,(x') X&=E —e~o +E
2m

r

+ P„'(x') . P, (x') — At P„'(x')P, (x')
2mi ' m

e
2 P„'(x')P, (x')

ie' ~.
X

2m k~

AJ
2m

kj kI
J g2

kjk
2m k2 J ~2

X3 ——Xg —— ——0 .

P„'(x') .P, (x') V,2mi
(13)
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I

V. TIME INTEGRATIONS

In the third step of our analysis we perform the integra-
tions over dx, dx, and dk on Wand obtain

W. "'=2x 1 dxg„d„'(x)E, () (x)5(E„E)—
= g WEm=+2~5(E. E—)@'E~

or, using the relation between the action W and energy 8',

g"'= f dx f „p„(x)Xi(t„(x)=g O'„I)'5„2)2
n, m

n, m n, m

21TW' '= — f dxdx'dk)f „„,dko5(E„E k—o)5—(E —E +ko)e'"'"—"'(t*(x)X y (x)

1 f dxdx'dk „„,5(E„—E~+E„E,)e'"'"—*'P„'(x)X2(k =E„E~)—P~( x). (14)

of 8""with a factor 5(E„E~) so th—at we can isolate
the corrections to the energies of a level m. This can be
done in two ways (as was already introduced in relativistic
case ):

En =Es~ hence Em =Er (1Sa)

(15b)E„=E, hence E, =E„.
There is a term E„=E,=E~ =E„common to both of
these cases. (For a discussion of other solutions of
E„E~+E„—E, =0 s—ee Appendix C.) We separate
terms in 8' ' satisfying (15a) and (15b), change dummy
indices, and eliminate the 5 function 5(0) by passing from
the dimensionless 8' to the total energy of the system:

Since the dt and dt' integrations are done before the k
integration, the usual problem of choice of a contour for
the k integration does not arise.

From the appearance of the 5 functions of energy in
(14) we see that the first term 8'", with (13), is a single
sum of actions of the electron in a Coulomb field over the
energies E~. Note, however, that P~ and E~ do not yet
have the precise Coulomb values, for there is a second
term, and the whole action is still exact The.variation of
the action W with respect to the P„'s would lead to an in-
finite set of coupled nonlinear equations.

In the second term W' ' the factor
5(E„E~+E„E,) t—ells us tha—t the summations must be
restricted to those values for which E„E+E„E,— —
=0. We wish to bring the second term W' ' to the form

2 l 2
2xS''~'= lt„dk „T (k) T„(—k)+ g „„T„o(k)T ( —k)

(2m)2(2ir)2 ~ "~ (E —E

28 ,T, '(&) T '( —&) kjki
(2riz)2(2~)2 E ()2

1
2 g2

(16)

where we have introduced the form factors Indeed

„T (k):—J dx Q„'(x)—P (x)e'"'",
l

pl
„T„'(k)-()(„' P„-Im(Q„*V'P„)n 2 n

)2 T~ (k) =—f dx P„*(x)P~(x)e'"

The last term in W' ' vanishes, because „T„'(k)=0.

and vanishes for even magnetic quantum numbers (P„
real) and for odd magnetic quantum numbers the two
terms with opposite magnetic quantum numbers cancel.

Finally, as shown in Appendix D, the angular integra-

tions f dQk give a factor of 2n, 2n. , and Sn./3, respec-
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tively, in the three remaining terms in 8' ' and we obtain

2

2m 8'z'= 'f „ f dk „T o(k) T„o(—k)

+ JL'„ f dk „T„(k) T ( —k)

2 2e 1 dkk
„T (k) T„(—k)-3 4. (E„E—) —k

normalized mass term (mo+5m)z& ——mz'z, and the second
term is finite and observable. We shall proceed similarly
here to identify parts of g' ' which renormalize 8'" and
the remaining parts which are finite and observable.

First we split the denominator in the last term of 8' '

by the well-known identity

1 1 1 1

(E„E—)2—k 2 2k E„E ——k E„E—+k

V. SEPARATION OF RENORMALIZATION
AND OBSERVABLE TERMS

E„—E —k

Recall that in classical electrodynamics the self-energy
term in the equation of motion can be split into two parts:
The first part has the form of an inertial mass term which
will be added to the bare mass term moi& to get the re-

+ "-2
E —E„—k

and obtain for the total energy the five terms (a =e 4')

g =pi+ W'2+ g 3+ g 4+ g 5

f dx~ (x) E e~o + 4'n(x)+ Jf „~ f dk n Tm (k) m Tn ( —k)

+ J)„ f dk„T„(k) T ( —k)+ ~j„ , fdk " „„T (k) T„(—k)
n m

In the last term of (18), since we have a double sum
and since „T (k) T„(—k) is invariant under the

permutation n+ m, we have used the identity.

I

we justify a posteriori

8'z"' —— f dxdx'dk g P„(x')P (x')e'"'"
2~

„~ 2k E„—E~ —k E~ E„—k—
XP~(x)P„(x)e

En —E~ —k
—1 (21)

f dxdx'dk P„(x')5(x—x')P„(x)e'"'"
Our energy 8' in (20) expresses the energies and energy
shifts of all levels, that is, the total calorimetric energy
shift of the system. The first term is a single sum; all oth-
er terms involve a double sum and contain the shift of a
level n due to a level m, as well as a shift of the level m
due to n In order to i.solate a particular level shift we
write the total energy in the form

f dkdxg„*(x)P„(x)= f dxg„*(x)AQ„(x),
2m'

f dk=A .

(23)

g=gg& ~. (22)
Thus (23) is a constant infinite term, the same for all lev-
els n (which will of course drop out in the measured ener-

gy differences between two levels). The third term is the
sum of static Coulomb self-energies of levels. Indeed

Now the first term in (20) is already in this form. In the
second term we assume the completeness relations which
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8'("'= f dxdx'dk g „P„'(x)P„(x)e2' (m~n)

XP* (x')P (x')e'"'"

f dxdx'QP„*(x)P„(x), P'(x')P (x')
m

p„(x)p (x')
dx dx

2~
[
x—x')

I

= f dxP„'(x) g fdx', P„(x) .

Kroll, who extract after regularization the finite Uehling
potentia17 which causes a small level shift to be added to
the Bethe term. Wichmann and Kroll interpret the nega-
tive energy states as the scattering states of the positrons
from the proton. In the present nonrelativistic calculation
we could also introduce positron scattering states in the
Coulomb field. Work is in progress to regularize the in-
tegral (24) in the nonrelativistic case. We denote the regu-
larized finite part of (24) as

8'3"'"s——f dxP„'(x)U(x)P„(x) . (25)

Finally the fourth term represents both the Bethe term
as well as spontaneous emission. Using

The relativistic counterpart of this term is precisely the
vacuum polarization term studied by Wichmann and

=I' i ~5(—E„E —k)—1

n m n m

these two terms are

(26)

+i J—j —
( „)(E„E~)f d—k5(E„E —k)„T~(—k) T„(—k) .

~ m
(27)

2 a 1g (n)DA ~ 1
(E E ) dk

Pnm 'Pmg

3mm " E„—E

2. {x+
3 2 m (~g)( n Em)pnm'Pmn

m
(28)

Using the relations

In the first term we sum over all discrete and continuous
states, in the second over m such that Em &E„. Hence
the ground state is stable. Since k is integrated over non-
negative values the imaginary part im.5(E„E —k) in—
(26) will contribute only if E„E~&0. If we—choose a
negative imaginary part in (26), the second term in (27)
describes the decay of a higher state; if we choose the pos-
itive imaginary part, it will be interpreted as the swelling
of a lower state in the total action.

Note that in the dipole approximation (DA) Eq. (27) be-
comes the familiar formula

Pntn i(En Em )mrs~ (29)

between the matrix elements of r and p, the last term be-
comes

Img'q" —— g (E„E)3
I
p„—

m (&n)
(30)

Since an excited state decays like exp[ —i(E —iI /2)t),
we get for the decay rate I =2Im8'4, which is the same
as the Einstein A coefficient (or inverse mean lifetime
I =2 =- 1 lr).

It is known, however, that the dipole formula (28) leads
to additional infinites. It is better to use the exact equa-
tion (27). For scattering states Eq. (27) also gives the
probability of bremsstrahlung in Coulomb or external
fields.

Finally, the fifth and the last term in the action (23)
gives, assuming again the completeness relation which we
will justify a posteriori,

8'5"'= — f dk dx dx'e'"'*P„'(x') (5 (x')P* (x) ——P„(x)e
Km l

f dkdxdxe '"'" ")P„*(x')—.5(x—x').—.P„(x)
377m l l

2 f dk dxP„*(x)AP„(x)
37Tm

2
A f dx P„*(x)hP„(x) .

3&m
(31)
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This is a contribution to the kinetic energy, and hence to
the mass renormalization.

Collecting terms, the total energy 8' now has the form

8'= „'f„dxP„(x) E„+ A+
U 2'lT' 2'

&
2aA Ze
3&~

—f dx'L(x, x')P„(x')

where L is the operator defined by (27), or

O'= Jf „dxP„'(x) E„+ + V LP„(x—)
2&l

(32)

with the definitions

E„=E„+ A,2' 2m

2o.A

3&P72

Ze +

then

Ecoul+
2m

2
yCoul

r

Since the total action is zero when the equations of
motion are substituted (extremum of W), the vanishing of
the square brackets in (32) gives

(aE„)=(n
i
(L U)

i
n) . — (34)

(33)f dx'L(x, x')P„(x')=L(x)$„(x) .

The Lamb-shift operator L is nonlocal, as it should be
from the character of the self-action.

We have not yet said anything about the functions P„.
The only property we used was their completeness, so that
Eq, (32) is still exact, but L contains all the P~'s in a non-
linear way as given in (27). Anticipating that the expecta-
tion value of L is small after renormalization we see from
(32) that we can now choose P„ to be the solutions of the
renormalized Coulomb problem (hence they are complete).
If we write

I

quantization. Our program is to see how far we can go in
understanding radiative processes from the point of view
of self-energy rather than from the point of view of an as-
sumed quantized radiation field. This is a legitimate
point of view and the one used in classical electrodynam-
1cs.

The salient features of our theory, besides its conceptual
simplicity —in our opinion —are the following.

(i) A joint treatment of the energy shift and the spon-
taneous emission and the derivation of the corresponding
effective potentials [and clearly the inclusion of the
anomalous magnetic moment if the T's in Eq. (27) are
chosen to be the relativistic form factors].

(2) The new renormalization procedure in Eqs. (32) and
(33) showing why and how we choose P„as the renormal-
ized Coulomb solutions, and the introduction of the non-
local L, operator.

(3) Explanation of how the decaying of an excited state
and the growing of lower states are contained in the total
action, and a clear interpretation of the passage from the
quadratic propagator 1/[(E„E~) ——k ] to the linear
form 1/( E„E —k). —

(4) A unified description of relativistic and nonrelativis-
tic regimes; only the form of the form factors T changes,
otherwise all the formulas hold for any form of the
current in the theory. In the standard treatment a low-
energy calculation with a cutoff is matched with an en-
tirely different high-energy calculation. Further, each in-
dividual contribution to the energy shift is finite, the only
remaining infinity comes from the infinite number of
Coulomb states.
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APPENDIX A

We show here the appropriate substitutions and limits
used to go from the Dirac to the Klein-Gordon action and
then further to the Schrodinger action. These are valid
also for field equations and currents.

Dirac to Klein-Gordon:

4D ~m 4'xG 4D ™NxG

Consequently we can go back and perform the integrals
(20), including renormalization integrals for A and U,
with physical Coulomb wave functions. The changes in
the wave function P„are, as usual, corrections'of higher
order than the energy shift. This completes the calcula-
tions of the Lamb shift and spontaneous emission.

VII. CONCLUDING REMARKS

We have presented an alternate point of view to the
treatment of radiative processes in quantum electro-
dynamics. New formulations can be useful even for phe-
nomena which have been studied as long as the Lamb
shift. In fact, the question has been raised many times
whether one can calculate the Lamb shift without field

a&—2' m

P ~ d&P:P~(d&P) (d"P*—)P, D&=—. d"+ieA&,

Bp '

1TD iy& +ieA —m qDP
L

~pxG( —D "Dq —m )/KG .

Klein-Gordon to Schrodinger:

&2m e 4s

y„*os&2m e™Vs,
C~ oo

(Al)

(A2)

(A3)



3194 A. O. BARUT AND J. F. VAN HUELE 32

2NKo( —D "D„—~ )&Ko
T

i e

C C
(V —ie A) Ps . (A4)2'

automatically fulfilled, exactly the opposite is true in the
second case.

2. The Coulomb gauge

APPENDIX B

8"8+„(x)—8"B„A„(x)=ej„(x)
which we can solve formally,

A&(x)=e f dx'D&„(x —x')j "(x')+2„'"(x)

(81)

(82)

provided that

f dx [~ d Dzz(x x) d d—„D, (—x x')]j~(x—')=j (x)

The self-potential of the electron satisfies Maxwell's
equations:

f dx'a"a„DO~(x —x )J (x ) =j (x),

f dx [(a'a, +a'a, )D"~(x —x )

d"d, D "—(x —x')]j„(x')=j"( ) .

(811)

Again, it is easy to check that the following choice satis-
fies (810) and (811):

The condition on the potential 8"Ak(x) =0 implies

f dx 'd Dk„(x —x ')j"(x') =0 (810)

and transforms (81) into

or

d"p D„(x—x') —&"B„D,(x —x') =g„5 (x —x') . (84)

—1 e
—ik (x —x')

Dki(x —x')= f dk
(2n. ) k

Dok(x x') =Dk—o(x —x') =0,

kkk(
~kl 2

(812)
This equation can be solved once a particular gauge is
chosen. We give the expression for D& (x —x') in three
different gauges.

1. The Lorentz gauge

The condition on the potential 8 A&(x) =0 implies

f dx'di'D„(x —x')j (x')=0 (85)

and transforms (81) into

1
—ik (x —x')

D~(x —x') = — f dk
(2m) k

if the continuity equation is used.

3. The Dzialochinsky gauge

If one requires that A =0 one gets

f dx'Do&(x x')j "(x')=—0, (813)

f dx'a&a~„„(x —x )J (x )=J„(x) .

The solution in this case is

(86)
and (81) becomes

f dx'd"d, Dk„(x x')j "(x')=j—o(x),
(814)

D~„(x —x') =— 1
—ik(x —x')

(2~)'
dk

k
k„k

gpv
f dx'[(a'a, +a'a, )D„„(x—x )j (x )

d'dkDi„(x —x—')J "(x')]=Jk(x) .

The choice

which satisfies (85) and (86) if one makes use of the con-
servation of the current

k„j"(x)=0 . (88)

This choice (87) for D&„(x —x') is sometimes called the
Landau gauge. Another possible choice is

~ = —1
—ik(x —x')

D„,(x —x')=, f dk'
(2m) k

Dko(x x') =Dok(x —x—') =0,
Dao(x —x ') =0

kkki
~kl

k0

(815)

Dq (x —x') =— 1
—ik(x —x')

dk
(2m) k gPV (89)

One can again check that this choice also satisfies (85)
and (86). Note that whereas in the first case the conserva-
tion of the current is needed to satisfy (86) while (85) is

satisfies (813) and (814) using the equation of continuity.
Furthermore, one can show explicitly in the self-energy
expressions the equivalence of the different gauges, e.g. ,
f dxdx'j "(x)D&„(x—x')j (x') in the Coulomb gauge
and in the Dzialochinsky gauge leads to the same expres-
sion:

r

k2 —ik(x —z )f dkdx dx' jk(x) 5 — ji(x')+j (x) j (x')
g2 g2 k

—ik(x —x')
= f dkdxdx' jk(x) 5"'—

~ ji(x')
0

(816)
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APPENDIX C APPENDIX D

The self-energy corrections are included in the action
term W' ' in Eq. (14) containing the factor
5(E„E~—+Er E,—). A priori there are many ways of
satisfying this 5 function other than just by Eqs. (15).
The energies E„,E,E„E, may be discrete or continuous,
all four of them, in principle, different, etc. But we wish
to attribute these corrections to individual states, hence
they must be written in the form P„'( )P„. This re-
stricts the solutions to those given by Eq. (15) where now
the E's can be discrete or continuous. Any other solution
would be of measure zero (for example, three discrete, one
continuous energies) or would actually not occur.

The angular integrations in momentum space have been
performed according to the formula

k'k'
J dQk 5kl g j(lt2)gl(lt2)

k, l = r

=4mA B——4m.

3
8m.

3

which can be proved by explicit integrations.

'Permanent address: Physics Department, University of
Colorado, Boulder, CO 80309.

Also at the Interuniversitair Instituut voor Kernwetenschap-
pen.

~A. O. Barut, in Foundations of Radiation Theory and Quantum
Electrodynamics (Plenum, New York, 1980), p. 165.

A. O. Barut and J. Kraus, Found. Phys. 13, 189 (1983).
3H. Bethe and E. Salpeter, Quantum Mechanics of One and-

Tmo-E/ectron Systems (Plenum, New York, 1977). Compare
formula (19.7). The authors make the dipole approximation.

For a discussion of that approximation see Sec. (19.y), and C.
K. Au and G. Feinberg, Phys. Rev. D 9, 1794 (1974).

4A. O. Barut, in Quantum Electrodynamics and Quantum Optics
(Plenum, New York, 1984), p. 15.

5See, for example, A. O. Barut, Electrodynamics and Classical
Theory ofFields and Particles (Dover, New York, 1980).

E. Wichmann and N. Kroll, Phys. Rev. 101, 843 (1956).
7E. A. Uehling, Phys. Rev. 48, 55 (1935).
H. Bethe and E. Salpeter, Ref. 3, Sec. 67.
H. Bethe and E. Salpeter, Ref. 3, Sec. 59.


