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In the collection and analysis of high-amplitude jet noise data for nonlinear acoustic 

propagation, both model-scale and full-scale measurements have limitations.  Model-scale 

measurements performed in anechoic facilities are usually limited by transducer and data 

acquisition system bandwidths and maximum propagation distance.  The accuracy of full-

scale measurements performed outdoors is reduced by ground reflections and atmospheric 

effects.  This paper describes the use of two nonlinearity indicators as complementary to 

ordinary spectral analysis of jet noise propagation data.  The first indicator is based on an 

ensemble-averaged version of the generalized Burgers equation.  The second indicator is the 

bicoherence, which is a normalized version of the bispectral density.  These indicators are 

applied to Mach-0.85 and Mach-2.0 unheated jet noise data collected at the National Center 

for Physical Acoustics.  Specifically, the indicators are used to separate geometric near-field 

effects from nonlinear propagation effects for the Mach-2.0 data, which cannot be done 

conclusively using comparisons of power spectral densities alone.    

Nomenclature 

( )fα  = atmospheric absorption coefficient 

β = coefficient of nonlinearity (1.201 in air) 
( )21 , ffb  = bicoherence 

c0 = speed of sound 
Dj = jet nozzle diameter 
E[ ] = expectation operator  
f = frequency  

{ }FT  = Fourier transform operator 

Im[ ] = Imaginary part  
k = acoustic wavenumber 
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OASPL = overall sound pressure level 
ρ0 = ambient density of air 

( )tp  = time-dependent acoustic pressure 

prms = root mean-square pressure 
( )fP  = Fourier pressure spectrum 

( )fQ
pp2  = imaginary part of the cross-spectral density between ( )tp2  and ( )tp , see Eq. (1) 

r = range variable 
( )frS pp ,  = power spectral density  

( )21 , ffS ppp = bispectral density, see Eq. (5) 

T = time record length 
( )21 , ffZ  = bifrequency spectral density, see Eq. (6) 

* = complex conjugation operator 

I. Introduction 

ONLINEARITY in the propagation of high-amplitude jet noise is a research topic that has been studied for 
decades.  The combined results of early investigations such as those by Blackstock,1 Morfey and Howell,2 

Crighton and Bashforth,3 Crighton,4 Lighthill,5 and Gallagher and McLaughlin6 showed that nonlinearity should be a 
factor in the noise propagation for certain conditions.  However, much was left undone regarding the relative 
significance of these effects.  Recently, there has been a renewal of interest in nonlinear jet noise propagation that is 
largely attributable to next-generation military jet fighters coming online.  Petitjean and McLaughlin7 and Petitjean 
et al.8 have performed model-scale propagation experiments in anechoic facilities.  From the full-scale jet 
perspective, Gee et al.9,10 have analyzed F/A-18E Super Hornet data for evidence of nonlinearity.  Further indication 
of nonlinearity in full-scale jet noise propagation has come from work by Gee et al.11 that involved field 
measurements of the noise radiated by the F-22 Raptor.  Results from a nonlinear propagation model predicted 
significant waveform steepening and a spectral energy transfer to high frequencies that agreed closely with 
measured data. 
 Although the recent measurements have confirmed what has been suspected for decades regarding the nonlinear 
propagation of high-amplitude jet noise, both full-scale and model-scale experiments suffer from limitations.   
Measurements made to date have primarily shown evidence of nonlinear propagation by making a measurement at 
close range (but presumably in the geometric far field) and then assuming spherically spreading, free-field linear 
propagation out to a greater distance where this linear prediction is compared to measurement.  For full-scale static 
measurements, this approach is potentially compromised by local meteorological effects (e.g., turbulence and 
refraction) and by terrain effects.  Model-scale measurements are typically carried out in an anechoic laboratory 
environment but are limited by bandwidth and/or propagation distance considerations.  In a spectral sense, the first 
evidences of nonlinear propagation are seen at high frequencies due to the nonlinear steepening of the time 
waveform.  If the measurement bandwidth (transducer or data acquisition system) is insufficient, these effects will 
not be readily seen in power spectral comparisons unless the propagation distance is large enough.  However, since 
the size of an anechoic facility imposes a constraint on the allowable propagation distance, limited propagation 
distance for a given measurement bandwidth is a further limitation.  In an effort to maximize the comparison range, 
measurements that are assumed to be in the far field may be actually located in the geometric near field.   This 
practice would cause comparisons between spectra using a simple linear model that assumes far-field propagation 
erroneous. 
 The primary purpose of this paper is to describe the use of alternative methods to show evidence of nonlinear 
propagation, particularly in model-scale measurements that might be limited by bandwidth or propagation distances.  
These methods, dubbed “nonlinearity indicators,” consist of bispectral and quadspectral analyses.  After a summary 
of their underlying theories, these methods are applied to high-amplitude jet noise data collected at the National 
Center for Physical Acoustics in July 2005.  The analysis is used to separate geometric near-field effects from 
nonlinear propagation effects.  The investigation also results in some tentative conclusions regarding the onset of the 
geometric far field for supersonic jet noise.  
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II. Nonlinearity Indicators 

Because research regarding nonlinearity indicators for acoustic propagation is relatively new and the limitations 
of various types are still being explored, two different indicators have been selected for use in this research: the 
normalized quadspectral density between the square of the acoustic pressure and the acoustic pressure (first looked 
at by Morfey and Howell2 ), and the bicoherence.  The underlying theory and the potential utility of each of these 
two indicators are summarized in turn. 

A. Quadspectral Analysis 
In spectral analysis, the quadspectral density is defined as the imaginary part of the cross spectral density  

between two signals.  The particular quantity that is useful as an indicator of nonlinear propagation is the 
quadspectral density between the square of the acoustic pressure and the acoustic pressure, namely 

 ( ) ( ){ } ( ){ }[ ]tpFTtpFTfQ
pp

∗= 2Im2 . (1) 

Morfey and Howell2 first recognized the potential of 
pp

Q 2 as a nonlinearity indicator when they derived an 

ensemble-averaged version of the generalized Burgers equation (GBE), which may be written as 
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The GBE is a parabolic propagation equation that can incorporate nonlinearity, geometric spreading, and 
atmospheric absorption and dispersion.  In Eq. (2), for which spherical spreading is assumed, the left-hand side 
represents the spatial rate of change of the power spectral density, ( )frS pp , , that has been corrected for linear 

losses, namely spherical spreading ( 2
r ) and atmospheric absorption ( ( ) rfe α2 ).  If an assumption of spherical 

spreading holds, then in the absence of nonlinearity, then Eq. (2) will be equal to zero, meaning that a power spectral 
density that is corrected for the linear losses it experiences during propagation will remain unchanged.  Therefore, 
the right-hand side of Eq. (2) represents a quadratic source term that accounts for the sum/difference frequency 
generation that occurs during nonlinear propagation.  At frequencies where the right-hand side is negative, there is a 
net energy loss due to nonlinearity (i.e., energy is being transferred to other frequencies).  At frequencies where the 
right-hand side is positive, the energy net gain is positive. 

Different forms of nonlinearity indicators have evolved from the right-hand side of Eq. (2).  The first indicator, 
which has been used in analyses of jet and rocket noise data,2,9,12,13 is a dimensionless form that Morfey and Howell 
called Q/S that is written as 

 
( )

( ) rmspp

pp

pfS

fQ
SQ
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/ = . (3) 

A second indicator is the right-hand side of Equation (2) itself, which requires knowledge of both r and α.  This 
indicator has been used8,13,14 because its results are more readily interpretable than Q/S.  Physically, the right-hand 
side of Eq. (2) is the spatial rate of change of the power spectral density (PSD) due to nonlinearity as a function of 
frequency and range.  The final form of this indicator, developed by Falco et al.,15 involves a summation of the 
right-hand side of Eq. (2) over frequencies where it is negative.  A potential advantage of this approach is that it can 
be used more readily in situations where the measurement is significantly bandlimited.   

There are potential limitations in the application of Morfey-Howell-based nonlinearity indicators to jet noise.  
First of all, the GBE fundamentally assumes the wave has reached the acoustical far-field, where 1>>kr .  This 
would limit low-frequency applicability for a given range, especially near the jet.  Next, the GBE is most readily 
applied in situations where the type of geometric spreading is well-defined (e.g., sonic boom propagation, where the 
spreading is cylindrical.)  Near a jet, the type of geometric spreading is very likely frequency-dependent and it is not 
until the range is much greater than the aeroacoustic source length that the spreading will be approximately 
spherical.  Another limitation that arises in outdoor measurement situations is the fact that the GBE does not 
incorporate all relevant propagation phenomena.  Environmental effects (e.g., wind, turbulence, ground) not 
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modeled by the GBE would effectively impact the right-hand side of Eq. (2) and could result in erroneous 
conclusions regarding the nonlinearity of the propagation.  The final limitation, which has influenced studies that 
used the full right-hand side of Eq. (2), involves the dimensions of the equation.  If the range, r, is assumed to be in  
meters, then the rate of nonlinear energy transfer for a model-scale jet and a full-scale jet with the same operating 
conditions could differ by orders of magnitude.  If r is part of the nonlinearity indicator used, then the propagation 
distance should be normalized by the jet nozzle diameter (Dj).  That is the approach taken in this study. 

Despite the potential limitations of using a GBE-based nonlinearity indicator, there are also advantages that 
merit discussion as well.  First of all, the GBE is a widely used model equation within the nonlinear acoustics 
community and very accurately describes parabolic propagation as long as its governing assumptions are met.  
Second, with a relatively simple calculation and frequency-domain plot, one can make judgments regarding which 
frequencies are losing and gaining energy due to nonlinearity.  It should be noted that this is true regardless of the 
type of spreading, which simply constitutes a scaling factor in the right-hand side of Eq. (2).  For that reason, 
provided that the acoustic far-field assumption is met, a GBE-based indicator is at least a qualitative indicator of 
nonlinearity.  It can, therefore, be extremely useful in the present investigation, which is to distinguish nonlinear 
effects from geometric near-field effects in a laboratory jet noise measurement environment.  

B. Bicoherence Analysis 

The second type of nonlinearity indicator used in this analysis is the bicoherence, a dimensionless form of the 
bispectral density.  The bicoherence is a quantity used in higher-order spectral analysis to identify quadratic 
nonlinearities in a signal.  Quadratic nonlinearities reveal themselves in a propagating time waveform through sum- 
and difference-frequency generation, which causes the energy present at different frequencies to become phase 
coupled.  This process is known as quadratic phase coupling (QPC). The bicoherence, first proposed by Kim and 
Powers,16 may be expressed as 

 ( )
( )

( ) ( )2121
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,
,
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In Eq. (4), the bispectral density is defined as 

 ( ) ( ) ( ) ( )[ ]212121
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 and the bifrequency spectral density, ( )21 , ffZ , is defined as 
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A more extensive discussion of bispectral theory, particularly digital bispectral estimation, may be found in Ref. 10 
and additional references therein. 

The bicoherence removes the dependence of ( )21 , ffS ppp  on signal power at a given frequency and provides a 

measure of the degree to which QPC exists among spectral components in a signal.  However, ( )21 , ffb  currently 

has a strict quantitative interpretation only if the signal is periodic. For a periodic signal with spectral components at 
f1, f2, and f1 + f2, calculation of ( )21 , ffb  yields the fraction of power at f1 + f2 that is present due to QPC between f1 

and f2 .16 If the component at f1 + f2 exists solely because of a nonlinear interaction between f1 and f2, then 
( ) 1, 21 →ffb . However, for a nonlinear random noise signal, multiple bifrequencies may interact nonlinearly to 

yield a single component of ( )fS pp . Consequently, there is a cascading of sum and difference frequency generation 

that makes quantitative analysis of a bicoherence spectrum difficult. Greb and Rusbridge17 have investigated 
broadband spectral interactions in nonlinear plasma physics and have found that the maximum value of ( )21 , ffb  

may be reduced in an ill-defined manner which depends on both spectral shape and resolution. They suggest that 
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although the bicoherence is only useful for rather coarse spectral resolution, it is nevertheless helpful because its 
normalization allows the identification of nonlinear coupling that is undetectable without normalizing ( )21 , ffS ppp . 

As with the GBE-based indicators, the bicoherence has benefits but also limitations.  The principal benefit of 
bispectral analysis is that it does not depend explicitly on second-order wave equation assumptions and so can be 
used in both the acoustic and geometric near and far fields.  Also, the use of bispectral analysis is widespread; it has 
been used to identify quadratic nonlinearities in data sets from fields ranging from economics to astronomy.  The 
first limitation of bicoherence analysis has already been discussed, in that for a broadband jet noise signal, the strict 
quantifying of QPC is ill-defined. The other disadvantage of the bicoherence is that it seems to only detect the 
relative level of QPC in a signal, but does not independently indicate a direction of energy transfer.  There is a 
higher-order spectral analysis technique known as cross-bispectral analysis; however, use of that quantity was not 
immediately more helpful than the bicoherence and needs further investigation.   

There is another normalization of ( )21 , ffS ppp that merits mention before the experiments and results are 

discussed. Hinich and Wolinsky18 have criticized the Kim and Powers16 normalization of ( )21 , ffS ppp  by 

demonstrating that ( )21 , ffZ  can be shown to depend upon both the spectral resolution and upon the next higher-

order spectrum, the trispectral density. They instead promote the use of a different normalization, originally 
formulated by Haubrich19 and later termed the skewness function.20   Unlike the bicoherence, there is no upper 
bound on the skewness function.  However, its variance is flat as a function of bifrequency, which allows signal 
linearity to be readily determined via a statistical test based on a chi-square distribution assumption. Although only 

( )21 , ffb  results are presented in this paper, the skewness function was also calculated and yielded very similar 

results. Therefore, in this application of bispectral analysis to identify nonlinearity in high-amplitude jet noise, the 
bicoherence normalization is likely sufficient, because conclusions are currently based on relative comparisons 
between measurement range, angle, and jet Mach number. 

III. Experiment Description 

A. Facility Description 

An extensive set of model-scale jet noise data was collected at the National Center for Physical Acoustics in July 
2005.  The chamber has working dimensions of 5.8 m x 6.1 m x 2.4 m (18 ft x 19 ft x 8 ft) and is anechoic above 
200 Hz. Although the facility is usually capable of producing highly heated jets, only unheated jets were used for the 
experiments reported here.    Two different 3.49-cm (1.375-in) diameter round nozzles were used in the experiments 
described here, a Mach-0.85 (subsonic) nozzle and a Mach-2.0 (supersonic) nozzle.  This yields a maximum scaled 
propagation distance of 80 jet diameters (Dj). 

B. Data Collection and Processing 

Acoustic pressure data were collected using a stepper-motor-controlled microphone boom that was designed and 
constructed at Penn State.  Mounted on the boom, which is shown in Fig. 1, was a linear array of Bruel and Kjaer 
condenser microphones located at 10, 20, 30, 40, 60, and 75 Dj from the origin of the array.  Based on Schleiren 
visualization of the jet noise field, the boom was set up such that its axis was located 4 Dj downstream of the nozzle 
exit plane in an attempt to locate the boom at the source of the Mach wave radiation in the supersonic jet noise case.  
The boom was rotated in 5° increments to obtain a finely sampled jet noise field from 80°-150°, where the angles 
are relative to the forward direction (see Fig. 2).  In addition to the microphone boom, stationary Bruel and Kjaer 
4939 microphones at 80 Dj were located at 150° and 90°.  For each angle, 220 samples of time waveform data (about 
5.5 s) were acquired with an eight-channel, 24-bit Motu Model 896 recorder with a sampling frequency of 192 kHz. 

The boom microphones located at 10, 20, 40, and 60 Dj were 6.35-mm (0.25 in) diameter Bruel and Kjaer type 
4938 microphones, whereas the 30 and 75-Dj microphones were 3.18-mm (0.125 in) type 4138 microphones.  In 
order to provide the flattest response of these pressure-type microphones, they were mounted vertically on the boom 
at grazing incidence to the acoustic field.  However, it was determined that response of the 6.35-mm microphones 
began to roll off at about 35 kHz, whereas the response of the 3.18-mm microphones appeared to be flat out to the 
maximum analysis frequency of 75 kHz.  Consequently, at frequencies greater than 35 kHz, an amplitude correction 
was applied to the 6.35-mm B&K 4938 microphone data.  The correction at 75 kHz was approximately 7 dB. 
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IV. Measurement and Linear Extrapolation Results 

Spectral results for Mach 0.85 and Mach 2.0, calculated from the measured time waveform data, are presented in 
this section.  Because of the large amount of data collected, only a subset of data is shown and discussed.  In 
addition, a linear extrapolation analysis of the spectra is performed.  This extrapolation, which consists of the 
application of spherical spreading and atmospheric absorption out to the greatest measurement distance, may be 
written for generic distances r0 and r as 

 ( ) ( ) [ ] ( )frSe
r

r
frS pp

rrf
pp ,, 0

2
2

2
0 0−−= α . (7) 

In addition to linearity, this approach also inherently assumes that the data at r0 were collected in the geometric far 
field.  In Sec. V, deviations from linear, far-field behavior are further analyzed and separated into geometric near-
field and nonlinear propagation effects. 

A. Mach 0.85  

 
For the Mach-0.85 jet, the measured PSDs at 90° are displayed in Fig. 3a.  The results reveal the presence of 

geometric spreading manifested by the overall intensity decay as a function of distance.  In addition, the spectral 
roll-off at high frequencies that increases as a function of distance shows the effects of atmospheric absorption on 
the noise propagation. 

An important part of the analysis of the Mach-0.85 data involves a linear extrapolation of the 10—60-Dj data out 
to 75 Dj. The primary purpose of this extrapolation, which amounts to assumed free-field linear propagation between 
the measurement and extrapolation distances, is to use the PSD estimates at several distances to gauge the linearity 
of the propagation.  As discussed before, this involves the application of spherical spreading and atmospheric 
absorption between the measurement distance and the extrapolation distance.  It is worth noting that this approach is 
somewhat different than that often taken in jet noise data analyses.  In a typical study, authors scale spectra to a 
reference distance near the source and attempt to remove the effects of atmospheric absorption to create a “lossless” 
spectrum.  The intent is to be able to readily compare noise spectra that have been measured under different 
atmospheric conditions.  Although the method is wholly accurate for far-field spectra and linear propagation, it may 
be ill-suited for high-amplitude (i.e., nonlinear) jet noise data analysis, especially over large extrapolation distances.  
The nonlinear propagation results in an energy transfer to high frequencies, which can mitigate the high-frequency 
spectral roll-off normally associated with atmospheric absorption.  In fact, it was early measurements of aircraft 
noise where “anomalously low” atmospheric absorption was observed that caused researchers to suspect nonlinear 
propagation (e.g., see Ref. 2 and references therein).  From a system input and output perspective, application of a 
linear transfer function to the spectrum when the system is nonlinear will yield nonphysical results.  This 
nonphysical result is manifest by a “turn-up” at high frequencies in the “lossless” spectrum. 

In Fig. 3b, the Mach-0.85 spectra at 10-60 Dj displayed previously in Fig. 3a have been linearly extrapolated out 
to 75 Dj using Eq. (7). The general collapse of the 10-60-Dj data (+/- 1 dB) suggests that the propagation is linear 
and that the source is aeroacoustically compact.  A comparison of Figs. 3a and 3b reveals, however, that the 75-Dj 
PSDs exhibit some 1-2-dB spikes below 10 kHz.  Because a) similar spikes are manifest in virtually every 75-Dj 
measurement, and b) a check of the data acquisition system itself with a nonacoustical input revealed no spikes, the 
cause of the spikes is likely reflections from boom surfaces that were not entirely wrapped with absorptive material.  
With the exception of the spikes, however, the 75-Dj measured PSD collapses with the extrapolated spectra, 
especially above 10 kHz. 

These linear extrapolation results for the subsonic case merit further discussion regarding the definition and 
location of the geometric far field for subsonic jet noise.  As mentioned previously, the measurement array was 
centered 4 Dj downstream from the nozzle exit plane.  This was an attempt to collocate the measurement array with 
the dominant aeroacoustic source region for these particular experiments.  The geometric far field in this context is 
understood to be where the intensity decay begins to look spherical along a given radial, which indicates a compact 
source.  However, many researchers in the jet noise community define the geometric far field to be the location 
where an assumption that the noise originates as a spherically spreading source at the nozzle exhaust results in 
negligible error.  Koch et al.21 and Viswanathan22 have recently published papers in which experimental results have 
been used to establish the location of the geometric far field (for the latter definition) for unheated round jets.  In the 
Koch et al. experiments, Mach-0.5 and Mach-0.9 unheated jets were studied.  In Viswanathan’s paper, the 
conditions investigated were Mach 0.6, 0.8, and 1.0.  Koch et al. concluded that, for their definition of the geometric 
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far field, a spherically spreading compact source could only be assumed for distances greater than 50 jet diameters.  
They did note that high frequencies reached the far field as close at 8 diameters, but concluded that the extended 
nature of the low-frequency aeroacoustic sources pushed the overall far field to a greater distance.   From his studies, 
Viswanathan found that the geometric far field began at about 35 jet diameters but his conclusions were made for 
“jet noise” in general without regard for jet source conditions (e.g., Mach number, temperature ratio, etc.). 

The results from the current experiment suggest that for a subsonic jet, the noise source can be considered nearly 
aeroacoustically compact even at very close ranges.   This conclusion is based on the collapse of the curves in Fig. 
3b.  However, if the acoustic array is centered at the nozzle exit plane, one has two effects to separate: a) when is the 
spreading spherical, and b) when can it be assumed that the noise originates at the nozzle?  To demonstrate this 
principle, the experimental setup shown in Fig. 2 was modified in that the boom axis was moved to the nozzle exit 
plane.  The linearly extrapolated spectra for 90° out to 75 Dj are displayed in Fig. 4.  If the results in Fig. 4 are 
isolated and used by themselves, one could potentially conclude that the spreading from this subsonic jet is 
appreciably nonspherical at low frequencies.  However, comparison with Fig. 3b, which showed essentially 
spherical spreading for the same jet, demonstrates that the failure of the extrapolations to collapse in Fig. 4 is caused 
by misalignment of the acoustic source with the measurement array axis.  In other words, the spreading appears to 
be spherical but the noise source does not originate at the nozzle exit plane; to assume so can introduce significant 
errors into simple analyses.  Finally, it is noted that the results in Fig. 4 do appear to corroborate the findings of 
Viswanathan for a subsonic jet in that the collapse of spectra measured beyond 30 Dj is ± 1 dB. 

B. Mach 2.0 

 
The limited set of Mach-0.85 results have been shown to describe the propagation of noise from a subsonic jet.   

In the nonlinearity indicator analysis section, these results will be used as a benchmark to demonstrate the behavior 
of the indicators for relatively low-amplitude noise signals.  The measurement results for the supersonic Mach-2.0 
jet, however, represent a significant increase in level from the subsonic jet.  The OASPL as a function of both angle 
and radius is shown in a polar representation in Fig. 5.   (For this and all subsequent measurements, the measurement 
array is centered at 4 Dj as shown in Fig. 2 rather than the nozzle exit plane.)  The cause of the approximately 2-dB 
“bump” in the OASPL curves between 95° and 110° at all distances has not been determined; however, the data 
from those angles are not important to the subsequent analyses and are not considered further. 

Unlike the previous Mach 0.85-case, a linear extrapolation analysis for the Mach-2.0 data reveals significant 
discrepancies between extrapolated and measured spectra.  Three angles have been selected for analysis: 90°, 120°, 
and 145°, the last of which appears to correspond to the Mach wave angle for sufficiently large distances (see Fig. 
5).  The measured PSDs and corresponding linear extrapolations out to 75 Dj, calculated according to Eq. (7), are 
shown in Figs. 6-8.  In Fig. 6a, the 90° measured spectra show the effects of geometric spreading and atmospheric 
absorption, as there is an overall spectral decay but also increased losses at high frequencies as a function of range.  
Also apparent in Fig. 6a is a slight downward shift in peak frequency as a function of range.  The linear 
extrapolation analysis in Fig. 6b demonstrates better collapse at high frequencies than at low, but does not collapse 
within +/- 1 dB until beyond 40 Dj.  As was noted for the Mach-0.85 case, the spectral spikes below 10 kHz are 
present in the 75-Dj data, but the trend, especially above 10 kHz, follows those of the 40- and 60-Dj spectral 
densities.   

  In Fig. 7, the spectral and extrapolation results are presented for 120°.  The OASPL at a given distance from the 
origin for this angle is approximately 5 dB greater than for the same distance and 90°.  Figure 7a reveals similar 
behavior to that at 90°, in that there are the spectral decays due to geometric spreading and atmospheric absorption 
and a slight shift downward in peak frequency.  In Fig. 7b, however, the general collapse of the extrapolated spectral 
densities at high frequencies is approximately 2 dB better than it was for 90°.   At low frequencies, though, the 
collapse of the 120° data is slightly worse than the 90° data. 

Figure 8 contains the measured and extrapolated spectral densities for 145°.  These results represent a drastic 
change in behavior from the 90° and 120° data, beginning with an approximate 12 dB increase in OASPL from 
120°.  In Fig. 8a, there is a significant downward shift in peak frequency between 10-60 Dj.  Between 60 and 75 Dj, 
there does not appear to be a downward shift, but this point is less definitive due to the spectral spikes at 75 Dj.  The 
other notable feature of the 145° PSDs in Fig. 8a that distinguish them from the behavior of the 90° and 120° data is 
the lack of apparent atmospheric absorption at high frequencies.  The spectral slope beginning at about 20 kHz for 
10 Dj is approximately the same for all subsequent measured spectral densities.  The high-frequency roll-off  that 
increases as a function of range (for linear propagation experiencing atmospheric absorption) is not present.  The 
linear extrapolation analysis in Fig. 8b reinforces these points.  An assumption of spherical spreading in the analysis 
provides a poor fit to the actual evolution of the PSD as a function of range.  In fact, a comparison of the 10-Dj and 
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the 60-Dj reveals a 13 dB discrepancy between the two spectral densities at 3 kHz.  In addition, the linear 
extrapolation analysis in Fig. 8b demonstrates what would happen to the approximate f -2 measured spectral slopes at 
high frequencies for ordinary linear propagation.  Addition of absorptive losses, which appear to not show up in the 
measurement, as part of the linear extrapolation results in a steady increase in measured spectral levels at high 
frequencies relative to those linearly predicted as a function of propagation distance. 

V. Nonlinearity Indicator Analysis 

 
The Mach-2.0 jet noise results described in the previous section give rise to the key question of this 

investigation: Which of the behaviors shown in Figs. 6-8 that vary from far-field, linear propagation are related to 
near-field effects and which are caused by nonlinear propagation?  Because of the supersonic, extended aeroacoustic 
source region for the Mach-2.0 jet, many of the boom measurements have likely been carried out in the geometric 
near field where an assumption of spherical spreading is invalid.  (Note that placement of microphones in the 
geometric near field was intentional for the purposes of this study.)  In addition, in the near field the propagation 
angles may not be well aligned with the measurement angles and so analyses of data acquired along a given radial 
may not be an accurate representation of the actual propagation.  From a nonlinear standpoint, steepening of the time 
waveform will cause a transfer of energy from the peak-frequency region of the spectrum upward and possibly 
downward in the spectrum, which will cause an evolution of the spectrum that will differ from that predicted by 
linear theory.  Consequently, there are potentially two causes for the results in Figs. 6-8: near-field effects and 
nonlinear propagation effects.  

Examination of the measured and linearly extrapolated PSDs in Figs. 6-8 cannot conclusively separate near-field 
effects from nonlinear propagation effects because the PSD simply decomposes the spectral content present in the 
waveform as a function of frequency.  There is no way of knowing the origin of the energy a given frequency band 
and whether it is quadratic-phase coupled to another band.  For that reason, the spectrally based nonlinearity 
indicators described in Sec. II will be used to further analyze the propagation from these model-scale jets.  Limited 
results from the Mach-0.85 jet are first presented to benchmark the behavior of the indicators for a linear 
propagation case.  A more extensive analysis of the Mach-2.0 data is then carried out. 

A. Mach 0.85  

Provided that the measurement array was closely aligned with the dominant aeroacoustic source region for the 
subsonic jet, the linear, far-field propagation assumption applied via Eq. (7) resulted in little error (see Fig. 3b).  The 
purpose of showing the Mach-0.85 nonlinearity indicator results is to characterize their behavior for a low-
amplitude, linear propagation case.  The first indicator shown is the quadspectral density-based indicator calculated 
from the right-hand side of Eq. (2), which represents the spatial rate of change of a linearly corrected PSD due to 
nonlinearity.  As discussed in Sec. II, r is not expressed in meters, but rather in terms of the number of jet diameters, 
Dj.  In Fig. 9, the calculated indicator is displayed for 90° and 60 Dj.  The relatively low magnitude (compared with 
the Mach-2.0 results) and the fact that there are no distinct frequency regions separating positive and negative values 
suggests that nonlinearity is not a factor in the Mach-0.85 noise propagation.  Figure 10 displays the bicoherence 
analysis results for the same microphone signal.  For all frequencies, ( )21 , ffb  is below the 99% confidence 

threshold for significant bicoherence, of which a conservative estimate is approximately 0.05.23,10  The results for 
( )21 , ffb  confirm that that QPC is negligible in the propagation of noise for the Mach-0.85 jet. 

B. Mach 2.0 

The previous subsection was instrumental in benchmarking the behavior expected of these nonlinearity 
indicators for low-amplitude noise propagation.  For the Mach-2.0 data, where there are potentially both near-field 
and nonlinear effects, the nonlinearity indicators can be useful in separating the how these effects impact PSD 
evolution.  For example, Figs. 6-8 each demonstrated deviation in measured spectra from expected far-field, linear 
propagation behavior.  However, when the 90° and 120° data are analyzed using nonlinearity indicators, there is no 
evidence that the effects seen in Figs. 6b and 7b are due to nonlinear propagation effects.  Displayed in Fig. 11 is the 
right-hand side of Eq. (2) calculated for various angles at 60 Dj.  For 90°, 120°, and 130°, the indicator is very nearly 
zero (magnitudes are on the order of 10-3 to 10-2) when compared to the 145° and 150° results, which are discussed 
subsequently.  Figures 12 and 13 show ( )21 , ffb  for 90° and 120° respectively, and although there are hints of 

significant bicoherence in Fig. 13, the QPC is generally negligible.  These results indicate that the deviation from 
linear, far-field behavior in Figs. 6b and 7b is caused by near-field, not nonlinear effects. 
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At 145°, there were two spectral trends that disagreed with assumed far-field, linear propagation.  First, Fig. 8b 
displayed a significant increase in spectral energy at low frequencies relative to the spherically extrapolated spectra, 
in addition to a downward shift in peak frequency.  Second, there is an apparent lack of atmospheric absorption at 
high frequencies in the measured spectra (see Fig. 8a), which when compared against assumed linear propagation 
translates into greater measured energy at high frequencies than is linearly predicted (see Fig. 8b).  The fundamental 
question is: Can either or both of these effects be explained in terms of nonlinear propagation? 

As discussed before, Fig. 11 shows the Eq. (2)-based nonlinearity indicator at 60 Dj for various angles.  Contrary 
to the lesser angles analyzed previously, 145° and 150° show clear trends in terms of nonlinear energy transfer.  The 
curve for 145° shows that, from approximately 1.5-15 kHz, the net change in spectral energy due to nonlinearity is 
negative, meaning that these frequencies are losing energy.  Above about 20 kHz, however, the indicator is clearly 
positive, which signifies that these frequencies are nonlinearly gaining energy. 

Examination of the evolution of the quadspectral indicator as a function of range for fixed measurement angle is 
also helpful in studying the behavior of the noise propagation.  In Fig. 14, the right-hand side of Eq. (2) has been 
calculated for each of the boom microphones along 145°.  These curves each show a net flux of energy from the 
peak-frequency region of the PSD to higher frequencies.  Although the downward shift in peak frequency present in 
Fig. 8 is tracked by the results in Fig. 14, note that there is no significant nonlinear energy transfer downward in the 
spectrum predicted by the indicator for any of the measurement distances.  It is also noteworthy that the frequency 
region where the indicator switches from negative to positive values (12-20 kHz) is the same region in Fig. 8b above 
which greater spectral levels are measured than are linearly predicted. 

The bicoherence analysis for the microphone measurements along 145° also reveals nonlinear propagation 
behavior, but in a different manner than the quadspectral density indicator.  Displayed in Fig. 15 are ( )21 , ffb  

calculations for each of the six measurement distances.  The comparison of the curves shows that the QPC in the 
signals increases as a function of range; therefore, ( )21 , ffb  appears to be a cumulative indicator of the nonlinearity 

that has occurred to that point.  Stated another way, the results in Fig. 15 indicate that the fraction of spectral energy 
at high frequencies that is caused by nonlinearity is increasing as a function of distance.  Furthermore, Fig. 15 shows 
that the QPC generally occurs between the peak-frequency region of the spectrum and higher frequencies, which 
indicates an upward transfer of energy in the spectrum.  The region of significant bicoherence shifts downward with 
the spectral peak in the PSD, but there is little indication of significant bicoherence at bifrequency pairs below the 
peak-frequency region.  This result suggests that nonlinearity is primarily shifting energy upward in the spectrum 
and that the evolution of the spectrum in Fig. 8b around the peak-frequency region is not caused by nonlinear 
effects, but rather near-field directional and extended source effects.  Consequently, it appears that shock 
coalescence, the nonlinear phenomenon that can result in a significant transfer of energy downward in the spectrum, 
is not a factor in the propagation of noise for the Mach-2.0 unheated jet.  

One final point of discussion regarding these supersonic jet data regards the onset of the geometric far field for 
the Mach-2.0 unheated jet.  The nonlinearity indicator analysis has revealed that the changes in the peak-frequency 
region of the spectrum relative to spherical spreading are primarily caused by geometric near-field effects.  
Examination of Figs. 6-8 in this context demonstrates that far-field, spherical spreading cannot be assumed for the 
Mach-2.0 unheated jet for distances closer than 60 Dj.   The spectral spikes at 75 Dj preclude quantitative analysis of 
the onset of the far field beyond 60 Dj; however, the similarity of the 60 and 75-Dj spectra suggest that the far field 
is at least being approached. 

VI. Conclusion 

The analysis in this paper has resulted in the primary conclusion that nonlinearity indicators, when coupled with 
ordinary spectral analysis, can be used to identify near-field and nonlinear effects in high-amplitude jet noise 
propagation.  This technique is particularly applicable to high-amplitude noise measurements in model-scale jet 
facilities, where the maximum distances are usually fairly short.  Future work in this area should include 
measurement made on supersonic, heated jets, because the OASPL for this case were relatively low (~137 dB re 20 
µPa maximum at 10 Dj and 150°).  Although this situation was sufficient to produce nonlinearity at high frequencies 
and peak directivity angles, jet conditions that produce significantly greater levels (more similar to military jet 
aircraft) should result in more significant nonlinear propagation effects.  Such a study is required to better 
understand the potential role of acoustic shock coalescence on the evolution of the peak-frequency and low-
frequency regions of the jet noise spectrum. 

Additional research to be carried out involves developing a better quantitative understanding of these 
nonlinearity indicators.  Although they are currently useful as a complement to power spectral analysis to better 
understand high-amplitude noise propagation, more work is needed to more fully understand the significance of 
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actual values of the quadspectral density-based and bicoherence indicators and how these they relate to the nonlinear 
evolution of a propagating jet noise waveform. 
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Figure 1. Photograph showing nozzle and microphone boom in the NCPA anechoic jet noise facility.  

 
 

 
 
 

Figure 2.  Diagram of microphone measurement locations, from 80°-150°, measured from 

the forward direction. 
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Figure 3.  a) Measured power spectral densities for the Mach-0.85 jet at 90°, with the measurement array 

configured as shown in Fig. 2.  b) Comparison of linearly extrapolated PSDs with the measurement at 75 Dj. 
 
 
 
 

 
 
 

 
Figure 4.  Linearly extrapolated PSDs out to 75 Dj 

for the Mach-0.85 jet at 90°, but with the 

measurement array centered at the nozzle exit 

plane rather than 4 Dj downstream. 

 
Figure 5.  OASPL (in dB re 20 µPa) for the Mach 

2.0 jet from 80° to 150°.  The measurement array 

for all Mach-2.0 data was configured as shown in 

Fig. 2. 
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Figure 6. a) Power spectral densities for the Mach-2.0 jet at 90°.  b) Comparison of linearly extrapolated 

PSDs at 75 Dj for 90°. 

 
Figure 7.  a) Power spectral densities for the Mach-2.0 jet at 120°.  b) Comparison of linearly extrapolated 

PSDs at 75 Dj for 120°. 

 
Figure 8.  a) Power spectral densities for the Mach-2.0 jet at 145°.  b) Comparison of linearly extrapolated 

PSDs at 75 Dj for 145°. 
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Figure 9. Nonlinearity indicator calculated from 

the right-hand side of Eq. (2) for the Mach-0.85 jet 

at 90° and 60 Dj.  

 
Figure 10. Bicoherence for the Mach-0.85 jet at 

90° and 60 Dj. 

 
Figure 11. Equation (2)-based indicator for the 

Mach-2.0 jet at various angles and 60 Dj. 
 

 
Figure 12. Bicoherence for the Mach-2.0 jet at 90° 

and 60 Dj. 
 

 
Figure 13. Bicoherence for the Mach-2.0 jet at 

120° and 60 Dj. 

 
Figure 14. Equation (2)-based indicator calculated 

at the boom microphones for the Mach-2.0 jet at 

145°. 



 
American Institute of Aeronautics and Astronautics 

 

15 

 
Figure 15. Bicoherence for the Mach-2.0 jet at 145° for 10-75 Dj, shown sequentially in Figs. a-f. 
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