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An alternative pressure-sensor based method for estimating the acoustic intensity, the phase and

amplitude gradient estimation (PAGE) method, is presented. This method uses the same hardware as

the standard finite-difference method, but does not suffer from the frequency-dependent bias

inherent to the finite-difference method. A detailed derivation of the PAGE method and the

finite-difference method is presented. Both methods are then compared using simple acoustic fields.

The ability to unwrap the phase component of the PAGE method is discussed, which leads to

accurate intensity estimates above previous frequency limits. The uncertainties associated with both

methods of estimation are presented. It is shown that the PAGE method provides more accurate

intensity estimates over a larger frequency bandwidth. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4914996]

[DKW] Pages: 3366–3376

I. INTRODUCTION

The method for in-air acoustic intensity measurements

using matched microphone sets has been sufficiently refined

so that it is the subject of several standards.1,2 Additional

standards have been developed for various applications of

intensity measurements, including in situ emission pressure

level measurements,3 sound power measurements,4,5 and

determination of sound insulation properties in building

acoustics.6–8 The principles and applications of acoustic

intensity are described in a textbook by Fahy9 and in other

handbooks, such as Refs. 10–12. These standards and books

deal almost exclusively with a method for estimating acous-

tic intensity that is commonly referred to as the FD method.

This method uses multiple matched microphones to estimate

the pressure gradient across the microphones, which corre-

sponds to the particle velocity and thereby the acoustic

intensity. This method suffers from a frequency-dependent

bias: the method underestimates the intensity as frequency

approaches the spatial Nyquist frequency, where half the

wavelength of the incoming waves equals the separation

distance between microphones within the probe.13 For the

convenience of this work, the finite-difference p-p method is

referred to simply as the FD method.

In addition to the FD or p-p method, there are intensity

probes based directly on simultaneous pressure and particle

velocity measurements, i.e., the p-u method. A commercially

available probe uses a pair of heated wires to measure acous-

tic velocity directly.14 In environments where significant

non-acoustic temperature and velocity fluctuations occur,

use of the p-p method has been shown to be more robust.11,15

Recent efforts to develop and use p-p based probes in the

near field of rocket and military jet aircraft plumes16–19 have

served as motivation to examine errors associated with the

FD method.

Various studies have investigated how to quantify and

reduce errors related to FD processing of p-p probes. These

include low-frequency phase mismatch,20 high-frequency

probe performance,21 and the effect of scattering bias,22,23 as

well as the design of multidimensional probes.24–27 In recent

papers, Wiederhold et al.28,29 reviewed many probe designs

and considered different schemes for optimal estimation of

sound intensity using the FD method. The foundation for all

of these studies is the original FD method, which involves

sums and differences of complex pressures or cross spectra.

In this work, we propose a new approach for the calcula-

tion of acoustic intensity from measured fields, inspired by

the work of Mann et al.30 and Mann and Tichy.31,32 In these

works, it is demonstrated that the active and reactive inten-

sities can be written as

Ia ¼
1

xq0

P2$/; (1a)

Ir ¼ �
1

xq0

P$P: (1b)

These equations are used to investigate the physical meaning

of energy-related quantities. When Mann et al. compared

theoretical results to measured intensities, intensity relations

derived from Eqs. (1a) and (1b) were not used in measure-

ment, but instead the traditional FD method was used.32 We

propose that the expressions given by Mann et al. can be

used to create a new method of estimating acoustic intensity.

The expressions, Eqs. (1a) and (1b), were proposed primarily

as theoretical tools, whereas the focus of this work will be

the application of these expressions to estimate intensity

from physical measurements.

The FD method uses a gradient of the complex pressure

to determine acoustic intensity. Rather than estimating the

pressure gradient from the complex pressures, the gradients
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of the pressure phase and amplitude can be estimated sepa-

rately. Using these gradients, along with a center pressure

amplitude, the relations in Eqs. (1a) and (1b) can be used to

estimate the acoustic intensity. We refer to this method as

the phase and amplitude gradient estimation method, or the

PAGE method.

This paper develops the mathematical theory of the

PAGE method and demonstrates the advantages of this

method over the standard FD method. The derivation of the

estimation techniques required for both the FD and PAGE

methods is given. One primary advantage of the PAGE

method over the FD method is that the measured phase

differences can be unwrapped, which allows for accurate in-

tensity estimates to be made beyond the spatial Nyquist limit

of a probe. A discussion of ensemble averaging of data to

obtain intensity estimates is also included, as it differs

slightly between the two methods. We then compare the two

methods through estimation error of various fields, using two

simple probe configurations. It is shown that the PAGE

method does not suffer from the frequency-dependent bias

and provides better estimates of the intensity. Last, the

effects of calibration errors on measurements are considered

using an uncertainty analysis.

II. THEORY

All the derivations in this paper are conducted in the fre-

quency domain; that is, all pressures and particle velocities

are assumed to be obtained from the Fourier transform of an

appropriate function. Variables with numeric subscripts

correspond to those evaluated at position vectors with the

same index. For example, p1 is equivalent to pðr1Þ, where r1

is a position vector. The methods presented here assume that

the measured field is statistically stationary and ergodic,

meaning the statistical properties can be determined with a

sufficiently long sample.22 This assumption allows the devel-

opment of concise frequency-dependent expressions for the

complex intensity in terms of active, Ia, and reactive, Ir,

components.

Because both the standard FD method and the new

PAGE method for estimating the acoustic intensity can be

formulated in terms of least-squares estimates, we first

present the formulation of this least-squares estimate. The

formulation given here provides the same expressions for the

estimated pressure gradient as the method of Pascal and

Li.33 However, the approach developed here is better suited

to estimation of the gradient of other field quantities required

for this work.

A. Least-squares estimate of the gradient of a scalar
function

A probe consisting of N sensors placed at N unique

points with position vectors r1; r2;…; rN can be used to esti-

mate the gradient of a scalar function, gðrÞ. It should be

noted the methods presented here require at least one more

sensor than the number of dimensions in the system that is to

be measured (i.e., two sensors for one-dimensional fields,

three sensors for two-dimensional fields, etc.). The estimate

is developed in a geometry-independent form by defining the

NðN � 1Þ=2� 3 matrix X with unique pairwise separation

vectors as rows

X ¼ ½r2 � r1jr3 � r1j � � � jrN � rN�1�T (2)

and the 1� NðN � 1Þ=2 vector of unique pairwise differen-

ces of the values of the function g at the sensor positions

dðgÞ ¼

gðr2Þ � gðr1Þ
gðr3Þ � gðr1Þ

..

.

gðrNÞ � gðrN�1Þ

26664
37775: (3)

The gradient of gðrÞ can be estimated using this expression

obtained from a multivariate Taylor series

X$g ¼ dðgÞ þ Ofmax½X$ð$gÞXT �g; (4)

where $ð$gÞ is the matrix of second-order derivatives of

the function g (the Hessian matrix). The order of the error in

Eq. (4) is approximately proportional to the product of the

maximum second derivative and the square of the maximum

separation distance between sensors. Because the Hessian

matrix can be related to the curvature of isosurfaces in the

field, g, Eq. (4) implies that the local maximum “radius of

curvature” of the field g must be large relative to the square

of the maximum separation distance of the sensors in the

probe. In other words, the field must be close to planar in the

neighborhood of the probe.

For probe configurations in which the product of the

squared maximum separation distance with the maximum

second derivative is sufficiently small compared to the func-

tion value, a first-order estimate is obtained from the least-

squares solution for the over-determined system in Eq. (4):

c$g ¼ ðXTXÞ�1
XTdðgÞ: (5)

The overhat is used to indicate estimated quantities. The ma-

trix inversion in Eq. (5) requires that det ðXTXÞ 6¼ 0. A nec-

essary and sufficient condition to be able to invert the matrix

XTX for a two-dimensional probe is that the sensors not lie

on a line; for a three-dimensional probe, the sensors cannot

lie in a plane.

B. FD method

The FD method relies on a least-squares estimate of the

gradient of the complex pressure. The FD estimate of the

gradient of a pressure field, p, is given by Eq. (5) as

c$p ¼ ðXTXÞ�1
XTdðpÞ: (6)

The expression for the estimated pressure gradient, c$p, in

Eq. (6) is a linear combination of the pressures measured at

the sensor locations. This estimated pressure gradient may

then be used to estimate the acoustic intensity in the fre-

quency domain as

bIc ¼
j

q0x
p0
c$p
�
; (7)
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where p0 ¼ pðr0Þ, where r0 is the “center of mass” of the

probe

r0 ¼
1

N

XN

i¼1

ri: (8)

The work of Wiederhold et al.28,29,34 gives a detailed analy-

sis of optimal methods of finding p0 given different probe

configurations. In these works, Wiederhold et al. discuss dif-

ferent finite-sum and -difference processing methods and

their associated biases. Unless a microphone exists at the

center of a probe configuration, the work of Wiederhold

et al. must be considered to attain optimal intensity estimates

for a given probe configuration. If a microphone exists at the

center of the probe, such as in the probe used by Miah

et al.,35 p0 is the complex pressure measured by the center

microphone.

C. PAGE method

The new PAGE method uses estimates of the phase gra-

dient and amplitude gradient of a pressure field to estimate

the acoustic intensity. The PAGE method is most easily

developed using the notation of Mann and Tichy.30 First, the

complex pressure is separated into amplitude and phase

components

pðrÞ ¼ PðrÞe�j/ðrÞ; (9)

where P and / are real, scalar functions of the position r,

representing the amplitude and phase of the pressure, respec-

tively. The gradient of the pressure, p, can be written in

terms of P and / as

$pðrÞ ¼ ½$PðrÞ � jPðrÞ$/ðrÞ�e�j/ðrÞ: (10)

The active and reactive components of the intensity can be

rewritten as

Ia ¼
1

xq0

P2$/; (11a)

Ir ¼ �
1

xq0

P$P: (11b)

Our work uses these expressions derived by Mann and

Tichy30 as a starting point. We observe that an esti-

mate of I can be obtained from estimates of P, $/,

and $P.

First, using the same least-squares estimate as Eq. (6),

$/ is estimated as

c$/ ¼ ðXTXÞ�1
XTdð/Þ; (12)

where dð/Þ represents a vector of pairwise phase differen-

ces, which must be obtained from the measurements of pres-

sure. The phase difference between two sensors can be

found from the transfer function

/ðrjÞ � /ðriÞ ¼ arg ejð/ðrjÞ�/ðriÞÞf g (13)

¼ �argfe�jð/ðrjÞ�/ðriÞÞg (14)

¼ �arg
pj

pi

� �
(15)

¼ �argfHjig: (16)

Thus the vector of pairwise phase differences, dð/Þ, is given

by the pairwise transfer functions as follows:

dð/Þ ¼ �

argfH12g
argfH13g

..

.

argfHN�1;Ng

26664
37775 : (17)

Because the phase differences can be obtained directly from

the transfer functions, it is preferable to estimate $/ using

the method presented in Sec. II A rather than using a least-

squares estimate of the total phase, /, which would require

the application of the arg function directly to the pressure

measurements pi to obtain the value of / at each sensor

location.

Next, the pressure amplitudes are found by taking the

magnitudes of the measured complex pressures

Pi ¼ jpij: (18)

The pressure amplitude gradient, $P, can be estimated using

the same least-squares estimate as the previous gradients

c$P ¼ ðXTXÞ�1
XTdðPÞ; (19)

where dðPÞ represents the vector of pairwise differences of

the measured pressure amplitudes ðPiÞ,

dðPÞ ¼

P2 � P1

P3 � P1

..

.

PN � PN�1

26664
37775: (20)

The pressure amplitude at the center of the probe must also

be found. If there is a microphone at the center of the probe,

P0 is found by taking the magnitude of the complex pressure

of the center microphone. If a configuration without a center

microphone is used, an analysis similar to the work of

Wiederhold et al. must be employed.28,29,34

Using these estimated quantities, we can now estimate

the reactive and active intensities as

bIa ¼
1

xq0

P2
0
c$/; (21a)

bIr ¼ �
1

xq0

P0
c$P: (21b)

D. Phase unwrapping

Multi-microphone intensity probes are generally limited

to an upper frequency limit, determined by the separation
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distance between microphones. This limit, which we will

call the spatial Nyquist limit, occurs when kd ¼ p, where k
is the wavenumber, and d is the separation distance between

microphones. The FD method suffers from a frequency-

dependent bias, where the intensity magnitude is underesti-

mated as kd approaches p. Past the spatial Nyquist limit, the

direction and the magnitude of the intensity estimates given

by the FD method become completely unreliable. While the

PAGE method does not suffer from the same inherent

frequency-dependent bias as the FD method, it still normally

gives incorrect estimates past the spatial Nyquist limit.

Given certain measurement source characteristics, this limit

can be surpassed by unwrapping the phase differences in the

argument of the transfer functions.

The phase differences used in the PAGE method are

found by taking the argument of the transfer functions

between microphones, argfHijg. The argument function is

limited between �p and p, and as such, when the phase

function between two microphones is greater than 6p the

phase function will wrap. For example, a phase difference of

1:1p will wrap to �0:9p. The phase difference between

microphones will equal 6p when half the acoustic wave-

length is equal to the separation distance between the micro-

phones, also known as the spatial Nyquist limit. These

wrapped phase differences result in incorrect phase gradients

and thus provide meaningless intensity estimates. When

measuring a broadband response, the phase differences func-

tion in the frequency domain will be continuous up to the

spatial Nyquist limit. At this point, the phase function will

wrap and exhibit a 62p jump. If we use a simple “unwrap”

function, this discontinuity can be corrected by adding 62p
to the phase function in frequencies above the discontinuity.

Because this type of unwrapping requires a continuous

phase function, a broadband source is required. This phase

function unwrapping allows for accurate phase gradient

components past the spatial Nyquist limit, which in turn

allows for accurate intensity estimates well past the spatial

Nyquist limit.

With a noise-free measurement, there is no upper fre-

quency limit to the PAGE method if the phase function is

unwrapped. In practice, noise in the argument of the transfer

function will limit the extent to which the phase function can

be unwrapped. A noisy transfer function will cause the argu-

ment of the transfer function to have multiple discontinuities

when the function approaches the 6p limit. If just one of the

occurring 2p jumps is not correctly accounted for, the entire

function past that frequency will be incorrect. Thus, mini-

mizing the noise in the transfer functions allows for a larger

range of correctly unwrapped phase differences and thus a

larger range of accurate intensity estimates. The primary

means of minimizing noise in the transfer function is through

ensemble averaging, which is discussed in Sec. II E.

E. Averaging

When applying either the FD or the PAGE method to

physical data, it can be advantageous to apply averaging,

especially with non-repeatable noise sources. The averaging

required for the FD method is relatively simple: the time

waveform is broken into blocks, and then the complete in-

tensity processing as discussed above is applied to each

block. Each block will then have an associated intensity vec-

tor. The average of these vectors is the complete averaged

intensity. This approach will provide the same result as

averaging the individual cross-spectra and then computing

the intensity estimates.

Because the PAGE method relies on the phase of the

transfer function, the order of operations with ensemble

averaging must be more carefully considered. To obtain the

most accurate time-averaged intensity, the transfer functions,

H12, H13, etc., of each block are calculated. These transfer

functions are then averaged, and the averaged transfer func-

tions are used in the PAGE calculations. For example,

H12;avg ¼
1

N

XN

n¼1

H12;n; (22)

where N is the total number of blocks, and n represents the

index of each block. The argument of these averaged transfer

functions is then used in the PAGE method calculations and

result in c$/avg. Similarly, the pressure amplitudes, Pi;avg,

can be found by calculating Pi for each block and taking the

mean. The averaged pressure amplitudes are then used to

calculate c$Pavg using the same method outlined earlier. The

quantities Pi;avg, c$Pavg, and c$/avg are then combined to cre-

ate a single averaged intensity estimate.

As discussed in Sec. II D, the upper frequency limit of

the unwrapped PAGE method will depend on the noise in

the argument of the transfer functions between microphones.

Ensemble averaging, as discussed here, helps smooth the

transfer functions, and helps the phase to be unwrapped at

higher frequencies. The trade-off with ensemble averaging is

that the spectral resolution decreases as the number of aver-

ages increases.

III. COMPARISON OF FD AND PAGE INTENSITY
ESTIMATES

We now compare the accuracy of the intensity estimates

produced by the finite-difference method to those produced

by the PAGE method. First, we consider a one-dimensional

intensity probe with two ideal microphones separated by a

distance, d, in a plane wave of axial incidence. Given the

pressure from a plane wave traveling in the x direction,

pðxÞ ¼ Ae�jkx; (23)

where A is the acoustic pressure amplitude and k is the wave-

number, the intensity of the wave is

I xð Þ ¼ kjAj2

q0x
x̂; (24)

where x is the angular frequency, q0 is the fluid mass den-

sity, and x̂ is a unit vector in the x direction. Given two

microphones at locations

r1 ¼ �
d

2
; r2 ¼

d

2
; (25)
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the literature11 shows that the FD method estimates the in-

tensity as

bIFD

a ¼ �
1

xq0d
Im S12 xð Þ
� �

x̂; (26)

where Sij represents the cross-spectrum of the two complex

pressure measurements. This same result can be obtained

using the method given in Sec. II B,

bIFD

c ¼
j

xq0

p1 þ p2

2

� �
p2 � p1

d

� �
� x̂ (27)

¼ j

2xq0d
p1p�2 � p1p�1 þ p2p�2 � p2p�1
� 	

x̂: (28)

Taking the real part of this equation and representing the

cross spectrum as Sij gives us

bIFD

a ¼
1

2xq0d
Re j S12 � jp1j þ jp2j � S21ð Þ
� �

x̂: (29)

This equation simplifies to Eq. (26) since jp1j ¼ jp2j for a

plane wave. This expression provides an accurate approxi-

mation for intensity at low values of kd, but underestimates

the intensity as kd approaches p.

Using the results of Sec. II C, the estimate given by the

PAGE method is calculated as

bIPAGE ¼ �argfH12g
xq0d

jp1j þ jp2j
2

� �2

x̂: (30)

This equation simplifies to

bIPAGE ¼ �argfH12g
xq0d

jAj2x̂ (31)

because jp1j ¼ jp2j ¼ jAj for a plane wave. The phase of a

plane wave is given by kx, so the difference of phases of two

microphones, �argðH12Þ, separated a distance, d, will sim-

plify to kd, as long as kd < p, which is the spatial Nyquist

limit of the probe. Within this limit, the expression for the

intensity simplifies to

bIPAGE ¼ kd

xq0a
jAj2 (32)

¼ kjAj2

q0x
kd < pð Þ; (33)

which is the exact expression for the intensity of a plane

wave given in Eq. (24). Simply put, an intensity probe with

two ideal microphones can perfectly estimate intensity in

one dimension with the PAGE method as long as kd < p.

Furthermore, if phase unwrapping is applied (Sec. II D),

there is no theoretical frequency limit for the one-

dimensional PAGE method applied to plane waves. Figure 1

shows the magnitude of the error in estimating the plane

wave with both the FD and PAGE methods. It can be seen

that the PAGE method significantly outperforms the FD at

all but the lowest values of ka. The PAGE method produces

estimates with no error below the spatial Nyquist limit, and

if phase unwrapping is used, the PAGE method would have

no error for any value of ka.

We now consider intensity estimates in multiple dimen-

sions. This is accomplished by comparing analytically

derived intensities of two-dimensional fields to intensity

estimates of the same fields given a two-dimensional, four-

microphone probe. Two fields are considered: a plane wave

and a three-source system. Both pressure fields considered

have reflection symmetry, and the probe is confined to the

plane of reflection. First, the derivation of the intensity

expressions generated by the FD and PAGE methods for a

two-dimensional probe is demonstrated.

A. FD and PAGE expressions for a two-dimensional
probe

The chosen probe geometry is an equilateral triangle

with a sensor at the center. This is similar to the design eval-

uated by Suzuki et al.,36 except that the center microphone is

lowered so that all the microphones are in the same plane.

Each of the outside microphones is placed 2 in. from the cen-

ter microphone. Using this geometry, p0 and P0 can be deter-

mined from the center microphone. It must be noted that

without a sensor in the center of the probe, the approach

developed by Wiederhold et al.28,29,34 must be employed.

If a is the radius of the circle that circumscribes the

probe, then the two-dimensional position vectors of the

probe sensors relative to the probe center are

r1 ¼
0

0

" #
; r2 ¼ a

0

1

" #
;

r3 ¼
a

2

ffiffiffi
3
p

�1

" #
; r4 ¼ �

a

2

ffiffiffi
3
p

1

" #
: (34)

Given this probe configuration, the complex intensity as esti-

mated by the FD method is

bIFD

c ¼
�j

6q0xa

ffiffiffi
3
p

G31 � G41ð Þ
2G21 � G31 � G41

� �
; (35)

where Gij ¼ 2p�i pj. The equations to estimate the active and

reactive intensity using the PAGE method are

FIG. 1. (Color online) FD and PAGE estimation error given an ideal

two-microphone sound intensity probe in a plane wave of axial incidence.

The x-axis is shown in terms of kd, where k is the wavenumber and d is the

separation distance between the microphones. Phase unwrapping is not

applied to the PAGE estimate.
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bIPAGE

a ¼ � P2
1

6axq0

ffiffiffi
3
p

argfH34g
argfH23g þ argfH24g

� �
; (36)

bIPAGE

r ¼ � P1

6axq0

ffiffiffi
3
p

P3 � P4ð Þ
2P2 � P3 � P4

� �
: (37)

The derivations of these equation can be found in the Appendix.

We consider the application of the expressions given in

Eqs. (35)–(37) to ideal fields. It should be noted that instead

of explicitly calculating the estimated intensity in terms of

cross-spectra and transfer functions, it can be simpler to

leave the derivations in terms of component matrices

and vectors. For example, once P0, dð/Þ, and X are known,

Eq. (36) can be computed in one line as

bIPAGE

a ¼ 1

xq0

P2
0 XTXð Þ�1

XTd /ð Þ: (38)

B. Plane wave

Using the expressions developed previously, we again

investigate estimation error of a plane wave. Two quantities

are used to evaluate the accuracy of the estimation methods:

the error in the amplitude

jIj%err ¼ 100
jjbIj � jIjj
jIj ; (39)

and the angle between the estimated and exact intensity

vectors

herr ¼ arccos
bI � I
jbIjjIj : (40)

The results are presented in Figs. 2 and 3. The error is shown

using shades of gray to represent error ranges; all white

regions correspond to <1% error in amplitude (Fig. 2) or

<0.01� in error in the estimated direction (Fig. 3). All black

regions correspond to amplitude error >30% or error in the

estimated direction >1�. The various shades of gray corre-

spond to intermediate ranges.

Figure 2 shows the error in the intensity magnitude esti-

mated with the FD [Fig. 2(a)] and PAGE [Fig. 2(b)] meth-

ods, where no phase unwrapping is applied to the PAGE

method. It can be seen that both methods break down

past the spatial Nyquist point, where the wavelength of the

impinging plane wave becomes equal to the largest micro-

phone separation distance parallel to the direction of wave

propagation. This occurs near kd ¼ p, where d is the maxi-

mum microphone separation distance. Since the largest

sensor separation distance parallel to the impinging

wave depends on rotation, this limit varies, as can be seen in

Fig. 2(b). If phase unwrapping is used with the PAGE

method, it will no longer break down at the spatial Nyquist

limit and will result in negligible error over all frequencies.

The frequency bias inherent to the FD method is apparent,

where the estimation error increases as frequency increases.

While this bias is reduced by using the center microphone

for the pressure component of intensity,34 it can still be

clearly seen in Fig. 2 where the estimation error of the FD

method increases as kd increases. The PAGE method does

not suffer from this same bias as it gives accurate estimates

FIG. 2. (Color online) The intensity amplitude estimation error of the (a) FD

and (b) PAGE methods as functions of probe rotation angle h (measured in

degrees) and kd, where k is the wavenumber, and d is the maximum micro-

phone separation distance within the probe.

FIG. 3. (Color online) Error in the estimated angle of the acoustic intensity.

The error in the angles estimated by the (a) FD and (b) PAGE methods as

functions of probe rotation angle h (measured in degrees) and kd, where k is

the wavenumber, and d is the maximum microphone separation distance

within the probe.

J. Acoust. Soc. Am., Vol. 137, No. 6, June 2015 Thomas et al.: Method for estimation of vector quantities 3371

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.187.202.92 On: Fri, 26 Jun 2015 16:51:22



up to the spatial Nyquist limit of the probe. Thus, we see that

for propagating plane wave fields measured by the two-

dimensional probe in question, the PAGE method provides

better intensity estimates. Though the results are only shown

for a particular probe configuration, similar results can be

seen with other probe types.

C. Three-source system

A more complicated acoustic intensity field can be cre-

ated with three evenly spaced monopoles on a line, with the

middle monopole 180� out of phase with the other two. The

pressure at any field point is

p rð Þ ¼
X3

i¼1

Ai
e�jkjr�rij

jr� rij
; (41)

where A1 ¼ 1 Pa m, A2 ¼ �1 Pa m, A3 ¼ 1 Pa m, and

r1 ¼ ½�0:18; 0; 0�T m, r2 ¼ ½0; 0; 0�T m, r3 ¼ ½0:18; 0; 0�T m.

The particle velocity is

u rð Þ ¼
X3

i¼1

�j
Ai

kq0c0

r� ri

jr� rij3
1þ jkjr� rijð Þe�jkjr�rij:

(42)

Figure 4 shows the active acoustic intensity of this field. The

expressions for the estimated active intensities given in Eqs.

(35) and (36) are used to predict the intensities over the do-

main shown, and the error of these estimates [given by Eqs.

(39) and (40)] is presented in Figs. 5 and 6. By looking at the

FIG. 4. Active intensity produced by a system of three simple sources

spaced evenly on a line, with the center source 180� out of phase with the

others. The frequency is 400 Hz, and the sources are spaced 18 cm apart.

FIG. 5. (Color online) Error in the estimated magnitude of the active inten-

sity at 400 Hz of the three-source system shown in Fig. 4 for the (a) FD and

(b) PAGE methods. Estimates are calculated using the two-dimensional

probe described in Eq. (A1).

FIG. 6. (Color online) Error in the estimated direction of the active intensity

for the three-source system shown in Fig. 4 for the (a) FD and (b) PAGE

methods. Estimates are calculated using the two-dimensional probe

described in Eq. (A1).

3372 J. Acoust. Soc. Am., Vol. 137, No. 6, June 2015 Thomas et al.: Method for estimation of vector quantities

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.187.202.92 On: Fri, 26 Jun 2015 16:51:22



estimation errors of this complicated intensity field, we can

determine how both the methods presented perform in com-

plicated fields. In the near field of these monopoles there

will be significant reactive components of the intensity, but

the evaluation of the PAGE and FD method for reactive

intensities is not considered at this time. The probe used to

evaluate these fields has a microphone separation distance

(a) of 5.08 cm (2 in.), which results in a maximum separation

distance, d, of 8.8 cm. The frequency being evaluated is

400 Hz, which leads to a kd of 0.645. Shades of gray again

represent error ranges. The range of errors for this field is

greater than in the case of the plane wave and so the error

ranges are larger.

The black regions near the sources indicate that both the

FD and PAGE methods fail to accurately represent the

acoustic intensity in these regions. It is clear that away from

the complicated near field of the three monopoles, both

methods give reasonable results for the active intensity.

However, the PAGE method gives more accurate results

than the FD method across most of the near field. These fig-

ures only show results at a single frequency, but a similar

pattern is seen over all frequencies: the PAGE method con-

sistently outperforms the FD method.

IV. ERROR ANALYSIS

Both the FD and PAGE methods rely on phase-matched

microphones. At low frequencies, even small phase errors

between microphones cause large errors in intensity esti-

mates. Phase calibration of microphones can help minimize

the errors caused by phase mismatch. In addition, the impact

of phase mismatch is lessened when the distance between

microphones is increased.

At high frequencies, sound scattering off the body of an

intensity probe can cause errors in acoustic intensity. This

can be reduced by minimizing the scattering surfaces of the

probe and by increasing the separation distance between

microphones. However, the spatial Nyquist limit is propor-

tional to the inverse of the separation distance, and so

increasing microphone separation reduces the spatial

Nyquist limit. This has led to most acoustic intensity probes

employing closely spaced microphones, thus sacrificing

accuracy at low frequencies for a larger frequency range. As

discussed in Sec. II D, the phase components of the PAGE

method can be unwrapped, and accurate results can be

obtained beyond the spatial Nyquist limit in appropriate

fields. The use of phase unwrapping permits larger separa-

tion distances to be used without losing the ability to esti-

mate the intensity at higher frequencies. Thus, the problems

of both phase mismatch at low frequencies and scattering at

high frequencies can be mitigated by increasing the micro-

phone separation. The size of an intensity probe using the

PAGE method still needs to remain small enough that the

field is locally planar.

A. Uncertainty analyses

As the PAGE method is new, this section will give a

more complete example of how small phase errors affect the

accuracy of acoustic intensity estimates produced by the

method. For this section, we will be using overbars to denote

actual values, so for example, if p is the measured pressure,

�p would be the actual pressure.

First, we will assume that the measurable pressure

amplitude and phase are both random variables normally dis-

tributed about their physical values, so

P � Nð �P; r2
PÞ (43)

and

/ � Nð�/; r2
/Þ: (44)

The complex pressure can then be simulated by combining

these two random variables

p ¼ Pej/: (45)

By assuming the different phase and amplitude random

variables are independent, the difference between these will

also be normally distributed. Thus, we can write the vectors

of phase and amplitude differences as

dð/Þ � N


dð/Þ; r2

dð/Þ

�
(46)

and

dðPÞ � N


dðPÞ; r2

dðPÞ

�
: (47)

Furthermore, because of the assumed independence, we

know that

r2
dð/Þ ¼ 2r2

/ (48)

and

r2
dðPÞ ¼ 2r2

P: (49)

Following the work of Szuberla et al.,37 we can now find the

variance in the gradient of the phase and amplitude by

defining

C ¼ XTX; (50)

D ¼ ETCE ¼

k1 0 � � � 0

0 k2

..

. . .
. ..

.

0 � � � kn:

26664
37775; (51)

where C is the sensor separation covariance matrix, E is a

matrix of eigenvectors of C, and D is a diagonal matrix of

eigenvalues. The variances of the gradients can be written as

r$/;n ¼

ffiffiffiffiffiffiffiffiffiffi
r2

d /ð Þ
kn

s
; (52)

r$P;n ¼

ffiffiffiffiffiffiffiffiffiffi
r2

d Pð Þ
kn

s
; (53)
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where kn represents the eigenvalues in D. The eigenvectors

in E define the rotation of the coordinates from the principal

axis. Thus, we can represent the phase and amplitude gra-

dients in terms of multivariate Gaussians, centered at the

location of the actual values with covariance defined by C.

These can be combined with the Gaussian pressure ampli-

tudes to simulate the intensity as

IPAGE
a ¼ 1

xq0

P2$/; (54)

IPAGE
r ¼ � 1

xq0

P$P; (55)

where

P � Nð �P; r2
PÞ; (56)

and

$/ � Nð$/;C$/Þ; (57)

$P � Nð$P;C$PÞ: (58)

We can now simulate the uncertainties associated with

determined phase and amplitude errors. For the following

figures, the same two-dimensional intensity probe from Sec.

III A is used, and we assume typical calibration errors of

rP ¼ 0:05 dB and r/ ¼ 0:05�. This means that the input

pressures are 95% accurate within 60:1 dB and 60:1�.
Frequency independent calibration errors are used for this

analysis, though it should be noted that in practice phase

mismatch is likely to be worse at low frequencies.

Using these sigma values, a random set of normally dis-

tributed pressure amplitudes, P, and phase values, /, are

generated. The FD and PAGE methods are then applied to

the generated values to estimate the intensity. If we assume

the resulting PAGE and FD estimates are multivariate nor-

mal distributions, we can estimate the covariance matrix

associated with the scattered intensities.38 This covariance

matrix, along with the mean of the resulting intensities, is

used to find a 95% ellipse to fit the data. Using more points

has negligible effect on the resulting error ellipses, so it is

determined that 10 000 intensity estimates is a sufficient

sample size. The resulting 95% error ellipses can be seen in

Fig. 7. As we can see in Fig. 7, measurement uncertainties of

the PAGE and FD methods are nearly equivalent at low fre-

quencies. At higher frequencies, the frequency-dependent

bias of the FD method can be seen as the error ellipse is no

longer centered around the correct value, but instead the in-

tensity is underestimated.

One insight gained from Fig. 7 is how each method

responds to calibration. The magnitude of the uncertainties

found through the PAGE method is correlated directly with

magnitude calibration errors. For example, increasing rP

results in larger magnitude uncertainties, but has no effect on

the angle uncertainties. The uncertainty ellipses from the FD

method, on the other hand, do not seem to have as direct of a

correlation; increasing rP affects both the phase and magni-

tude errors.

V. SUMMARY AND CONCLUSIONS

We have presented a least-squares formulation of the gra-

dient estimation technique for arbitrary probe geometries. This

method has been applied to the FD method for estimating the

acoustic intensity. We also developed a new technique that we

have termed the PAGE method by combining finite-difference

estimates for the phase and amplitude gradients with the analyt-

ical work of Mann and Tichy.30–32 This method estimates $/
and $P separately and uses the result to estimate the acoustic

intensity. The estimated phase gradient, c$/, is obtained from

the pairwise transfer functions of the microphones in the probe.

The amplitude gradient, c$P, is estimated using the resulting

pairwise differences of the pressure amplitudes measured at the

microphones in the probe. One advantage of the PAGE method

is that the estimated phase gradient can be unwrapped in certain

cases, which allows for accurate intensity estimates past the

spatial Nyquist limit. Special consideration was given when

using ensemble averaging with the PAGE method.

The FD and PAGE methods have been compared for

three cases: a one-dimensional probe in a plane-wave field, a

FIG. 7. Uncertainty in magnitude and direction of the intensity found from

the 95% confidence ellipses for both the FD (dashed lines, no fill) and

PAGE (solid lines, gray fill) methods. Uncertainties are calculated using the

two-dimensional probe described in Eq. (A1), and using calibrations errors

of rP ¼ 0:05 dB and r/ ¼ 0:05�. The plot on the top shows three sample

error ellipses at frequencies marked by dotted vertical lines on the bottom

two plots. The vector in the top plot represents the analytic intensity.
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two-dimensional probe rotated in a plane-wave field, and the

two-dimensional probe in the field produced by three ideal

point sources. These cases have been chosen to illustrate the

advantages of the PAGE method for estimating the acoustic

intensity of plane-wave fields and to show that the advan-

tages persist in more complex systems. It has been shown

that for all these cases, the PAGE method estimates exhibit

less error than the FD method estimates. The PAGE method

produces estimates of the active acoustic intensity with neg-

ligible error for plane-wave fields with frequencies below

the spatial Nyquist frequency. Furthermore, in the case of

the three-source system presented in Fig. 4, the PAGE

method has less overall error than the FD method.

Finally, a brief error analysis of the FD and PAGE

methods has been presented. It was shown that calibration

errors have equal effects on both methods at low frequencies.

However, the FD method produces significantly biased

results at higher frequencies while the PAGE method has no

bias. Furthermore, the robustness of the PAGE method at

frequencies above the spatial Nyquist allows for the micro-

phones to be spaced farther apart, which in turn helps to

improve the low-frequency estimates.

The PAGE method developed here provides significant

advantages over the standard FD method for estimating

acoustic intensity. Because the PAGE method uses the same

hardware as the FD method, the PAGE method can be used

with any existing finite-difference p-p intensity probe. It

does not suffer from the same frequency-dependent bias and

appears to be more accurate in general.

APPENDIX: DERIVATION OF FD AND PAGE
EQUATIONS FOR TWO-DIMENSIONAL PROBE

The derivations of Eqs. (35)–(37) are demonstrated in

this section. Given the probe configuration presented in Eq.

(34), the matrix, X, is

X ¼

r2 � r1ð ÞT
r3 � r1ð ÞT
r4 � r1ð ÞT
r3 � r2ð ÞT
r4 � r2ð ÞT
r4 � r3ð ÞT

266666664

377777775 ¼
a

2

0 2ffiffiffi
3
p

�1

�
ffiffiffi
3
p

�1ffiffiffi
3
p

�3

�
ffiffiffi
3
p

�3

�2
ffiffiffi
3
p

0

26666664

37777775: (A1)

The pressure gradient as estimated by the FD method is

c$p ¼ 1

3a

ffiffiffi
3
p

p3 � p4ð Þ
2p2 � p3 � p4

� �
: (A2)

Since p1 is at the center of the probe, p0 is equal to p1, and

the estimated complex intensity is given by Eq. (7)

bIFD

c ¼ pu�

¼ p1

j

q0x
c$p

� ��
¼ �j

3q0xa

ffiffiffi
3
p

p1p�3 � p1p�4ð Þ
2p1p�2 � p1p�3 � p1p�4

" #
; (A3)

or in terms of the one-sided cross-spectrum, Gij ¼ 2p�i pj

bIFD

c ¼
�j

6q0xa

ffiffiffi
3
p

G31 � G41ð Þ
2G21 � G31 � G41

� �
: (A4)

In the PAGE method, the pairwise pressure differences

used in the FD method are replaced by the argument of pair-

wise transfer functions. As was shown previously, this is

equivalent to the pairwise phase differences. The estimated

phase gradient is

c$/ ¼ � 1

3a

ffiffiffi
3
p

argfH34g
argfH23g þ argfH24g

� �
: (A5)

The estimated pressure amplitude gradient is

c$P ¼ 1

3a

ffiffiffi
3
p

P3 � P4ð Þ
2P2 � P3 � P4

� �
: (A6)

The pressure amplitude at the probe center is

P0 ¼ P1 ¼ jp1j. The active and reactive components of

acoustic intensity are then estimated by the PAGE method as

bIPAGE

a ¼ � P2
1

6axq0

ffiffiffi
3
p

argfH34g
argfH23g þ argfH24g

� �
; (A7)

bIPAGE

r ¼ � P1

6axq0

ffiffiffi
3
p

P3 � P4ð Þ
2P2 � P3 � P4

� �
: (A8)
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