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We incorporate realistic, tabulated equations of state into fully relativistic simulations of magnetized
neutron stars along with a neutrino leakage scheme which accounts for cooling via neutrino emission. Both
these improvements utilize open-source code (GR1D) and tables from the Web site stellarcollapse.org. Our
implementation makes use of a novel method for the calculation of the optical depth, which simplifies its
use with distributed adaptive mesh refinement. We present various tests with and without magnetization
and preliminary results both from single stars and from the merger of a binary system.
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I. INTRODUCTION

Nonvacuum, compact, binary systems (i.e., two neutron
stars or a black hole paired with a neutron star) provide
one of the most exciting laboratories to test fundamental
aspects of diverse physics. For instance, gravitational wave
observations, such as those expected from the detectors
LIGO, VIRGO, and KAGRA [1–3], can shed light on the
demographics of such binaries, reveal aspects of the
equation of state (EoS) at nuclear densities [4–6], serve
as stringent tests of General Relativity, and explore
alternative gravitational theories [7–9]. Even more infor-
mation will be provided by concurrent observations in both
gravitational and electromagnetic bands, potentially estab-
lishing direct links between these binaries and spectacularly
energetic events such as short gamma ray bursts observed
already in the electromagnetic spectrum (see e.g., [10]).
Additionally, these systems are expected to be prodigious
producers of neutrinos and, provided they are sufficiently
close, triggers for detectors such as IceCUBE and Super-
Kamiokande [11]. The development of the latest generation
of detectors across these channels promises exciting
insights from multimessenger astronomy.
Extracting such insight from observation, however,

requires theoretical predictions of these very complicated
systems. And this complexity generally requires numerical
simulation of a fluid coupled to relativistic gravity. Moving
beyond the most simplified of fluids, those described by a
polytropic EoS, further realism has been steadily achieved
with an ideal gas EoS and, more recently, the adoption of
generalized equations of state (e.g., [12,13]). Studies have
also explored the variation of physical parameters, such as
masses, mass ratios, and spin orientations and magnitudes
(see [14–17]). Consideration of magnetic fields in these
binaries has been pursued with either ideal magnetohydro

dynamics (MHD) [15,18–21] or resistive MHD [22], and
incipient steps have considered neutrino production during
the merger [23–26] or in related single-star systems [27,28]
(see also [29]).
The effects of magnetic field and neutrino production

and cooling play a subleading role in the dynamics of the
binary during its orbiting stages. On the other hand, they
can profoundly affect the outcome of the merger and its
subsequent evolution. In the particular case of a binary
neutron star system, to leading order, the lifetime of the
remnant is determined by the individual stellar masses, the
properties of the EoS, the presence of angular momentum
transport mechanisms and cooling effects. If the total mass
of the binary exceeds ≈2.6−2.8M⊙, prompt collapse to
black hole is expected [23]. Otherwise a hypermassive
neutron star (HMNS) is formed, supported by thermal
pressure, differential rotation, and the stiffness provided by
its EoS. In particular, during the merger kinetic energy is
transformed into thermal energy resulting in a very hot
central region (many tens of MeV) providing significant
thermal pressure. The angular momentum given to the
remnant from the merger provides for strong, differential
rotation centrifugally supporting the concentrated mass.
Thus, the rates of cooling and angular momentum transport
can have a decisive impact on the onset of delayed black
hole formation.
The timescale associated with the transport of angular

momentum due to magnetic field winding is of the order
τwind ≃ R=vA with R the HMNS radius and vA ≃ B=

ffiffiffi
ρ

p
the

Alfvèn velocity. Simulations have found that during the
merger the magnetic field strength B can increase as high as
1015–16 G. The increase arises from the compression and
winding of the magnetic field and the transfer of hydro-
dynamical kinetic energy to electromagnetic energy via
Kevin-Helmholtz instabilities and turbulent amplification
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[18,30–33]. For typical densities, these values lead to
predicted timescales of τwind ≃ 10–100 ms. We note that
the computational demands of both evolving for this time
period and exploring the complete parameter space make
such computations currently impractical. Simulations of the
magneto-rotational instability, another factor resulting in
the transport of angular momentum, are even more chal-
lenging. Its role in nonvacuum, compact object merger is
still largely unexplored. Nevertheless, estimates indicate a
timescale τMRI ≈ 100 ms for magnetic field strengths of
B ≈ 1015 G. Therefore, either effect can operate within
timescales ≳10–100 ms and contribute to the collapse. In
contrast, cooling (via radiation transport) is estimated to act
on the order of seconds, and so while relatively unlikely to
impact strongly the dynamics of the HMNS (except in
sufficiently low mass binaries), the extreme temperatures
achieved by the merger can induce a strong neutrino
luminosity.
Here we describe our incorporation both of generalized

EoSs and of neutrino cooling. The former is achieved by
extending our MHD implementation to handle tabulated
equations of state, and the latter requires adding a suitable
approximation to the relevant microphysics. A complete
treatment of the microphysics would generally require
solving the full transport problem in three (spatial)
dimensions—along with three additional dimensions for
the momentum phase space—which is currently out of
reach for current (and near-future) computational resources.
There are various approaches to approximating transport
such as the truncated moment formalism for radiative
hydrodynamics [34,35] and similar work utilizing a
radiative transfer code applied to the ejecta predicted by
their relativistic code to produce light curves for compari-
son to a recent kilonova prospect [36]. Fortunately how-
ever, the late stages of compact binary mergers occur on
short timescales (with the possible exception of, yet to be
observed, low mass binaries) and the details of radiation
transport are subleading with respect to the bulk dynamics
of the system. It therefore suffices to account for the
changes to energy and lepton number only locally in a
leakage approach [37,38].
Within efforts to simulate core-collapse supernovae,

codes implementing the leakage approach have been
constructed, validated, and distributed publicly [39,40],
and we modify one of these [39] for use within our compact
binary simulations. In this scheme, the neutrino energy and
lepton number emission from microphysical processes is
determined via an interpolation between two limiting
regimes: the diffusion limit and the free streaming limit.
We maintain consistency by accounting for the energy and
lepton number emission in the fluid variables. We study the
effects of neutrino cooling and compare to previous work—
where such work exists—for both single stars and binaries.
The results indicate a robust, convergent code consistent
with past work.

In Sec. II, we describe our implementation of realistic
EoS and of the leakage scheme, and in Sec. III we present
the results of a number of tests. We conclude in Sec. IV.

II. IMPLEMENTATION

Our previous studies on neutron stars used a perfect fluid
with an ideal equation of state with Γ ¼ 2. In this paper we
detail only the recent changes to our code to use finite
temperature equations of state and the leakage scheme.
However, we also briefly present the Einstein and fluid
equations to define our notation.

A. Evolution equations

From a physical point of view, we follow the dynamics
of both gravitational and magnetohydrodynamical fields.
The former is unchanged with respect to our previously
described work [41]. However, the MHD equations (e.g.,
[42,43]) must be modified to account for the effect of
neutrinos in both energy and lepton numbers. Since the
leakage scheme is essentially a local calculation (the
exception being the optical depth) providing lepton and
energy rates of change as measured by a comoving
observer, its extension to the general relativistic case is
straightforward. For the sake of completeness, we describe
next the basic strategy.
The Einstein equations in the presence of both matter and

radiation are

Gab ¼ 8πðTab þRabÞ; (1)

where Tab is the stress energy tensor of a perfect fluid,Rab
is the contribution from the radiation field, and we have
adopted geometrized units where G ¼ c ¼ M⊙ ¼ 1.
Equation (1), coupled with appropriate prescriptions for
the dynamics of Tab and Rab, defines the system of
equations. In what follows we briefly describe how each
is implemented.
We solve the Einstein equations by adopting a 3þ 1

decomposition in terms of a spacelike foliation. The
hypersurfaces that constitute this foliation are labeled by
a time coordinate t with unit normal na and endowed with
spatial coordinates xi. We express the spacetime metric as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; (2)

with α the lapse function and βi the shift vector.
Specifically, we express the Einstein equations in terms
of the BSSN-NOK formalism [44–47]. In this formulation,
the metric on spatial hypersurfaces, γij, is expressed in
terms of a conformal factor χ and a conformally flat metric
~γij

γij ¼
1

χ
~γij; χ ¼ ðdet γijÞ−1=3 (3)
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such that det ~γij ¼ 1. In addition, the extrinsic curvatureKij
is decomposed into its trace K ≡ Ki

i and the conformal,
trace-less extrinsic curvature ~Aij ¼ χðKij − 1

3
γijKÞ. Finally,

one introduces the conformal connection functions
~Γi ¼ ~γjk ~Γi

jk, which are evolved as independent variables.
The evolution equations are

∂t ~γij ¼ βk∂k ~γij þ ~γik∂jβ
k þ ~γkj∂iβ

k

−
2

3
~γij∂kβ

k − 2α ~Aij (4)

∂tχ ¼ βi∂iχ þ
2

3
χðαK − ∂jβ

jÞ (5)

∂t
~Aij ¼ βk∂k

~Aij þ ~Aik∂jβ
k þ ~Akj∂iβ

k −
2

3
~Aij∂kβ

k

þ χ½−DiDjαþ αðRij − 8πSijÞ�TF
þ αðK ~Aij − 2 ~Aik

~Ak
jÞ (6)

∂tK ¼ βk∂kK −DiDiα

þ α

�
~Aij

~Aij þ 1

3
K2 þ 4πðEþ SÞ

�
(7)

∂t
~Γi ¼ βj∂j

~Γi − ~Γj∂jβ
i þ 2

3
~Γi∂jβ

j þ ~γjk∂j∂kβ
i

þ 1

3
~γij∂j∂kβ

k − 2 ~Aij∂jα

þ 2α

�
~Γi

jk
~Ajk −

3

2χ
~Aij∂jχ −

2

3
~γij∂jK − 8π ~γijSj

�
:

(8)

In these equations, the matter terms are defined as

E≡ nanbðTab þRabÞ (9)

Si ≡ −γianbðTab þRabÞ (10)

Sij ≡ γiaγjbðTab þRabÞ: (11)

Notice that for the problem of interest jRabj ≪ jTabj. This
observation, together with the fact that a neutrino leakage
scheme can not possibly treat the radiation stress tensor
fully consistently, we choose to ignore the source-term-
contribution from the radiation field to the Einstein
equations.
The evolution equations are supplemented with gauge

conditions. We use the “1þ log” slicing condition and the
Γ-driver shift with the evolution equations

∂tα ¼ λ1β
i∂iα − 2αK (12)

∂tβ
i ¼ λ2β

j∂jβ
i þ 3

4
fðαÞBi (13)

∂tBi ¼ ∂t
~Γi − ηBi þ λ3β

j∂jBi − λ4β
j∂j

~Γi: (14)

Here fðαÞ is an arbitrary function and λ1, λ2, λ3, λ4, and η
are parameters that can be chosen for different types of
initial data. Our simulations are performed with the choice
fðαÞ ¼ λi ¼ 1 and η ≈ 3.5=M, where M is the total mass
of the system. Finally, during the evolution the algebraic
constraints,

det ~γij ¼ 1; ~Ai
i ¼ 0; (15)

are enforced at every step.

B. Matter

For the matter source we consider a perfect fluid with
stress energy tensor given by

Tab ¼ huaub þ Pgab þ FacFc
b −

1

4
gabFcdFcd: (16)

where h is the total enthalpy h ¼ ρð1þ ϵÞ þ P, and
fρ; ϵ; ua; Pg are the rest mass energy density, specific
internal energy, four-velocity and pressure, respectively,
and Fab the Faraday tensor (absorbing a factor 1=

ffiffiffiffiffiffi
4π

p
in

its definition). Provided an equation of state of the form
P ¼ Pðρ; ϵ; YeÞ and a relativistic Ohm’s law, the equations
determining the magnetized matter dynamics are obtained
from suitable conservation laws. We here adopt the ideal
MHD approximation (which states that the fluid is
described by an isotropic Ohm’s law with perfect conduc-
tivity, so that the electric field vanishes in the fluid’s frame
Fabub ¼ 0) which provides a simple, realistic approach
reducing the number of relevant fields to describe electro-
magnetic effects in the system.
The resulting system of equations is

∇aTa
b ¼ Gb (17)

∇aðTabnbÞ ¼ 0 (18)

∇aðYeρuaÞ ¼ ρRY (19)

∇a
�Fab ¼ 0: (20)

These equations state the conservation laws for the stress-
energy tensor, matter and lepton number, respectively,
where Ye is the electron fraction, the ratio of electrons
to baryons. In the absence of lepton source terms, Eq. (19)
follows closely the conservation law for the rest mass
density, i.e., Ye is a mass scalar. The sources Ga
(≡ −∇cRc

a) and RY are the radiation four-force density
and lepton sources which are determined via the leakage
scheme.
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1. GR-Hydro equations

Examining the equations for the matter, Eqs. (17)–(20), a
few observations are in order. On the one hand, the
implementation of the equations for the magnetic field
need not be modified with respect to our previous work
(e.g., [48]) as they are neither directly coupled to the
neutrino evolution nor do they depend on the fluid’s
equation of state. On the other hand, changes to the
implementation of the fluid equations are required. In what
follows we describe those modifications.
Recall the 3þ 1 decomposition of the fluid equations as

presented in [42]. The relevant expressions of the projec-
tions with respect to na (parallel and orthogonal) can be
written in terms of the source Ga as

0 ¼ −na∂aEþ KE −
1

α2
Daðα2SaÞ

þ ð⊥TÞabKab − Gana (21)

0 ¼ hbc

�
−na∂aSb þ KSb þ 2SaKb

a −
1

α
Sa∂aβ

b

−
1

α
Daðαð⊥TÞabÞ − ∂bα

α
Eþ Gc

�
: (22)

Finally, we define the Lorentz factor and the three-velocity
as

W ≡ −naua; vi ≡ 1

W
ð⊥uÞi: (23)

The fluid equations of motion are written in balance law
form

∂tuþ ∂ifiðuÞ ¼ sðuÞ (24)

by defining the conservative variables. These variables are
densitized using the 3-metric determinant

ffiffiffi
γ

p
as

~D≡ ffiffiffi
γ

p
ρW (25)

~Si ≡ ffiffiffi
γ

p ½ðhW2 þ B2Þvi − ðBjvjÞBi� (26)

~τ≡ ffiffiffi
γ

p �
hW2 þ B2 − P −

1

2

�
ðBiviÞ2 þ

B2

W2

��
(27)

~Bi ≡ ffiffiffi
γ

p
Bi (28)

~Ye ≡ ~DYe: (29)

The leakage scheme provides the fluid rest frame energy
sink Q and lepton sink/source RY due to neutrino proc-
esses. RY is the source term for a scalar quantity and
therefore is the same in all frames. We express the source
term for the energy and momentum in an arbitrary frame as

Ga ¼ Qua: (30)

Since the effect of neutrinopressure is small [26] anddifficult
to accurately capture with a neutrino leakage scheme, we
ignore its contribution in the fluid rest frame. Now, defining
H≡ naGa ¼ −QW and Hb ≡ hbcGc ¼ QWvb, the modi-
fied relativistic MHD equations become

∂t
~Dþ ∂i

�
α ~D

�
vi −

βi

α

��
¼ 0 (31)

∂t
~Sj þ ∂i

� ffiffiffiffiffiffi
−g

p �
ð⊥TÞij −

βi

α
Sj

��

¼ ffiffiffiffiffiffi
−g

p �
3Γi

abð⊥TÞai þ
1

α
Sa∂bβ

a −
1

α
∂bαEþHb

�

(32)

∂t ~τ þ ∂i

�
α

�
~Si − ~Dvi −

βi

α
~τ

��

¼ ffiffiffiffiffiffi
−g

p �
ð⊥TÞabKab −

1

α
Sa∂aα −H

�
(33)

∂t
~Ye þ ∂i

�
α ~Ye

�
vi −

βi

α

��
¼ α

W
~DRY (34)

∂t
~Bi þ ∂j

��
vj −

βj

α

�
~Bi −

�
vi −

βi

α

�
~Bj

�

¼ −α
ffiffiffi
γ

p
γij∂jψ (35)

∂tψ ¼ −c2h
αffiffiffi
γ

p ∂i
~Bi − αc2rψ (36)

where

ð⊥TÞij ¼ viSj þ Phij −
1

W2

�
BiBj −

1

2
hijB

2

�

− ðBkvkÞ
�
Bivj −

1

2
hijBmvm

�
: (37)

Notice that the evolution equation for ~Bi contains a scalar
field (ψ) contribution which is introduced to control the no-
monopole constraint. This “divergence cleaning method”
damps constraint violations via a damped, wave equation
for the evolution of ψ [42,49].
Notice also that this system of equations is strongly

hyperbolic. It contains the minimum couplings with the
solenoidal constraint and includes a damping term. The
terms in the right hand sides are treated as sources, and their
derivatives are calculated with centered finite difference
(second order). A small amount of numerical dissipation is
added both to f ~Bi;ψg. We have found numerically that an
efficacious choice is ch ¼ 0.1, cr ≈ 2=

ffiffiffiffiffi
M

p
(where M is

again the total mass of the system).
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C. Equations of state

1. Finite temperature EoS tables

Neutrino interaction rates depend sensitively on the
matter temperature and composition. Therefore, in order
to model the effect of neutrinos with reasonable accuracy,
we require an equation of state beyond that of a polytrope
or an ideal gas. We use publicly available EoS tables from
http://www.stellarcollapse.org and described in O’Connor
and Ott (2010) [39]. We have rewritten some of the library
routines for searching the table to make them faster and
more robust. In this paper we use the Shen-Horowitz-Teige
(SHT) [50] EoS with the NL3 relativistic mean-field
parametrization, the Lattimer-Swesty (LS) [51] EoS with
K ¼ 220 MeV, and the H. Shen (HS) [52] for the single
neutron star simulations, and the HS EoS for the neutron
star binary.

2. The primitive solver

High-resolution shock-capturing schemes integrate the
fluid equations in conservation form for the conservative
variables, while the fluid equations are written in a mixture
of conserved and primitive variables. It is well known
that the calculation of primitive variables from conserved
variables for relativistic fluids requires solving a transcen-
dental set of equations. Our method for solving these
equations with a finite-temperature EoS is a modification of
the algorithm that we use for the ideal gas EoS; the most
significant change being that the internal energy must be
calculated separately from the pressure using the table. We
write the transcendental equations in terms of the new
variable

x≡ hW2; (38)

where h is the total enthalpy h ¼ ρð1þ ϵÞ þ P, and
calculate Ye from the evolution variables ~Ye= ~D. Then,
using data from the previous time step to calculate an initial
guess for x, we iteratively solve these equations for x:
(1) From the equation for SiSi, calculate

Ŵ−2 ¼ 1 −
ð2xþ B2ÞBiSi þ x2S2

ðxðxþ B2ÞÞ2 :

(2) From the definition of D, calculate

ρ̂ ¼ D

Ŵ
:

(3) From the definition of τ, calculate

P̂ ¼ x − ðτ þDÞ þ B2 −
1

2

��
BiSi
x

�
2

þ B2

Ŵ2

�
:

(4) From the definition of the total enthalpy, calculate

ϵ̂ ¼
�

x

Ŵ2
− P̂

�
Ŵ
D

− 1:

(5) Use the EoS table to calculate the temperature T̂
from ϵ̂ðρ̂; T̂; YeÞ.

(6) Use the EoS table to calculate Pðρ̂; T̂; YeÞ.
(7) Update the guess for x by solving the equation

fðxÞ ¼ 0 using the Brent method, with (again, the
definition of τ)

fðxÞ ¼ x − Pðρ̂; T̂; YeÞ −
1

2

��
BiSi
x

�
2

þ B2

Ŵ2

�
þ B2

− ðτ þDÞ:

The root of fðxÞ ¼ 0 from Step 7 becomes the new guess
for x, and this process is repeated iteratively until the
solution for x converges to a specified tolerance. One
advantage of this algorithm is that fðxÞ is a function of a
single variable, and, in contrast to root solving for multiple
variables, robust methods can be used to find any root that
can be bracketed.
Because of numerical error, a solution to these equa-

tions may either fall outside the physical range for the
primitive variables, or a real solution for x may not exist.
The solutions for ρ, T, and Ye are, at a minimum,
restricted to values in the table, and they are reset to
new values (the minimum allowed value plus ten percent)
if necessary. A separate floor value for the density is also
set. In anticipation of comparing this work with evolutions
of magnetized stars in the future, we choose a density
floor appropriate for magnetized stars for the neutron star
binary, which is about eight orders of magnitude smaller
than the initial central density of the stars. If a real solution
for the primitive variables does not exist, the primitive
variables are interpolated from neighboring points, and the
conserved variables are reset to be consistent. If a valid
interpolation stencil can not be constructed because the
solver also failed at the neighboring points, then the
update fails, and the run is terminated. This failure occurs
very rarely and may be remedied by slightly increasing the
density floor.

D. Leakage

The leakage scheme seeks to account for (i) the changes
to the (electron) lepton number and (ii) the loss of energy
from the emission of neutrinos. As discussed, since the
dynamical timescale for the post-merger of binary neutron
star systems is relatively short, radiation momentum trans-
port and diffusion effects are expected to be subleading.
Our scheme is based on the open-source neutrino leakage
scheme from [39], available at stellarcollapse.org. At low

MAGNETIZED NEUTRON STARS WITH REALISTIC … PHYSICAL REVIEW D 89, 104029 (2014)

104029-5

http://www.stellarcollapse.org
http://www.stellarcollapse.org
http://www.stellarcollapse.org


optical depths, the leakage scheme relies on calculating the
emission rate of energy (Qfree) and lepton number (Rfree)
directly from the rates of relevant processes. We consider
three species of neutrinos, represented here by: νe for
electron neutrinos, ν̄e for electron antineutrinos, and νx for
both tau and muon neutrinos and their respective antineu-
trinos. As discussed in [37,38], the dominant processes are
those that

(i) produce electron flavor neutrinos and antineutrinos:
charged-current, electron, and positron capture
reactions eþ þ n → pþ ν̄e, e− þ p → nþ νe.

(ii) produce all flavors of neutrinos: electron-positron
pair-annihilation eþ þ e− → ν̄i þ νi
and plasmon decay γ → ν̄i þ νi.

Notice that nucleon-nucleon bremsstrahlung can also be an
important source of νx neutrinos, dominating over electron-
positron annihilation at low temperatures and high den-
sities. We will include such a process in future work.
At high optical depths on the other hand, because the

equilibrium time scales are much shorter than either
neutrino diffusion or hydrodynamic time scales, neutrinos
are assumed to be at their equilibrium abundances and the
rates of energy loss (Qdiff ) and lepton loss (Rdiff ) are taken
to proceed at the diffusion timescale. The equilibrium
abundances can be trivially calculated, however the calcu-
lation of the diffusion timescale is more involved as it
requires the knowledge of nonlocal optical depths. The
computation of these optical depths lies at the core of the
leakage strategy and, because we are interested in general
(nonspherically symmetric) scenarios, we describe how to
compute them from the local opacities in Sec. II D 1. (We
refer the reader to [39] for full details about the calculation
of the local opacity and diffusion time scale.) The emission
rates are then interpolated between the behavior at low and
high optical depths in order to achieve an efficient way to
incorporate neutrino effects that is correct in both regimes
and applicable in between. In our implementation, we
interpolate the energy and lepton number emission rates
between these two regimes via the following formula

Xeff ¼
XdiffXfree

Xdiff þ Xfree
; (39)

where X is either Q or R.

1. Optical depth calculation

The usual approach to calculating the optical depth at a
given point is to consider some small number of possible
directions in which to integrate the opacity of the fluid. In
GR1D [39], the assumption of spherical symmetry sim-
plifies the calculation so that there are only ingoing and
outgoing directions.
Refs. [23] and [26] integrate the depth along rays in the

coordinate directions, although Ref. [26] adds certain
diagonal rays. The depth at any given point is then the

minimum depth among the considered rays. Ref. [28]
instead argues for rays that match the geometry of the
problem and they therefore interpolate onto a spherical grid
and considers theminimumdepth among a set of radial rays.
In general, the existent algorithms necessarily involve

global integrations that bring with them complexities due to
multiple resolutions (from the AMR) and patches (from the
domain decomposition). Instead, a more local approach
that is independent of the particular symmetries of the
problem is desirable. For example, one could determine the
depth at any given point as a parallel circuit where the depth
measures the “resistance” to the depth-free exterior [53].
The depth at each point is just the contribution to the depth
to reach a neighboring point added to the inverse of the sum
of the inverses of the depths of all neighboring points. Such
a procedure turns the global integration into an iterated
local problem. However, early experiments showed a
problem with its application because the depth was
generally less than that of any neighbors. Therefore, in a
naive iteration scheme, the resulting depth did not
adequately reflect the expected increasing optical depth
with increased depth into the star.
However, an even simpler approach appears to work

quite well. In this scheme, the depth at any given point is
simply the sum of the depth incurred to get to a neighboring
point plus the minimum depth among its neighbors. One
can justify such an approach by arguing that neutrinos will
explore all pathways out of the star, not just straight paths.
This approach is also iterative since changes elsewhere do
not immediately affect other areas, as would happen with a
global integration. Physically one expects changes at the
surface to take some time to propagate throughout the star.
However, as noted in [39], because the depth depends on
the opacity which itself depends on the depth, one expects
to iterate in any case.
We have compared runs with no explicit iteration (our

leakage routine is called at every Runge-Kutta step, instead
of once per time step) with runs where we iterate three
times and there is effectively no difference.
The computation of the optical depth appears to be an

example of the eikonal problem [54]. The eikonal equation
takes the form

j∇uðxÞj ¼ fðxÞ (40)

for scalar functions uðxÞ and fðxÞ (see for example
Ref. [55] for a fast method of solving it). Here, this
equation takes the form

j∇τiðxÞj ¼ κiðxÞ (41)

where τi is the optical depth for some species of neutrino
and κi its corresponding opacity. Implementation of one of
the approaches to the eikonal problem for the computation
of optical depth may provide benefits, but here we simply
use this formulation (the derivative of the defining integral
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for the depth) to evaluate the utility of our admittedly
simplified solution.
In Fig. 1 we show both the magnitude of the gradient of

the depth for electron neutrinos and compare it with its
opacity for a single star. The agreement between these two
indicates that even this simplified scheme is finding the
correct optical depth for the given opacity.
One possible concern is that this approach is too simple

to track stars in a binary and so in Fig. 2 we do the same
analysis along the y-axis for a binary when the stars are
suitably aligned. Once again, the features of the gradient
match those of the opacity, and, in particular, the depth
tracks the stars throughout their orbit.

III. NUMERICAL RESULTS

We present initial tests and preliminary results below. A
more detailed and expansive study of binary neutron stars
will be presented in a future paper.

A. Isolated stars

A standard test consists of evolving isolated, neutron
stars and analyzing their oscillation modes. The frequencies
of these modes can be computed independently by solving
for the linearized perturbations in the Cowling approxima-
tion (i.e., fixed spacetime). The extent to which the
frequencies obtained from our fully nonlinear evolution
agree with those of the linearized code helps measure the
correctness of our code.
We constructed initial data for our neutron stars using

three different nuclear EoSs describing hot dense matter, all
of them publicly available in [56], using MAGSTAR, part of
LORENE [57]. The first one corresponds to the stiff EoS by
Shen-Horowitz-Teige (SHT) [50] using the NL3 relativistic
mean-field parametrization, the second one is by Lattimer-
Swesty (LS) [51] with an incompressibility modulus
K ¼ 220 MeV, representing a soft EoS, and the final one
is the H. Shen (HS) [52] developed from relativistic mean-
field theory with the TM1 parametrization. These equations
of state have cold neutron star maximum gravitational
masses of 2.76M⊙, 2.04M⊙, and 2.24M⊙, respectively.
The simulations are performed on a numerical domain

covering xi ∈ ½−60 km; 60 km� for the stars evolved in a
fixed background, and it extends to xi ∈
½−120 km; 120 km� when the spacetime is dynamical in
order to prevent unphysical effects coming from the
boundary. There are several refinement levels so that there
is a grid covering the star with a resolution Δx ¼ 250 m.
We evolve the system with a third order accurate, Runge-
Kutta scheme with a time step given by Δt ¼ 0.25Δx,
satisfying the CFL condition.

1. Cold stars

The cold star initial data are constructed assuming a very
low temperature of T ¼ 0.01 MeV—well below the Fermi
temperature of the star—and imposing β-equilibrium. An
initial perturbation is introduced by increasing the initial
temperature with respect to the temperature assumed during
its construction to T ¼ 0.05 MeV. We choose a solution on
the stable branch of nonrotating stars—near the maximum
allowed mass—to coincide with that of Ref. [28] to
facilitate comparison, corresponding to a central den-
sity ρc ¼ 9.3 × 1014 g=cm3.
We work in the Cowling approximation such that the

metric is frozen at its initial profile so that we can compare
easily with the results of perturbations from the linearized
system. In particular, we Fourier transform the time-series
data for the central density from the evolution code as
shown in Fig. 3 for the star using the LS EoS. The results

FIG. 1 (color online). Optical depth for an isolated neutron
star. Top: The electron opacity κe (red solid) evolved for t ¼
1.15 ms along the x-axis. Also shown is the magnitude of the
gradient of the electron optical depth j∇τej. The noticeable dip in
the gradient is just an effect of the post-processing used to
compute the gradient and no significant feature is seen in the
optical depth itself shown in the bottom panel. Bottom: The
electron optical depth τe.

FIG. 2 (color online). Optical depth for a binary neutron star
system. Top: The electron opacity κe (red solid) after a quarter
orbit along the y-axis. Also shown is the magnitude of the
gradient of the electron optical depth j∇τej. The similarity of
these two quantities suggests that the optical depth algorithm
adequately tracks the binary members. Bottom: The electron
optical depth τe. The binary is quite cold (initial temperature of
0.01 MeV) and so the depth is quite small.
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from linear analysis are shown as dashed lines, and these
frequencies correspond quite well to the peaks of the
Fourier power spectrum. The numerical values for the first
three frequency modes fi (i.e., the fundamental radial mode
and the first two overtones) are summarized in Table I and
are compared with the frequencies fCi computed either from
perturbation theory (for fixed spacetimes) or with another
full nonlinear code (for the dynamical spacetimes consid-
ered below). The maximum disagreement between these
values is 2.5%, and generally below 1.5%. Note that, as
happens with cold stars described by a polytropic EoS

(see for instance [58]), the mode frequencies are higher in
fixed spacetimes than in dynamical ones.
With this same star, we can add an initial seed magnetic

field. Here we add a poloidal field with a maximum
strength of 8 × 1014 G, and evolve the full spacetime. In
this case we transform the central value of both the density
and the magnetic field, as shown in Fig. 4. Both spectra
lead to the same frequencies. Because there are no
published results from perturbation theory for the dynami-
cal spacetime case, we are only able to compare the
observed oscillation frequencies with the ones obtained
from another independent, fully nonlinear code, Ref. [28],
which also solves the general relativistic hydrodynamic
equations with a neutrino leakage scheme.

2. Hot stars

Here we study a hot star, chosen to match one already
studied in Ref. [28], also with a central density
ρc ¼ 9.3 × 1014 g=cm3. In particular, we choose a star
with constant entropy of s ¼ 1 kB=baryon in β equilibrium
using the SHT EoS, leading to a temperature of T ≈
30 MeV at the center, which decreases towards the surface.
We let discretization error serve as the only perturbation.
We evolve in the Cowling approximation by freezing the

spacetime in order to compare the normal frequencies with
the ones obtained from the linearized system. The star is
given an initial, poloidal, magnetic field with maximum
strength 5 × 1014 G, and we allow the star to cool via
neutrino emission as described by the leakage scheme. The
central values of the density and the magnetic field are
plotted in Fig. 5. The frequencies, summarized in Table I,
are in good agreement with those calculated in Ref. [28].
We also display the neutrino luminosities for each species

in Fig. 6. During the first millisecond, both the νe and ν̄e
luminosities vary significantly as the star achieves its new
equilibrium configuration for the chosen numerical grid. In
particular, we find amixing of the neutron-richmatter and an
increase of the temperature near the stellar surface due to
(i) the fluid evolution outside the star (i.e., with thermal
ejections of stellar material, shock heating, and accretion of
the atmosphere), (ii) the internal normal oscillations of the
star, and (iii) numerical diffusion. These effects are enough
to drive the Ye away from its original β-equilibrium
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FIG. 3 (color online). Perturbed NS with the LS-K220 EoS in
the Cowling approximation. Top: Central density of the star as a
function of time. Bottom: The Fourier power spectral density as a
function of frequency. Vertical dashed lines show the expected
oscillation frequencies calculated by solving the linearized
equations.

TABLE I. Mode frequencies of the oscillations of a NS with ρc ¼ 9.3 × 1014 g=cm3. We compute the first three frequencies (i.e., the
fundamental radial mode and the two first overtones) fi and compare with frequencies fCi from either a linearized code (fixed spacetime)
or from another nonlinear code [28] (dynamic spacetime). Note that in the last two cases the star contains a poloidal magnetic field and
the oscillation of the central magnetic field matches that of the fluid density (see the bottom panels of Figs. 4 and 5).

Model Metric M½M⊙� R [km] s½kB� Bc [G] f1 [KHz] fC1 [KHz] f2 [KHz] fC2 [KHz] f3 [KHz] fC3 [KHz]

SHT Fixed 2.73 13.90 0 0 3.54 3.49 5.87 5.86 8.34 8.24
LS-K220 Fixed 1.69 12.36 0 0 3.96 3.89 6.84 6.81 9.95 9.72
LS-K220 Dynamic 1.69 12.36 0 5 × 1014 2.37 2.39 6.07 6.09 9.23 9.41
SHT Fixed 2.74 14.14 1 5 × 1014 3.53 3.42 5.90 5.73 8.32 8.01
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configuration and to produce a slow and steady rise of all
the neutrino luminosities after t ≈ 2 ms. Before the steady
rise, the νe, ν̄e, and νx luminosities are ≈3 × 1051 erg=s,
≈2 × 1051 erg=s, and ≈0.2 × 1051 erg=s, respectively.
Here, we include all four heavy-lepton species in the νx
luminosity.
Our results show a much lower neutrino luminosity than

those of [28] for the same model, who at the stationary state
have luminosities of ≈30 × 1051 erg=s, ≈70 × 1051 erg=s,
and ≈15 × 1051 erg=s, for νe, ν̄e, and νx, respectively.
However, high resolution (50 m) tests with this same
stellar configuration in GR1D both with this identical
leakage scheme [39] and with a two-moment closure
neutrino transport scheme [59] suggest that our luminos-
ities are reasonable and indicate that these large differences
may arise due to the treatment of low density regions,
which seems to be crucial in this particular problem. With
GR1D’s leakage scheme we achieve luminosities at the
stationary state of ≈0.8 × 1051 erg=s, ≈0.4 × 1051 erg=s,
and ≈0.7 × 1051 erg=s. With GR1D’s two-moment
neutrino transport, we determine hydrostatic neutrino
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FIG. 6 (color online). Perturbed, magnetized hot NS with the
SHT EoS in a fixed spacetime. The luminosities of the different
neutrino species are displayed as a function of time. Notice that,
after the initial transient of ≈1 ms, all luminosities rise steadily.
We attribute this to the increasing temperature near the star’s
surface due mainly to numerical diffusion and to the evolution of
the atmosphere.
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FIG. 4 (color online). Perturbed, magnetized NS with the
LS-K220 EoS in a dynamic spacetime. Top: The (normalized)
central density of the star and central magnetic field strength as a
function of time. The initial star has a purely poloidal magnetic
field. Bottom: The Fourier power spectral density as a function
of frequency. Vertical dashed lines show the computed oscillation
frequencies obtained by using another full nonlinear evolution
code.
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FIG. 5 (color online). Perturbed, magnetized hot NS with the
SHT EoS in a fixed spacetime. Top: The (normalized)
central density of the star and central magnetic field strength
as a function of time. Bottom: The Fourier power spectral
density as a function of frequency. Leakage results for this star
are shown Fig. 6.
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luminosities of ≈0.3 × 1051 erg=s, ≈0.5 × 1051 erg=s, and
≈0.8 × 1051 erg=s for νe, ν̄e, and νx, respectively. We see
lower luminosities in spherical symmetry because of the
reduced numerical diffusion and the inability to capture
convection in the atmosphere region.
We are able to attribute all the observed differences in the

neutrino luminosities in our three-dimensional simulations
and the GR1D simulations to the outer ≈1–2 km of the star.
Interior to this, the leakage quantities are initially essen-
tially identical and vary only slightly. In the interior region,
the grey radial luminosity determined with GR1D’s leakage
scheme is in very good agreement with the energy summed
neutrino luminosity from GR1D’s neutrino transport. The
outer regions are much harder to accurately capture with a
leakage scheme as both the neutrinospheres and the region
where the dominant neutrino leakage contributions tran-
sitions from diffusion to free emission, occur very close to
the steep density gradient of the neutron star’s surface. For
this reason, we express caution when interpreting these
luminosities.
In an effort to better understand the effects of both

magnetic field and neutrino cooling, we study the evolution
of a hot (12 MeV), dense (5.6 × 1015 g=cm3), rapidly
spinning (1500 Hz) neutron star using the HS EoS. For
such a large central density and mass (baryonic mass
2.1M⊙), the star is unstable to collapse providing a dynamic
solution to study.We consider the star with nomagnetic field
and contrast it when the star is given a very strong magnetic
field. We consider two magnetized cases parametrized by a
maximum initial magnetic field strength of 4.1 × 1016þn

with n ¼ 0, 2. The low value (n ¼ 0) could arise dynami-
cally in the hypermassive neutron star resulting from binary
merger [18,30,32,60]. The high value (n ¼ 2), while unre-
alistically high, allows us to explore strong magnetic fields
which can have a significant effect on the pressure and
structure of the star and, consequently, on the neutrino
production. Notice that we neglect these effects in the
construction of the initial data, adding the magnetic field
to the star as a “seed.” Nevertheless, these evolutions serve
primarily to explore some of the possible differences and
the robustness of the code, in addition to assessing at which
level such magnetizations can affect the dynamics.
Figure 7 shows various quantities as functions of time for

both unmagnetized and magnetized evolutions. In Fig. 8,
we show plots of certain fields at a late time during the
collapse. As shown in the figure, only unreasonably high
magnetizations significantly changes the neutrino produc-
tion. Magnetic fields do not couple strongly to neutrino
cooling in realistic scenarios and instead affect neutrino
results through effects to stellar structure and temperature.
Notice however, that in binary mergers the magnetic field
can significantly affect the distribution of material and the
transport of angular momentum of the merger remnant.
And these effects can, in turn, impact neutrino production
and luminosity.

B. Binary neutron stars

The inspiral and merger of two neutron stars is a
significant test of a code such as this. The inherent
asymmetry of the problem tends to “excite” many, if not
all, terms in the equations. Resolving both the motion of
two compact objects as well as the large gradients at their
surfaces requires significant resources. The merger itself
is a very dynamic process with a large range of densities.
We consider here just the late stage (roughly the last 4.5

orbits) of a single binary evolved with just a single EoS. We
have evolved this binary with three different resolutions
and find convergent results. The preliminary results pre-
sented here arise from our highest resolution which has a
finest grid spacing in all directions of 460 m. This
resolution is enough to capture the main aspects of the
dynamics, though we note higher resolutions are needed for
a more detailed study of the system.
We include neutrino cooling during the inspiral as a test

of our leakage scheme even though for times much before
merger one expects very little emission. Above we show
that the computation of the optical depth tracks the stars
appropriately in Fig. 2. Here we show results for a binary

1×1016

FIG. 7 (color online). Hot, dense, rapidly rotating star. The
maximum density, minimum lapse, maximum temperature, and
total neutrino luminosities are shown versus time for the collapse
of an unstable, hot, dense, rapidly rotating star. Three evolutions
are contrasted, one with no magnetization (blue dashed) one with
a very large initial field (red solid), and one with an intermediate
magnetization (green dotted). The intermediate star is nearly
identical to the unmagnetized star except for its late-stage
neutrino luminosity. The magnetized star has an initial magnetic
field with a maximum of 4.1 × 1016 G whereas as the most
magnetized case begins with a field one hundred times larger.
Pictures of the star in its late stage are shown in Fig. 8.
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constructed using LORENE with the HS EoS for which
each star has baryonic mass MB ¼ 1.49M⊙ and equatorial
radius R ≈ 14.5 km and temperature 0.01 MeV. The binary
has an initial separation a ¼ 45 km, a total ADM mass
MADM ¼ 2.74M⊙, and an orbital angular velocity
Ω ¼ 1796 rad s−1. The electron fraction is set so that the
stars are initially in β equilibrium. Neutron star binaries are
expected to be rather cool, but higher temperatures will be
reached during merger. We have run this binary at three

resolutions and find that the hydrodynamical and gravita-
tional dynamics are convergent.
In Fig. 9 we show the integrated luminosities for each

neutrino species as a function of time. After an initial
transient, the luminosities for both electron-neutrinos and
electron-antineutrinos become roughly comparable while
the heavy-lepton neutrino types are much less luminous.
The large oscillations in the luminosities are an unfortunate
artifact of an inconsistency between the temperature
provided to the initial data solver and that provided to
the evolution code. This inconsistency acts as a very large
perturbation to the binary resulting in oscillations in the
initial density that naturally induce oscillations in the other
fields, but otherwise does not affect the dynamics of the
orbiting stars. A simulation such as this assumes no
symmetries and therefore places no restrictions on the
dynamical physical modes that the merger can excite.
Because an evolution of the full, three-dimensional domain
requires close to 100 000 CPU hours, we defer for our
follow-up work simulations with better initial data for
which preliminary results show much smaller oscillations.
Once the stars touch, the temperature and concomitant

neutrino luminosity increase for all species. Interestingly,
the most dominant radiative neutrino flavor is the electron
antineutrino. This dominance has already been observed in
other binary neutron star mergers [23,25] and also neutron
star–black hole mergers [26], and is due to neutron rich
material being shock heated and decompressed [61]. This
neutron rich, low density, hot material is initially far below
the new β-equilibrium value of Ye and will preferentially
emit electron antineutrinos until it is reestablished. This can
be seen by inspection of the bottom row on the right side of
Fig. 10, which shows the lepton number matter source term.

FIG. 8 (color online). Hot, dense, rapidly rotating star. Snap-
shots of various quantities on a meridional plane are shown at
t ¼ 0.25 ms for the same unmagnetized star (left) and highly
magnetized star (right) as shown in Fig. 7. From top to bottom are
shown the density, temperature, electron fraction, total neutrino
emissivity, and the magnitude of the magnetic field. The square
central region in the temperature (and concomitantly the emis-
sivity) of the unmagnetized star appears related to the squared
boundaries.

FIG. 9 (color online). Neutrino luminosities for the merger of a
binary neutron star system. The dashed line at t ¼ 13.8 ms
denotes when the stars first touch. Note the rapid growth of
the luminosities for all species after this time. Snapshots of the
binary at a few of these late times are shown in Fig. 10.
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On the left half (x < 0) of each panel we show (in color-log
scale) regions of net positive lepton number emission and
mask out regions of net negative lepton number emission.
While on the right half (x > 0) we only show regions of net
negative lepton number emission and mask out positive
lepton number emission. In the rightmost column, at
22.1ms, the largest contribution to the antineutrino emission
(again, x > 0) occurs at the leading edges of the tidal tails
where T ≈ 15 MeV, ρ ≈ 1012 g cm−3, and Ye ≈ 0.1. This
can be understood by noting that for this temperature,
density, and EoS, we have that Ye;β-equil ≈ 0.29, significantly
above the instantaneous value of Ye ≈ 0.1. In contrast, the
dominant region of electron neutrino number emission,
albeit small, is outside of the dominant tidal tail region
(for radii ≳40 km). This matter is colder and less dense,
characterized by T ≈ 2.5 MeV, ρ ≈ ð1–2Þ × 1011 g cm−3,
and Ye ≈ 0.1–0.15. Since the optical depth is low for this
region, the equilibrium Ye that the system will tend to is the
Ye where neutrino number emission balances antineutrino
number emission rather than the β-equilibrium value, which
assumes there exists a population of trapped neutrinos and
antineutrinos that can undergo capture on neutrons and
protons. For these conditions, Ye;rate equil ≈ 0.05, hence we
generally expect dominant electron neutrino emission.
Our results are largely consistent with past work for

similar mass binaries, indicating that despite differences in
the adopted approaches, simulations predict a rather robust
behavior of neutrino luminosities ≈1053 ergs s−1. The

dominant contribution is provided by electron antineutri-
nos, followed with a somewhat lower luminosity by
electron neutrinos. The heavy-lepton neutrino luminosity
is roughly half those of the light species for the roughly
15 ms immediately after the merger, but decays consid-
erably afterwards as the disk settles and cools. The faster
decline of the heavy-lepton luminosities relative to the
electron type species is due to the different emission
processes. Heavy-lepton neutrino emission is dominated
by electron-positron annihilation, which has a stronger
temperature dependence than charged-current processes
which dominate the electron-type neutrino emission.
Snapshots corresponding to the merging binary are

shown in Fig. 10, illustrating, at representative times after
merger, the behavior of energy sink (Qν), electron neutrino
optical depth (τe), temperature (T), density (ρ), electron
fraction (Ye), and lepton source (RY). This figure illustrates
several important features. First, the energy sink, lepton
sources and temperature are tied to surface, shearing
regions, and tidal tails. Second, the optical depth tracks,
as expected, the density behavior. Third, the electron
fraction shows regions above and below beta equilibrium
that induce stronger production of electron neutrinos and
antineutrinos. Fourth, the merger gives rise to a significant
increase in the temperature, reaching a peak value of
roughly 45 MeV. Notice that for this low total-mass binary,
the HMNS does not show indications of impending
collapse for the time of this simulation (roughly 25 ms
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FIG. 10 (color online). Snapshots of the binary merger looking down upon the orbital plane. The total neutrino emissivity, electron-
neutrino optical depth, and temperature are shown at three times (t ¼ 13.8 ms, 15.3 ms, and 22.1 ms) increasing from left to right. For
the plots of RY , the right side (x > 0) of the plot shows positive values (net electron antineutrino emission) whereas the left side (x < 0)
shows negative values (net electron neutrino emission). The first time shows when the stars first touch and the middle time shows the
system when the temperature reaches its maximum. The final column shows the remnant at t ¼ 22.1 ms, a while after merger when it
has settled down to a rotating, hot “dumb-bell” with spiral arms of emissive material. The luminosities for each neutrino species as
functions of time are shown in Fig. 9.
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after merger) implying a longer lived remnant. We defer
to future work a systematic analysis of the dependence
on total mass, EoS and magnetic field effects on the onset
of black hole formation, as well as other properties of
the merger remnant, mass outflow, and resulting
nucleosynthesis.

IV. CONCLUSIONS

We have described our implementation of a general
relativistic, magnetohydrodynamics code that uses realistic,
tabulated equations of state as well as accounts for neutrino
cooling through a leakage scheme. In particular, we have
presented a new method to obtain the optical depth along
with a test illustrating that the optical depth is accurately
integrating the opacity [62]. With this implementation we
have studied the effects magnetic fields can have on the
collapse of a rapidly spinning, hot, dense star with neutrino
cooling. We also presented first applications of this code to
a binary neutron star system obtaining, in particular, the
neutrino luminosity induced by the merger. For both single

star cases and binaries, the calculated values are in agree-
ment with recent work [23,28] as well as with results
obtained with a core collapse code [39].
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