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A limitation currently facing active structural acoustic control (ASAC) researchers is that an ideal

minimization quantity for use in the control algorithms has not been developed. A novel parameter

termed the “weighted sum of spatial gradients” (WSSG) was recently developed for use in ASAC

and shown to effectively attenuate acoustic radiation from a vibrating flat simply supported plate in

computer simulations. This paper extends this research from computer simulations and provides ex-

perimental test results. The results presented show that WSSG is a viable control quantity and pro-

vides better results than the volume velocity approach. The paper also investigates several of the

challenges presented by the use of WSSG. These include determining a method to measure WSSG

experimentally, an analysis of the influence of noise on WSSG control results and complications

presented when degenerate modes exist. Results are shown and discussed for several experimental

configurations. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4898046]

PACS number(s): 43.50.Ki [LC] Pages: 2598–2608

I. INTRODUCTION

One of the main limitations facing active structural

acoustic control (ASAC) researchers is that a suitable param-

eter has not yet been discovered which can be easily imple-

mented as the minimization quantity in the control

algorithms. Several parameters have been attempted but

most have been shown to be somewhat impractical or cum-

bersome to use. These include simply minimizing the vibra-

tion at a single point,1,2 minimizing volume velocity,3–5 and

minimizing acoustic properties such as far field sound pres-

sure and total radiated sound power.6,7

Recently, a new parameter was developed by Fisher et al.8

which showed significant potential as a minimization quantity

which could attenuate sound levels with relatively easy imple-

mentation. This parameter consists of the weighted sum of the

squared displacement field, w, and the squared spatial deriva-

tives, @w=@x, @w=@y, and @2w=@x@y. Fisher et al. initially

termed the quantity “VComp” (for composite velocity) since the

preliminary equations were based off the spatial derivatives of

the velocity field. This name has been changed to the weighted

sum of spatial gradients (WSSG) to more accurately describe

the quantity. Fisher et al. used computer simulations to show

sound attenuation could be achieved by minimizing WSSG at

any point on the plate by applying a single point force to the

plate. The simulated results provided equal or better attenuation

levels than minimizing either volume velocity or structural in-

tensity for a simply supported plate. It was also shown that

WSSG had a significant advantage because it required a closely

spaced, four accelerometer array treated like a single sensor

placed on the surface of the plate. This is in contrast to the

arrays of sensors spread either across the face of the plate or in

the radiated sound field required by the other techniques.

Furthermore, no information about the type or location of the

disturbance force is needed. The work by Fisher et al. showed

through computer simulations that the terms in the WSSG min-

imization quantity have local characteristics that have some

relation to the global acoustic radiation modes and that mini-

mizing WSSG generally has a similar effect as reducing the

acoustic radiation modes.

This paper builds on the research of Fisher et al. and

experimentally applies the WSSG technique to flat rectangu-

lar simply supported plates. In this paper, a brief overview of

the WSSG theory will be provided, followed by additional

computer simulations and analyses which were made neces-

sary by advances in the experimental research. The experi-

mental WSSG control results are then presented and

discussed. It is shown that WSSG control provides a viable

option for use in attenuating noise from vibrating flat rectan-

gular simply supported plates.

II. OVERVIEW OF THE WSSG THEORY

This section provides a brief overview of the WSSG

control approach. A more complete derivation is presented

by Fisher et al.8

The idea for WSSG came about when researchers began

looking for a structural quantity that is uniform across the

entire measurement surface. The hypothesis was that a spa-

tially uniform quantity would provide a significant advant-

age over other ASAC parameters because it would largely

eliminate the sensitivity of the performance on the error
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sensor location and would not require a priori knowledge of

the structure. The need for multiple error sensors, selecting

error sensor locations, and knowledge about the vibration of

the structure are three major drawbacks to current ASAC

techniques which it was hypothesized the WSSG approach

would overcome.

It was noted by Fisher et al.8 that the four quantities w,

and the spatial derivatives @w=@x, @w=@y, and @2w=@x@y
each target different locations on a vibrating simply sup-

ported plate. They discovered that a near spatially uniform

value can be calculated if each term is multiplied by a scal-

ing factor and then all four terms summed together. WSSG

was thus defined as the summation of these four terms,

each multiplied by a weighting value (a; b; c; dÞ as shown

in Eq. (1) by

WSSG ¼ a wð Þ2 þ b
@w

@x

� �2

þ c
@w

@y

� �2

þ d
@2w

@x@y

 !2

:

(1)

While w represents the displacement in these terms, it

should be noted that for time harmonic excitation sources,

velocity or acceleration could equally be used. The only dif-

ference between using displacement and using either veloc-

ity or acceleration is that velocity and acceleration are scaled

by the factors ix and ðixÞ2, respectively.

The scaling factors that make the WSSG field nearly uni-

form for a simply supported plate are related to the wave num-

bers and can be calculated for each resonance frequency as

a¼ 1; b¼ Lx

mp

� �2

; c¼ Ly

np

� �2

; and d¼ LxLy

mnp2

� �2

;

(2)

where Lx and Ly are the lengths of the plate in the x and y
directions, and m and n are the structural mode numbers cor-

responding to the frequency.

III. ANALYTICAL ANALYSIS AND SIMULATIONS

In order to create experimental control plots using

WSSG as the minimization quantity it was first necessary to

advance the analytical research which Fisher et al.8 initiated.

This additional research is broken into three sections; a fur-

ther analysis of the weights, the determination of a method

to measure the spatial derivatives, and an analysis of the

effects of degenerate modes on WSSG.

A. A further analysis of the weights

As noted in Eqs. (2), the weights derived for use in

WSSG are functions of the structural modes. These weight-

ing functions work well if a plate is vibrating at a single res-

onance frequency because the calculated weights will give

the desired uniform WSSG field across the face of the entire

plate. However, if there are multiple resonance frequencies

being excited, or if the frequency being excited is not near a

resonance frequency, then Eqs. (2) have less applicability.

Fisher et al.8 recognized this, but to implement control over

a range of resonances they chose to simply average the

weights over the first 15 modes and use those values in the

control algorithm. Using this method, they were able to use

the same weights for a range of frequencies and they

achieved reasonable success in controlling sound radiating

from each of the resonance frequencies. However, further

research was required to determine if this actually was the

best method for calculating the weights.

In this work, several new methods for calculating

weights were devised and tested using MATLAB based simula-

tions. Each simulation modeled a simply supported plate

being acted on by two point sources, one to excite the plate

and the other to control it. Control was achieved by optimiz-

ing the phase and magnitude of the second force to drive

WSSG to a minimum at a randomly selected point on the

plate. The equations describing the vibration of the plate are

given by

w x; yð Þ ¼
XF

q¼1

fq

qsh

X1
m

X1
n

Wmn x; yð ÞWmn xq; yqð Þ x2
mn � x2 � igx2

mn

� �
x2

mn � x2
� �2 þ g2x4

mn

; (3)

Wmn x; yð Þ ¼
2ffiffiffiffiffiffiffiffiffi
LxLy

p sin
mpx

Lx

� �
sin

npy

Ly

� �
; (4)

xmn ¼
ffiffiffiffiffiffiffi
D

qsh

s
m2p2

L2
x

þ n2p2

L2
y

 !
; (5)

D ¼ Eh3

12 1� �2ð Þ ; (6)

where fq is the amplitude of the qth driving force (primary or

control), qs is the density of the plate, E is Young’s modulus,

� is Poisson’s ratio, h is the thickness of the plate, and Lx

and Ly are the x and y dimensions of the plate, respectively.

WSSG was calculated using the displacement and the deriv-

atives @w=@x, @w=@y, and @2w=@x@y. To determine effec-

tiveness, the sound power emitted from the plate was

calculated with the controller toggled on and off using the

method of elementary radiators.9

It was determined that the two methods for calculating

the weights which provided the most overall attenuation

were using an average (mean) value calculated over the

modes of interest, and adapting the weights so that the con-

troller used the weights of the nearest resonance frequency.

When these simulations were plotted on the same graph (see

Fig. 1), it became apparent that there was little difference
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between the two methods. This implies that the weights used

in WSSG are fairly robust and knowing the exact values of

the weights is not needed. It was determined that getting the

correct order of magnitude of the weights is important but

getting the exact number is less so.

This information indicates that small gains could possi-

bly be made using different methods to obtain the weights

but the gains would be minimal. Therefore, further research

on the method of calculating the exact optimum values of

the WSSG weights was not pursued. For the remainder of

this work, an average of the weights over the range of inter-

est was used in all tests. This means a single value was cal-

culated for the weights (a; b; c; d) and hard coded into the

controller for each configuration. Doing this means that the

uniform nature of WSSG across the plate is diminished

slightly because the weights are not optimized for each fre-

quency, but its ability to minimize sound radiation from the

plate does not suffer significantly.

B. Measuring the spatial derivatives

In order to use WSSG on an experimental plate, a method

needed to be devised to measure the four terms used in the

summation; w, @w=@x, @w=@y, and @2w=@x@y. As was noted

in Sec. II, w represents the transverse displacement, but for

time harmonic excitation sources the transverse velocity or

acceleration could also be used. Many methods, including

strain gauges,10 lasers, and shaped polyvinylidene fluoride

films,11 were explored to measure these derivatives. The best

solution based on both accuracy and ease of implementation

was determined to be an array of four closely spaced acceler-

ometers. The signals from these accelerometers were then com-

bined to form numerical approximations of the derivative terms

using the centered difference approximation of the first deriva-

tive. A schematic of the experimental setup is shown in Fig. 2,

with the corresponding WSSG terms given in Eqs. (7)–(10)

w � s1 þ s2 þ s3 þ s4

4
; (7)

@w

@x
� s2 � s1 þ s4 � s3

2Dx
; (8)

@w

@y
� s1 � s3 þ s2 � s4

2Dy
; (9)

@2w

@x@y
� s2 � s1 þ s3 � s4

DxDy
: (10)

Each sensor si represents the instantaneous acceleration

coming from each accelerometer, and Dx and Dy represent

the x and y distance between the accelerometers, respectively.

Chapra and Canale12 note that these equations are approxima-

tions derived from the Taylor series expansion and contain

truncation error. The central difference method has a trunca-

tion error on the order of ðDx2Þ which means the larger the

distance between the sensors, the more truncation error will

exist. This indicates the accelerometers should be placed close

to each other to minimize the effects from truncation error.

However, truncation error is not the only source of error in

the setup; the noise levels within the signals must also be taken

into consideration. Generally, random noise can cause a signifi-

cant problem if the noise levels are within a few orders of mag-

nitude of the measurements. However, because several of the

WSSG terms are formed by subtracting half of the readings

from each other, the random noise could actually have a signifi-

cant effect if it is within a few orders of magnitude of the differ-
ence between two readings. Two closely spaced accelerometers

will read similar magnitudes and so ideally should be placed

further apart in order to increase the probability that the two

accelerometers will read significantly different values. This will

minimize the effects of noise in the measurements.

The optimal distance between the accelerometers is thus

influenced by two opposing influences. Finite differencing

has less truncation error when the measurement points are

closer, but measurement noise is less of a factor when the

measurement points are farther apart. These opposing influ-

ences necessitated the creation of an optimization routine in

order to determine the best spacing of the accelerometers

based on the expected noise levels.

A simulation was designed to calculate WSSG on a flat

plate using the finite difference method rather than taking an-

alytical derivatives. This simulation calculated the transverse

accelerations at a grid of points on a plate and then used Eqs.

(7)–(10) to estimate the displacement and three spatial deriv-

atives at the center of the four points. WSSG was then calcu-

lated from these finite difference derivative terms and the

FIG. 1. (Color online) Simulated radiated power for two methods of calcu-

lating the WSSG weights.

FIG. 2. Schematic of accelerometer spacing used to measure WSSG.
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finite difference WSSG (WSSGFD) was compared to the ana-

lytical WSSG (WSSGA) calculated from the previous simu-

lations. In order to simulate actual accelerometer readings,

random noise was added to the transverse accelerations at

each point in the WSSGFD. The magnitude of this random

noise was directly correlated to the measured random noise

levels in the actual accelerometers used to run the tests. This

was done by measuring the signal-to-noise ratio of the actual

data and then adding random noise to the simulation using

the MATLAB randn function until the same signal-to-noise ra-

tio was attained in the simulation.

An optimization routine was then used to determine the

optimal spacing of the accelerometers. The objective func-

tion used in the optimization routine was the squared average

difference between WSSGFD and WSSGA across the face of

the entire plate, shown in Eq. (11),

Squared Average Diff ¼ meanðWSSGFD �WSSGAÞ2:
(11)

This routine was repeated for each frequency of interest to

see how the optimum changes with frequency. It is important

to note that the optimal spacing for the accelerometers is

highly dependent upon the individual accelerometers and

system used. Some systems may have more random noise

than others, and so, a new optimization routine should be run

each time a system is changed.

It was discovered that the optimal spacing for the accel-

erometers is dependent upon the frequency of the excitation

force and the resonance frequencies of the plate. When the

plate was excited at a low frequency, away from the reso-

nance frequencies, the plate did not vibrate with very large

amplitudes. This meant that two closely spaced accelerome-

ters were reading nearly the same value, and so any random

noise in the system had a great effect on the calculation of

WSSG. The accelerometers needed to be spread farther apart

in order for them to read significantly different values.

Conversely, when a resonance frequency was approached,

the plate vibrated with larger amplitudes and so two closely

spaced accelerometers did read significantly different values.

This caused WSSGFD to be closer in value to WSSGA and

the accelerometers could be placed closer together before

random noise became a significant factor.

This means there is not a single spacing which will give

the optimal WSSG performance for all frequencies. If only

one frequency is to be attenuated, then an optimal spacing

can be calculated. If a range of frequencies is to be attenu-

ated, then an average must be made over the range of inter-

est. This is what was done for the experimental tests shown

in this paper. It was determined that the optimal spacing for

the accelerometers based on the expected noise levels in the

authors’ experimental setup was approximately 0.0243 m.

This value is close to the standard English inch (0.0254 m)

and so a value of 0.0254 m was chosen as the spacing to be

used in all experimental tests.

In addition to noise and finite difference errors in the calcu-

lation of WSSG, the authors also explored the possibility that

phase and amplitude differences between individual accelerome-

ters could cause errors in the experimental measurements. The

phase and amplitude differences between the accelerometers

were tested by placing all four accelerometers on a flat, stiff

shaker and recording a signal from all accelerometers using a

Bruel and Kjaer Pulse signal analyzer. It was determined that the

differences between the amplitudes of the accelerometers were

approximately one order of magnitude below the amplitude of

the estimated random noise in the experimental setup. This

means the random measurement noise has a much greater impact

on the accuracy of WSSG than amplitude differences in the

accelerometers. The difference in the phases of the accelerome-

ters was also determined to be negligible. It was thus determined

that four accelerometers placed in the configuration shown in

Fig. 2 was a viable option for measuring WSSG experimentally.

C. Degenerate modes

During experimental tests using a scanning laser

Doppler vibrometer (SLDV), it was determined that there

are cases when two structural mode shapes occur at nearly

the same frequency. These are called degenerate modes.

Common sources of degenerate modes are plates whose x
and y dimensions are integer multiples of each other.

Because the frequencies of these two modes are so close to

each other, the two individual mode shapes will superimpose

on top of each other and cause distortions in the resulting

structural response. This distorted mode shape is often quite

different in appearance from normal modes. It was discov-

ered during experimental tests that the WSSG-based control

method often did not achieve significant sound attenuation

of degenerate modes and it became necessary to perform

more simulations to understand the phenomenon.

New simulations were created which calculated the

velocities of a simply supported plate whose length was

equal to the width of the plate. Sound power levels were cal-

culated using the method of elementary radiatiors9 when the

plate was being excited with a single point force and then

compared to sound power levels when WSSG was being

minimized at a single point by a control force. These plots

demonstrated that the performance of WSSG as a sound

power minimization parameter suffered whenever a degener-

ate mode was present. Often, little or no attenuation was

achieved and even when attenuation was achieved, it was

not as effective as non-degenerate modes. An example of

one of these plots is shown in Fig. 3. In this figure, the

degenerate modes are located at 19, 38, 49, and 64 Hz.

It was determined that degenerate modes simulate an

additional degree of freedom of motion to the plate. Thus,

there were two degrees of motion, but only one degree of

control. It was theorized that adding a second degree of con-

trol to the plate would increase attenuation results by allow-

ing the control algorithm to account for both degrees of

motion. This hypothesis was tested by adding a second con-

trol force to the plate and coding the simulations to minimize

WSSG by controlling both control forces simultaneously.

Figure 4 shows the sound power radiated when two shakers

are used to control the simply supported plate.

This figure shows that adding a second control force does

allow WSSG to effectively control the plate when degenerate

modes are present. The degenerate modes at 19 and 64 Hz
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were attenuated significantly. The (2, 3) and (3, 2) modes

located at 49 Hz were not attenuated significantly, but it did

perform better than it did when only one control force was

present. When one control force was present, WSSG ampli-

fied the sound power at that location, but when two were pres-

ent, it brought the peak down to the level of the surrounding

frequencies. Results similar to this were observed for several

different control and plate configurations. This led the

researchers to believe that controlling a degenerate mode is

possible if an additional control force is added.

IV. EXPERIMENTAL RESULTS

This section details the experimental work using WSSG

as the minimization quantity in the acoustic control of a

vibrating simply supported plate. The setup of the experiment

is shown, followed by plots of WSSG as measured across the

surface of the plate for several modes. This was done to vali-

date the uniformity of WSSG and to ensure it matches the

theory developed by Fisher et al.8 Control plots are then

shown for both one and two control force situations and these

are compared to the computer simulations with the same con-

figurations. The results are then presented and discussed.

A. Setup

A simply supported plate was assembled using 6061-T6

rolled aluminum; a list of the properties is given in Table I.

The simply supported boundary conditions were created by

suspending the plate in a stiff frame with set screws, spaced

1.6 cm apart, whose points touch the four sides of the plate

as shown in Fig. 5. Spatially dense velocity measurements

across the entire plate were made with an SLDV to ensure

the simply supported boundary conditions were met.

The plate was excited with a Labworks ET-126 shaker

attached to a signal generator and controlled with a Bruel

and Kjaer type 4809 Vibration Exciter. These shakers were

suspended from a stiff frame and attached to the plate by

gluing the individual stingers to the back side of the plate.

WSSG was measured at a point using four accelerometers

placed 0.0254 m apart in the configuration shown in Fig. 2.

The accelerometer signals were passed through a filter and

into a digital signal processor (DSP) controller which calcu-

lated WSSG using Eqs. (7)–(10). Control was achieved using

a modified filtered-X LMS algorithm in the DSP controller

which optimized the phase and amplitude of the control

shaker to minimize WSSG. The specifics of the changes

made to the Filtered-X LMS algorithm are given by

Fisher.13 For this work, the reference signal was readily

available from the signal generator used to excite the pri-

mary shaker, but if this is not available in practice, other

techniques can be used to obtain a suitable reference signal

from an accelerometer on the plate or from a microphone in

close proximity.14 The SLDV was used to measure the ve-

locity at an array of points on the plate and then sound power

was calculated using the method of elementary radiators.9 A

schematic of the experimental setup is shown in Fig. 6.

The simply supported plate was then placed in a window

between two large acoustic reverberation chambers. This

FIG. 4. (Color online) Simulated sound power radiated with two control

forces for a plate with degenerate modes.

TABLE I. Properties of the simply supported plate.

Property Value

Length (x direction) (LxÞ 0.4731 m

Length (y direction) (LyÞ 0.7525 m

Thickness ðhÞ 0.0032 m

Young’s modulus (EÞ 68.9 GPa

Poisson’s ratio ð�Þ 0.334

Density ðqÞ 2700 kg/m3

Damping ratio ðgÞ 2%

FIG. 5. (Color online) The simply supported boundary conditions.

FIG. 3. (Color online) Simulated sound power radiated with a single control

force for a plate with degenerate modes.
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provided a baffle between the two sides of the plate and iso-

lated the plate from any outside vibrations or noises. The

two reverberation chambers had dimensions of

4.96 m� 5.89 m� 6.98 m and 5.70 m� 2.50 m� 4.30 m.

These chambers had multiple axial, tangential and oblique

room modes whose resonances fell within the frequency

range of the WSSG tests, and so it is possible these could

have caused additional loading on the plate. No attempt to

analyze the room mode effects on the vibrating plate was

made in this paper.

B. Experimental validation of WSSG

Before the plate was set up in the manner shown in Fig.

6, it was necessary to validate the uniformity of WSSG and

ensure that it matched theory. This was done by placing a

single shaker in the lower right corner of the plate and meas-

uring WSSG across the face of the plate for several of the

modes. Only one lightweight shaker was used in order to

cause the least amount of distortion in the structural modes.

The four WSSG terms were calculated by applying Eqs.

(7)–(10) to the SLDV measurements. The individual WSSG

terms are shown in Fig. 7.

These four terms match the analytical plots given in the

paper by Fisher et al.8 When these four modes are combined

using the proper weights, a nearly uniform quantity is

obtained. Figure 8 shows the combined WSSG field for the

first mode. This is a close match to the analytical plots but it

is not perfect. The higher values at the lower part of the plate

are due to the placement of the shaker at the bottom of the

plate. This caused the first structural mode to skew slightly

downward and higher derivatives were measured at the

lower portion of the plate, as evidenced by the @w=@yð Þ2
plot in Fig. 7.

Figure 9 shows plots of the combined WSSG fields for

the next four modes when the ideal mode-specific weights

are used. These plots show that experimentally measured

WSSG may not be perfectly uniform for higher modes. The

non-uniformities on each of these plots can be traced to the

non-uniform amplitudes of the individual anti-nodes in each

mode shape. For example, on the fourth mode [the (2, 2)

mode], the shaker is located in the lower right corner of the

plate, much closer to the lower right anti-node than the lower

left. The SLDV scans showed that this caused the right

anti-node to have a higher amplitude than the left anti-node.

Perfect uniformity was thus not obtained. However, the am-

plitude of the left anti-node is still approximately 90% of the

amplitude of the right anti-node, and so, minimizing WSSG

in either quadrant should cause similar effects to the sound

field.

Modes three and five both had larger variations in the

amplitudes of each anti-node and so were not very uniform.

This is because the third mode is actually a degenerate mode

with the (2, 1) mode and the (1, 3) modes superimposing on

each other. Mode five is close to being degenerate, and its

FIG. 6. (Color online) Schematic of the experimental setup.

FIG. 7. (Color online) Plots of the four

WSSG terms the first mode.
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(1, 4) mode is greatly influenced by the nearby (2, 3) mode.

Similar results were noticed for higher modes. Whenever a

resonance frequency was isolated (far away from any other

resonance frequency) a nearly uniform WSSG field was cal-

culated, but when natural frequencies were close to each

other, then the WSSG field was less uniform.

Some of these non-uniform effects had been predicted

by the computer simulations when natural frequencies were

closely spaced, but the experimental results showed even

more pronounced amplitude differences.

C. Experimentally measured sound power results

The plate was set up in its first configuration and the

computer model updated so that the sensor and shaker posi-

tions would match the experimental configuration. This

allowed for a comparison between analytical models and ex-

perimental data. Several configurations were tested, each

with different sensor and shaker positions. However, only

four tests, representing two different configurations, will be

shown in this paper. The shaker and sensor positions for

each configuration are shown in Fig. 10, with the locations

given in Table II.

It was noted that the two shakers used in the experimen-

tal results were relatively heavy (well over 5 kg) and thus

provided a source of damping, stiffness, and mass loading to

the plate. These heavy shakers were necessary in order to

create clean signals at low frequencies. The mass loading

and additional stiffness from the shakers were not modeled

in the computer simulations but caused the resonance fre-

quencies of the experimental plate to shift, often signifi-

cantly from the values computed by the model. Therefore,

the simulated and experimental results were not plotted on

the same graph. However, a comparison can still be made

between the results by comparing the frequencies with the

same mode shapes. The shakers also changed the damping

coefficient of the plate. With the shakers attached to the plate

an experimental damping coefficient was measured to be 2%

(g ¼ 0:02) using the method of logarithmic decrement. This

is higher than the damping coefficient measured without the

shakers attached.

Figures 11 and 12 show the numerical and experimental

plots, respectively, for configuration one with a single con-

trol force. The analytical models were made with a fre-

quency increment of 1 Hz, while the experimental tests were

FIG. 8. (Color online) Total WSSG field from the first mode, with frequency

specific weights.

FIG. 9. (Color online) Plots of WSSG for modes two through five.

FIG. 10. (Color online) Experimental simply supported plate configurations.

D is the disturbance force location; C1 is first control shaker location; C2 is

the second control shaker location; and S is the WSSG sensor location.

TABLE II. Actuator and sensor locations.

Actuator/Sensor

Configuration

onelocation ðx; yÞ
Configuration

twolocation ðx; yÞ

Disturbance ð0:397; 0:625Þ ð0:406; 0:686Þ
Controller one ð0:124; 0:467Þ ð0:413; 0:076Þ
Sensor ð0:146; 0:133Þ ð0:311; 0:311Þ
Controller two

(if applicable)

ð0:321; 0:1334Þ ð0:076; 0:686Þ
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made with a frequency increment of 5 Hz. Additional experi-

mental data points were also measured at each of the reso-

nance frequencies in order to accurately measure the peaks.

These plots demonstrate several important features

about the use of WSSG in an experimental setup. First is that

the experimental plots generally show the same trends and

shapes as the computer simulations, but the amplitudes of

the attenuations are generally smaller. Table III contains the

attenuation levels for each mode, as well as the overall sound

power attenuation. This table shows that both plots have sig-

nificant attenuation levels at the (1, 1) mode, (1, 2) mode and

(2, 1) mode, with smaller attenuation levels at the (1, 3) and

(2, 2) modes. The largest discrepancy between the two plots

comes at the (1, 3) and (2, 2) modes, where the computer

simulations predict 7.2 and 6.8 dB of attenuation, respec-

tively, but the experimental tests attain only 0.7 and 2.3 dB

of attenuation, respectively.

Figures 11 and 12 both show an amplification of radi-

ated sound power in between the (1, 2) and (2, 1) modes.

The maximum amplification levels for the simulated and ex-

perimental plots are 7.8 and 9.8 dB, respectively. While this

may appear to be a large level of amplification, these ampli-

fications occur in between modes, where the uncontrolled

power levels are much lower. Thus the amplified levels are

still 15 to 20 dB below the levels radiated by the resonance

frequencies. These amplified levels have little effect on the

overall attenuation levels attained.

The computer simulations predict an overall attenuation

of 6.1 dB, while the experimental plots show an overall

attenuation of only 1.4 dB. The low overall attenuation of

the experimental data is chiefly due to the fact that the exper-

imental results show very minimal sound attenuation for the

(1, 3) mode, which has the highest sound power level.

Significant control is achieved elsewhere, but the mode

which outputs the most sound power is not well controlled.

If the total sound power levels are calculated for just the

first three modes (from 35 to 130 Hz) then 6.2 dB of attenua-

tion is achieved in the experimental results. This represents a

significant reduction in sound power levels over that fre-

quency range.

One of the main reasons for the attenuation amplitude

level differences between the computer models and the ex-

perimental plots may be noise. It was demonstrated in Sec.

III B that an optimal accelerometer spacing can be found to

minimize the effects of noise in the system, but not to elimi-

nate the effects completely. Even with the optimal acceler-

ometer spacing, there was still an 8% to 9% difference

between WSSGFD (with noise) and WSSGA at the resonance

frequencies in the computer simulation. These differences

were amplified when the plate was being forced at an off res-

onance frequency and often there was a 20% difference

between WSSGFD and WSSGA in the simulations. Errors in

the measured WSSG values make it difficult for the control

algorithm to find the optimal values of the amplitude and

phase for the control shaker, which will lessen the amount of

control achieved. This may account for the amplitude differ-

ences between the numerical and experimental sound power

plots.

FIG. 12. (Color online) Experimental sound power results for control of

WSSG in configuration one with one control force.

TABLE III. Attenuation levels for one control shaker.

Mode

Configuration One Configuration Two

Simulation (dB) Experimental (dB) Simulation (dB) Experimental (dB)

1-1 Mode 37.9 26.7 36.7 26.6

1-2 Mode 15.6 9.4 19.7 11.8

2-1 Mode 14.4 19.2 26.9 5.3

1-3 Mode 7.2 0.7 30.5 14.8

2-2 Mode 6.8 2.3 7.8 4.0

1-4 Mode - - 7.5 3.2

2-3 Mode - - 1.5 1.6

Overall attenuation 6.1 1.4 3.3 2.7

FIG. 11. (Color online) Computer simulation of sound power results for

control of WSSG in configuration one with one control force.
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Another possible reason for the differences is that the

experimentally measured WSSG was not as uniform across

the plate as the theory predicted for higher modes. This was

mentioned in Sec. IV B. This means it is possible the accel-

erometers may not have been located in the best position to

measure the vibration of the plate. No attempt was made to

optimize the location of the accelerometers on the plate in

this paper.

Figures 13 and 14 show the numerical and experimental

plots, respectively, for configuration two with one control

force and were expanded to include the first seven modes

instead of only five. These plots showed similar trends as in

configuration one, but with one major difference: the natural

frequencies shifted significantly between the (2, 1) and (2, 2)

modes on the experimental plots. This frequency shift was

shown to be a result of the added mass loading from the

shakers. This was shown by measuring the frequency

response of the plate twice; once with the heavy disturbance

and control shakers attached in configuration two and once

with a single (much lighter) LDS V203 shaker placed in the

corner. The frequency response of the plate with the lighter

LDS shaker closely matched the frequency response of the

simulated plate. The frequency response of the plate with the

heavy disturbance and control shakers attached showed

shifted frequencies. The only difference between the setup

of the two measured experimental frequency responses was

the shakers attached to the plate. This suggests the shakers

were mass loading the plate, which caused the shifted

frequencies.

The shifted frequencies of the experimental results

make it difficult to do a direct comparison between the simu-

lated and experimental data, but important insights can still

be gained. Figures 13 and 14 both show significant attenua-

tion at the first four modes and moderate attenuation at mode

five (the (2, 2) mode). Both also show minimal control at the

(1, 4) and (3, 2) modes with amplification occurring between

their peaks. As was the case in configuration one, the experi-

mental plot showed much lower levels of attenuation, even

though the same general trends were seen. Similarly, both

plots had some frequencies which were amplified. The simu-

lation predicted an overall attenuation of 3.3 dB attenuation,

while the experimental plots showed an actual overall

attenuation of 2.7 dB. Both plots achieve attenuation of the

major source of radiated power [the (1, 3) mode], but both

plots fail to achieve significant control on the sixth and sev-

enth modes [the (1, 4) and (3, 2) modes].

If overall attenuation levels are calculated for just the

first five modes (from 50 to 210 Hz) then 6.5 dB of attenua-

tion is achieved on the experimental plate. This is a signifi-

cant level of attenuation for that frequency range, and

FIG. 13. (Color online) Computer simulation of sound power results for

control of WSSG in configuration two with one control force.

FIG. 14. (Color online) Experimental sound power results for control of

WSSG in configuration two with one control force.

FIG. 15. (Color online) Computer simulation of sound power results for

control of WSSG in configuration one with two control forces.

FIG. 16. (Color online) Experimental sound power results for control of

WSSG in configuration one with two control forces.
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demonstrates that there are situations where WSSG performs

very well.

As was noted earlier, several of the resonance frequen-

cies where WSSG fails to cause significant attenuation are

close to being degenerate modes. Thus, both tests were per-

formed again with an additional control force added to the

plate in order to better control the frequencies near the semi-

degenerate modes. The shaker added was an LDS V203

shaker. The results of these tests are shown in Figs. 15–18.

Figures 15 and 16 show the numerical and experimental

plots, respectively, for configuration one and Figs. 17 and 18

show the numerical and experimental plots, respectively, for

configuration two.

These results once again show that the experimental

results have the same general shapes and trends as the simu-

lated results, but less attenuation. In configuration one

(Figs. 15 and 16), using two control shakers increased the

overall attenuation by 5 dB in the simulated results, and by

1.9 dB in the experimental results. This increase was caused

mainly by the added control achieved at the (1, 3) mode,

which was the largest contributor to total sound power radi-

ated. The list of attenuation levels for each mode is presented

in Table IV. The list further confirms the analysis presented

in Sec. III C, which showed that adding a second control

force significantly helps control degenerate modes.

In configuration two (Figs. 17 and 18), using two control

shakers increased the overall attenuation by 5.2 dB in the

simulated results and by 2.7 dB in the experimental results.

This increase was chiefly due to the additional control

attained at the (1, 4) and (3, 2) modes, which had only mini-

mal control with one control force. Adding a second control

force does actually increase the number of frequencies which

are amplified in configuration two, especially between the

(2, 2) and (1, 4) modes, but these frequencies are still 15 dB

below the highest sound power levels on the plots. Thus,

they do not cause a significant overall amplification.

Similar results were seen in the additional configura-

tions tested, but they were not shown in this paper. In these

configurations adding a second control force amplified some

of the frequencies between modes, but attenuated the peaks

better than a single control force. This shows that adding a

second control force to the WSSG method of controlling a

radiating simply supported plate may make the method more

effective, and should be done where possible. The authors

felt that adding a second control force can be implemented

on most structures without significantly increasing the setup

time or complexity of the process.

Additionally, it was noted that the best control results

were attained when the control shakers were located near the

edges, and the WSSG sensor located near the center of the

plate. Placing the shakers near the edges minimizes the mass

loading and stiffness effects of the shakers, which causes

fewer distortions in the WSSG field.

V. CONCLUSIONS

The results shown in this paper demonstrate that WSSG

can be used to attenuate noise from a vibrating rectangular sim-

ply supported plate. Preliminary investigations also show that

FIG. 17. (Color online) Computer simulation of sound power results for

control of WSSG in configuration two with two control forces.

FIG. 18. (Color online) Experimental sound power results for control of

WSSG in configuration two with two control forces.

TABLE IV. Attenuation levels for two control shakers.

Mode

Configuration One Configuration Two

Simulation (dB) Experimental (dB) Simulation (dB) Experimental (dB)

1-1 Mode 41.9 25.7 48.2 17.1

1-2 Mode 16.8 16.3 30.6 9.4

2-1 Mode 21.9 11.5 26.5 5.9

1-3 Mode 26.5 10.1 30.7 12.2

2-2 Mode 12.8 3.1 12.0 2.6

1-4 Mode - - 11.4 8.2

2-3 Mode - - 7.3 4.5

Overall attenuation 11.1 3.3 8.4 5.3
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the WSSG technique can be applied to structures with other

boundary conditions and significant control can be achieved.

The WSSG terms have been shown to be relatively uniform on

flat plates independent of the boundary conditions. Future work

will consist of investigating other boundary conditions and

other geometries such as ribbed plates and cylinders.

Attenuation in the simply supported plate is achieved by

minimizing WSSG at a single point on the plate through

optimizing the amplitude and phase of a single control force.

This attenuation can be increased by adding a second control

force and keeping just the one WSSG sensor. The addition

of the second control force helps attenuate noise coming

from degenerate modes.

There were a few differences between the WSSG theory

and the experimental data, two of which were the non-

uniformity of WSSG for higher-order modes and smaller lev-

els of attenuation achieved than predicted. The theory of

WSSG predicted that WSSG would be uniform across the

face of the plate for individual modes. This did not completely

hold for higher modes. Higher modes often did not have uni-

form values due to the superposition of degenerate modes.

The overall attenuation measured in the experimental

results was less than the models predicted in every case. This

was likely due to noise in the measurement of WSSG. The noise

levels were such that a 10% to 20% difference was observed

between the predicted WSSG values and the measured values.

This limited the ability of the control algorithm to minimize

WSSG and thus the ability to attenuate the noise emissions.

Despite these differences, significant control was still

achieved. When two shakers were used, there was an overall

attenuation of 3.3 dB for the first configuration and 5.3 dB for

the second configuration. This represents a significant

decrease in overall sound power levels. Thus, WSSG should

be considered as a viable alternative for use as a minimization

quantity in active structural acoustic control of a rectangular

simply supported plate. The ease of implementation and rela-

tively unobtrusive nature of the sensors and actuators makes it

more practical to use than most other minimization quantities.

Although this paper has focused on simply supported

rectangular plates, preliminary results indicate that signifi-

cant control can be obtained for non-simply supported and

non-rectangular plates. It may require more error sensors

and control actuators in some cases, but control is expected

because the minimization parameter (WSSG) is not a func-

tion of boundary conditions or tied to assumptions for rec-

tangular plates. The implementation of the WSSG technique

in these cases would be the same as for simply supported

rectangular plates which consists of identifying practical

locations for the error sensor(s) and control actuator(s). The

verification of this process will be explored in future

research.
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