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Spherical excision for moving black holes and summation by parts for axisymmetric systems
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It is expected that the realization of a convergent and long-term stable numerical code for the simulation of
a black hole inspiral collision will depend greatly upon the construction of stable algorithms capable of
handling smooth and, most likely, time dependent boundaries. After deriving single grid, energy conserving
discretizations for axisymmetric systems containing the axis of symmetry, we present a new excision method
for moving black holes using multiple overlapping coordinate patches, such that each boundary is fixed with
respect to at least one coordinate system. This multiple coordinate structure eliminates all need for extrapola-
tion, a commonly used procedure for moving boundaries in numerical relativity. We demonstrate this excision
method by evolving a massless Klein-Gordon scalar field around a boosted Schwarzschild black hole in
axisymmetry. The excision boundary is defined by a spherical coordinate system comoving with the black hole.
Our numerical experiments indicate that arbitrarily high boost velocities can be used without observing any
sign of instability.
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I. INTRODUCTION Excision is based on the physical properties of event ho-
rizons and the expectation that singularities always form
Inspiraling black holes are among the strongest astrowithin such horizons, and thus cannot be seen by distant
physical sources of gravitational radiation. The expectatiorobservers, as formulated by the cosmic censor conjefiire
that such systems may soon be studied with gravitationahs no future-directed causal curve connects events inside the
wave detectors has focused attention on solving Einstein’black hole to events outside, Unruh proposed that one could
equations for predictions of gravitational wave content. Al-simply remove the black hole from the computational do-
though the Einstein equations present several unique chatain, leaving the exterior computation unaffecf@ll Thus
lenges to the numerical relativigt], on several of which we the black hole singularity is removed by placing an inner
do not elaborate here, black holes present one particular atboundary on the computational domain at or within the event
ditional challenge: they contain physical curvature singulari-horizon. Excision has been extensively used in numerical
ties. While the infinities of the gravitational fields associatedrelativity in the context of Cauchy formulatiojf8—18]. In
with this singularity cannot be represented directly on a comparticular, excision with moving boundaries, which is the
puter, the spacetime near the black hole must be given agbrimary focus of this paper, was explored in R¢fs4—18.
equately to preserve the proper physics. The physical principles that form the basis of excision
Different strategies have thus been developed to compunake the idea beautiful in its simplicity. Translating them
tationally represent black holes, while removing the singu-into a workable numerical recipe for black hole evolutions,
larity from the grid. One method exploits the gauge freedonon the other hand, requires some attention to detail. Two
of general relativity by choosing a time coordinate that ad-general questions arise regarding the implementation of ex-
vances normally far from a singularity, slows down as a sin-ision: (1) Where and how to define the inner bounda(gy
gularity is approached, and freezes in the immediate vicinityHow to move the boundary? The first question applies to all
Coordinates with this property are “singularity avoiding” excision algorithms, while the last question is specific to
[2—4]. While singularity avoiding coordinates have some ad-implementations where the excision boundary moves with
vantages, one potential disadvantage is that the hypersurespect to the grid. In addressing these questions we assume
faces of constant time may become highly distorted, leading symmetric(or at least strongly hyperbolic formulation
to large gradients in the metric components. These sliceg:19]. This is because excision fundamentally relies on the
stretching (or “grid-stretching”) effects, however, can be characteristic structure of the Einstein equations near event
partially avoided through an advantageous combination ohorizons, a structure which can only be completely defined
lapse and shift conditions. For example, long-term evolutionand understood for strongly and symmetric hyperbolic sets
of single black holes have been reported by Alcubietral.  of equations.
[5]. Singularity avoiding slicings may be combined with  The first question involves several considerations, includ-
black hole excision, a second method for removing the sining the location of the boundary, its geometry, and its dis-
gularities from the computational domain. Currently, long-crete representation. The requirement that all modes at the
term binary black hole evolutions have only been performedexcision boundary are leaving the computational domain can
using both techniques together. be non trivial. It may appear that this condition would be
satisfied simply by choosing any boundary within the event
horizon (or, for practical purposes, the apparent horjzon
*Present address: School of Mathematics; University of SouthHowever, the outflow property of the excision boundary de-
ampton, Southampton SO17 1BJ, United Kingdom. pends on the characteristic speeds of the system in the nor-
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mal directions to the boundary. For example, in the analytigroofs for problems in general domaiisee Sec. 13.4 of
Schwarzschild solution, assuming that the system has chaRef. [27]). In this paper we demonstrate the algorithm by
acteristic speeds bounded by the light cone, a spheric&olving the massless Klein-Gordon equation on a fixed,
boundary can be excised &&2M. A cubical boundary, on boosted Schwarzschild background. We find that the algo-
the other hand, imposes an onerous restriction on the exciithm is stable foapparently all values of the boost param-
sion volume: in Cartesian Kerr-Schild coordinates the face§ter.8=v/c, and present results here showing stable evolu-
of a cube centered on the black hole must be less thafons for several cases with<0.95. _

4.3/9M ~0.7698V in length[13,20. Remarkably, as was We speC|aI|_ze to aX|aI_Iy symmetric spacetimes to reduce
first noticed by Lehnef21], for the rotating Kerr solution in  the computational requirements for our single-processor
Kerr-Schild coordinates a well-defined cubical excisionc0de. Axially symmetric spacetimes have sometimes been
boundary is impossible for interesting values of the spin pa@voided in numerical relativity, with notable exceptions, see
rameter.(See the Appendix for further discussipiVhereas ©-9-» Ref[28], owing to the difficulties in developing stable
with a pseudospectral collocation method the implementafinite difference equations containing the axis of symmetry.
tion of a smooth spherical excision boundary is triia2], In this paper we fur.ther. pres_ent finite d|ffe_rencmg methogis
this is generally not the case for finite differencing. As mayfor the wave equation in axially symmetric spacetimes in
be expected, smooth boundaries, which can be adapted to t@nonical cylindrical and spherical coordinates. These differ-
spacetime geometry, allow the excision boundary to be as f##Ncing schemes are second order accurate and their stability
from the singularity as possible, making the most efficienfor & single grid is proved using the energy metfad].
use of the technique. MaX|m§1IIy phssmatlve boundary conditions are appllet_:l using

The discrete representation of boundaries can be a delfhe projection method of Olssd@9]. We present the differ-
cate issue, especially in numerical relativity where manyencing al'glorlthm in dete_ul, and indicate precisely how bound-
large-scale finite difference computations are done in Carted'y conditions are applied. _
sian coordinates. We focus our attention on smooth bound- This paper is organl_zed as follows: In_ Sec. _|| we motivate
aries that may be defined as a constant value in the comp@4r approach and review the overlapping grid method. We
tational coordinates, e.gr=r, in spherical coordinates reca[l the concept of_ conserved_energy for a first ordgr sym-
describes a simple spherical boundary. The importance dpetrizable hyperbolic system in Sec. Ill and provide an
accurately representing smooth boundaries has been demdi€rgy-preserving discretization. In Sec. IV we analyze the
strated for the Euler equations, for example, by Dadone an@XisSymmetric wave equation around a Minkowski back-
Grossman for finite volume method&3], and Bassi and grounq as an introduction to our numerical methods. The
Rebay[24] using finite elements. Bassi and Rebay studieo?”aws's is then repgqted for the black hole backgrou_nd case
high resolution planar fluid flow around a cylinder. They in Sec. V. The excision of a boosted black hole with the
report spurious entropy production near the cylinder Wa||,overlapp|r_1g grid method |s.descr|bed in Sec. VI. The numeri-
which corrupts the solution even on extremely refined gridsC@l experiments, along with several convergence tests, are
when the cylindrical boundary is approximated by a polygon ncluded in Sec. VII.
Furthermore, in the conformal field equations approach to
general relativity, a smooth boundary is required to avoid
uncontrollable numerical constraint violatipa5].

The second question applies to excision boundaries that Our primary goal is to obtain a numerical algorithm for
move with respect to the grid. When the inner boundaryexcision with moving black holes that is stable and conver-
moves, points that previously were excised enter the physicajent(in the limit that the mesh spacing goes to 2eithese
part of the grid, and must be provided with physical data fordesired properties for the discrete system closely mirror the
all fields. In recently proposed excision algorithms, thesecontinuum properties of well-posed initial boundary value
data are obtained by extrapolating the solution from thgroblems(IBVPs): the existence of a unique solution that
physical domain of the calculation. Numerical experimentsdepends continuously on the initial and boundary data. Fur-
have indicated that the stability of the method is very sensithermore, we believe that we will not obtain long-term con-
tive to the details of the extrapolation, see e.g., Refsvergent discrete solutionsnlessthe underlying continuum
[16,17,28. To examine the black hole excision problem with problem is also well-posed. Unfortunately there are few
moving inner boundaries, we adopt an approach with somenathematical results concerning the well-posedness of gen-
unique features. The heart of our method for moving exci-eral classes of equations. The energy method, however, can
sion is to use multiple coordinate patches such that eache used with symmetric hyperbolic IBVPs, and gives suffi-
boundary is at a fixed location in one coordinate systemcient conditions for well-posedness.

Adapting coordinate patches to the boundary geometry al- When a black hole moves with respect to some coordinate
lows us to excise as far from the singularity as possible angdystem, the inner excision boundary must also move. We use
simplifies the determination of the outflow character of themultiple coordinate patches, such that every boundary is
excision boundary. The motion of the boundaries is incorpofixed with respect to at least one coordinate system. Coordi-
rated through the relationships among the various coordinateate transformations relate the coordinate systems, and be-
systems. The grids representing the different coordinateome time dependent when the hole moves. The movement
patches overlap and communicate via interpolation. Thi®f the inner boundary is also expressed by these time-
technique is an extension of the one used in well-posednesiependent coordinate transformations. These ideas are illus-

Il. OVERVIEW
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! pointed out in Sec. 13.4 of RR27] and as it is confirmed by
! our experiments, this does not lead to a numerical instability.
/ The fully discretized system is completed by integrating the
/ semi-discrete equations with an appropriate method for ordi-

7 nary differential equation§ODES; we choose third and
P fourth order Runge-Kutta, which does not spoil the energy

P estimate of the semi-discrete systéh3]. Kreiss-Oliger dis-

. sipation[33] is added to the scheme, as some explicit dissi-
pation is generally necessary for stability with overlapping
grids[35]. Whereas the stability theory for overlapping grids
for elliptic problems is well developed, there are very few
results concerning hyperbolic systems. Starius presents a sta-

7 bility proof for overlapping grids in one dimensigB1]. Fi-
g nally, we note that Thornburg has also explored multiple
/ grids in the context of numerical relativity with black hole
, excision[36].
! The structure of the overlapping grids used in this work is
! illustrated in Fig. 6. The additional complication of the axis
FIG. 1. A singularityS surrounded by an event horiza) is  of symmetry is discussed below. For simplicity we choose
moving with respect to the base coordinate system. A coordinatghe guter boundary to be of rectangular shape. The introduc-
patch (shaded regionadapted tod€) follows the motion of the {5 of a smooth spherical outer boundary, along with an-

singularity. With respect to this patcli) is a purely outflow  oiher grig overlapping with the base cylindrical grid, is cer-
boundary and requires no boundary conditions. The base SyStefﬁinly possible and, we believe, likely to improve the

terminates somewhere inside the shaded region and it gets bound : . )
data from the moving patch. Similarly, the data at the outer bounda.-é}ssorblng character of the outer boundary when the incom

ary of the moving patch are taken from the base system. Ing fields are set to zero.

trated in Fig. 1. In our axially symmetric model problem of a ll. THE WAVE EQUATION
scalar field on a boosted Schwarzschild spacetime, the com-

utational frame is covered with cylindrical coordinates To demonstrate our excision algorithm, we choose the
P 4 ) >evolution of a massless Klein-Gordon scalar field on an axi-

%ymmetric, boosted Schwarzschild background as a model
problem. In this section we summarize basic definitions for
linear, first order hyperbolic initial-boundary value problems
[19,27. We employ the energy method to identify well-

with the black hole(In these coordinates the event horizon is
always located at=2M while the time coordinate is taken
from the cylindrical patch so that data on all grids are simul-

taneous.The inner boundary of the spherical grid, located atposed boundary conditions. The discrete version of this

or W|th|n'the event horizon, is a simple OUtﬂOW. boundar}./'method, based on difference operators satisfying the summa-
and requires no boundary condition. The cylindrical domamtion by parts rule[37], is then used to discretize the right

hz;s tﬁn |_nn%r bound;’ar_)c/j SOT;Whﬁre. near t_he bltac!< IhOIGFTand side of the system and the boundary conditions on a
Wwhether Inside or outsiae or the horizon IS Immaterial, assingle rectangular gridFor an introduction to these methods
long as it is covered by the spherical coordinate patch. A

h fine tion bet the t dinat tch " the context of numerical relativity see Refd.3,38,39.)
exchange of information between the two coordinate palchg;e then introduce the axisymmetric scalar field equations on

is required to provide boundary conditions at the inner cylin-a curved background, along with their semi-discrete approxi-
drical boundary and the outer spherical boundary. mation '

On eaChtﬁ”&gf (%lvscrztef_system IS const][ucttezhd usmg_the In this paper we adopt the Einstein summation convention
energy metho - We definé an energy for the semi- 4 geometrized unitsd=c=1). Latin indices range over

d|screte.system and, using dlfferenqe operators that salisy o spatial dimensions, and Greek indices label spacetime
summation by parts, we obtain a discrete energy estimat omponents

[13]. Well-posed boundary conditions can then be identifie
by controlling the boundary terms of the discrete energy es-
timate. The conditions are discretized using Olsson’s projec-
tion method[29]. In particular, the symmetry axispEO in Consider a linear, first order, hyperbolic IBVP in two spa-
canonical cylindrical coordinatess included in the discrete tial dimensions, consisting of a system of partial differential
energy estimatg30], allowing us to naturally obtain a stable evolution equations, and initial and boundary data, of the
discretization for axisymmetric systems. form

We implement our excision algorithm using overlapping o R .
grids, also known as composite mesh difference method du=A'(t,x)d;u+B(t,x)u (t,Xx)e[0,T]XQ (D)
[27,31,32. The two grids are coupled by interpolation, . .
which is done for all the components of the fields being uox)=f(x) xef) (2
evolved. If the system is hyperbolic this means that one is . . .
actually over specifying the problem. However, as it is Lu(t,x)=g(t,x) (t,x)e[0,T]XdQ, (©)]

A. Hyperbolic systems in first order form
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wherei=1,2, u=u(t,x) and f(x) are vector valued func- d B - . ;
tions with m componentsA' and B aremXxm matrices that giEW= LQ“ HAudo + L)u [dH+HB+(HB)
depend on the spacetime coordinates but not on the solution _

u, and ¢, stands ford/d,i. The boundary of)CR? is as- —8,(HA) Jud?x, (6)

sumed to be a simple smooth curve. The operhtand the
datag that appear in the boundary conditi¢® will be de- where Gauss’s theorem was used to obtain the boundary

fined below in Eqs(10) and(11). term, andn; is the outward unit normal to the boundat§).
To control the growth of the energy of the solution, we natu-
1. Strong and symmetric hyperbolicity rally need to control both the boundary and volume integrals.

. . L We consider the boundary integral first.
System (1)=(3) is said to bestrongly hyperbolic in The matrix HA" is symmetric, and can be brought into
OC[0,T]X € if, at each point {p,Xo) € O, the matrix diagonal form by an orthogonal transformati@gn),

~ S s . - T n = A =i _
P(toyxo,w):AJ(to,Xo)wj, 4 Q(MHATQIM=A=diag A+, ~A-.0), @
whereA . >0 are positive definite diagonal matrices, the ei-
with @ e R2 and |;|2:wi+w§:1, can brought into real genvalues of which, in general, do not coincide with the
diagonal form byatransformatio‘l’(&), such thafr(aj) and characteristic speeds. This allows one to rewrite the inte-

1, - . ) N grand of the boundary integral in E() by introducing the
T~ Y(w) are uniformly bounded with respect . The sys- vectorw(m = (Wt A+ WA WO T=oT(n)u as the

tem is said to beymmetricor symmetrizabléyperbolic inO

if, at each point {y,X,) € O, there exists a smooth, symmet-
ric positive definite matri(to,Xo), independent o, such UTHANu=w(TA+MTA (A )
thatHA' = (HA")T for i =1,2. The matrix is usually called (—A_ )T (“A_n)

the symmetrizer Clearly, a symmetric hyperbolic system is —WR AW (8)
also strongly hyperbolic. Strong hyperbolicity is a necessaryl_
condition for well-posedness and consequently for the con-

difference between two non-negative terms,

he components ofv("™ are thecharacteristic variablesn

struction of stable numerical schemes. the directionn. In particular, the components @f¢**+:"
are theingoing characteristic variables, and the components
2. Characteristic speeds of w(=2-:" gre theoutgoingcharacteristic variables. We see

. that prescribing homogeneous boundary conditions
The characteristic speedsn the directonn=(ny,n,)  (W(TA+M=sw A" with S sufficiently small, i.e.,
e R2, with n§+ ngzl, at the point (Ojo) e[0,T]XQ are STA,S<A_), ensures that the boundary term will give a
the eigenvalues oA”(tO,io)EniAi(to,io). In Sec. VIl we Non-positive contribution to the energy estimate. B0
will show how the maximum value of the characteristic €@S€(NO coupling is of particular interest as it usually yields
speeds in the regiop0,T]x Q can be used to compute an a good approximation for absorbiif§ommerfeldl boundary

upper bound for the ratio between the time step and the s é:_onditions. .
tiglpmesh size P P The second term of the energy estimédg the volume

integral, can be estimated byofu(t,-)||3, where «

= 3 max 5llgH-+HB+(HB)'—a(HA)| is a constant that

does not depend on the solution. Thus, for homogeneous
The specification of proper boundary conditions requireshoundary conditions we have

careful consideration in order to achieve a well-posed IBVP,

and we use the energy method to identify appropriate bound- d 5 5

ary conditions[27,40. Here one defines the energy of the a”u(t')||H$201||U(tw)|| ; 9

system at time to be

3. Energy method

which implies that||u(t,-)|y=<exp(t)|f|y. Similar energy

5 T - N estimates can be obtained for inhomogeneous boundary con-
E(t)=IIU(t,-)IIH=L2u (LOHEX)UtX)AX, (5 ditions[27,40, i.e.,

wirAeim=gy~A-iN 4 g, (10
whereH is some positive definitenX m symmetric matrix
and u' denotes the transpose af To ensure continuous whereg has to satisfy compatibility conditions with the ini-
dependence of the solution on the initial and boundary datéjal data.
the energy must be bounded in terms of appropriate norms of Boundary conditions of the formil0) are referred to as
the data. To determine this bound one usually takes a timmaximally dissipativeboundary conditiong41]. From Eq.
derivative of the energgb), with the further assumptions that (10) we see that the operatbrintroduced in(3) has the form
u is a smooth solution ofl) and thatH is a symmetrizer. The
energy estimate is then L=PMQT(n)—SP)Q(n), (12)
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where P w) wO T=(w(*) 0,0) and  where we used the fact thab O;u),+ (D;v,u),=0. The
PO(wWH) w) wO)T=(0w(,0)". Finally, it is important lack of a Leibniz rule at the discrete level is only partly
to recognize that if the matrixi is not a symmetrizer, as responsible for this. In general, even if this rule were satis-
would be the case il symmetrizes\' but fails to be positive fied, the discrete estimate would not vanistd/dt)E
definite, then the boundary condition above will not, in gen-=(u,[ 4;(HA")—D;(HA") Ju),#0. Any semi-discrete ap-
eral, lead to a well-posed problem, as one would likely endoroximation that preserves the discrete endfgy) is anen-

up specifying boundary data to the wrong quantities. ergy conservingcheme. Remarkably, whenever a system ad-
mits a conserved energy at the continuum it is always
4. Strict stability possible to construct an energy conserving scheme

Discretizing the spatial derivatives in the right hand sidel13,38,39. The following “1/2+1/2” splitting, for example,
of system(1), but leaving time continuous, leads to a system 1 1 1
of ODEs called thesemi-discrete systenif an initial value N L1 i T i
problem satisfies the estimatfu(t,-)|y<K exp(at)|u(0, au=5ADu+ ZH DI(HAW+{ B H Ta(HA) Ju
Ilu at the continuum, it would be desirable to obtain a (16)
discretization such that a similar estimate holds at the dis-
crete level. Following Ref[27], we will say that a semi- ensures that the discrete energ¥4) remains constant.

discrete system istrictly stableif Clearly, an energy conserving scheme is strictly stable, since
. a=ag=0. We note that, depending on the problem, there
[u(t)[h=Kse*s[u(0)||p, (12 may be alternative, simpler discretizations than the “1/2

h +O(h q i ¢ tent +1/2” splitting which lead to the same energy estimate.
Wtﬁrﬁlas\“ ft(h) an t” ln is @ discrete energy consisten Moreover, a discretization such #%6) is a consistent ap-
wi € one ot the continuum. proximation of 9;,u=A'd,u+Bu whether or not condition

5. Conserved energy (13) holds.

Clearly, the requirement th&tA' be symmetric does not 7. Rectangular grid
uniquely determine the symmetrizer. For exampleslifs a
symmetrizer, therfH with >0 is also a symmetrizer. In
some circumstances, as for the scalar field considered here, FXmax Xain=<X <Xmax}‘ with the grld POINtS Xij = (Xfin

Consider a rectangular domaife={(x*, x2)|xﬁ1msx1

is possible to select a preferred symmetrizer which satlsfleilhb r2n|n+lh2) .N; and j= . Nz, and hy
the additional requirement = (XK XS IN, k= 1 2 From the contmuum analysis we
: expect that boundary data should be given to the incoming
dH+HB+(HB)"—g;(HA)=0. (13 characteristic variables in the direction orthogonal to the

boundary surface. In addition, at the corners the boundary
data have to satisfy compatibility conditions. We now repeat
e same analysis for the semi-discrete system in order to
etermine appropriate boundary conditions for the computa-

When this condition holds, the energy defined by that sym-
metrizer will be conserved. By this we mean that the chang
in energy of our system is solely due to the boundary term o
(6), which can 'be controlied by using maximal dISSIpatIVetional grid. In particular, we examine the application of
boundary condition$10). In particular, when homogeneous boundary conditions at the corner points of the grid.

b?:snednir%hzoggg'ronSCer]enOL:Siﬁg}e(;rSthen no boundaries are We define the following one dimensional scalar products
P ’ 9y : between vector valued grid functions,

6. Energy conserving schemes

Let us assume momentarily that there exists a symme-  (u,v) _hlZ ulvior, (uv)n,=h> ulvio,
trizer for which Eq.(13) holds (the system admits a con- =0

served energy and that no boundaries are present. In the (17)
variable coefficient casgmore precisely, ifg;(HA') #0 for .
i=j], the naive discretizations,u=A'D;u+Bu, where u whereo;={1/2,1,...,1,1/2. The 2D scalar product is
now represents a vector valued grid function, although
strictly stable when a second order accurate centered differ-
ence operator is usel@9], does not conserve the discrete (u,v)h=h1h2i20 JZO Ujvij0;0} (18
energy

N; Nz

To simplify the notation we introducB®=D®). If we ap-
E=(u,Hu)p=h; hzz ugHijuij (14 proximated; with the second order centered difference op-
erator D§Pu;; = (Ui 1;—Uj—1;)/(2h;) in the interior (I<i
=<N;—1, 0<j=<N,) and with the first order one-sided dif-
ference  operators D{Pug;=(uyj—ug;)/hy, DBy
=(uNl,j—uNl_1J)/h1 at the x'=const boundary we have
that

whereH;; =H(t, x,J) Its time derivative gives
d i i
g E®=(U[HALD{Jun+ (U, 6(HAYWR#0, (19
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U U S S | ticular, this shows that for uniform gridsh{=h,), data
should be given in the 45° direction.

8. Olsson’s boundary conditions

Let us assume that at the boundary there is one incoming,
one outgoing, and one zero speed mode and that
=diag(+\,,—\_,0) with A.>0. At each grid point be-
boundary value problem on domains with corners shows that, iAonglng to the_boundary, b(?undary _Co_ndltlons are Ir_nple-
order to control the growth due to the boundary term, boundary datg“ented according to Olsson’s prescriptig2]. Namely, if
must be given to the incoming modes with respect to the unit norn=(ny,Nn,) is the outward pointing unit normal, we carry
maln. At the corner, the unit normal depends on the mesh spacing@Ut the following steps:

hy andh,. (1) Compute Wi WM WM T=Q(n) I,
wherell is the discretized right hand side a@{n) is

the orthogonal matrix that diagonalizes the boundary

YYVY VY

FIG. 2. The energy estimate for the semi-discrete initial-

(u,D®p),+(D®u,v),

Ny Ny Ny matrix HA", Q(n)THA"Q(n)=A.
=h,>, | h1 >, u;DMuj0i+h; >, DDujjviiai | o) (2) If the boundary condition at the continuumug™**+:"
=0\ =0 1=0 =Sw-"4g, overwrite the ingoing and outgoing
= (u;. ,vi.)hzligl- (19 modes according to
imi FD@=p@ j i i 2)=p(2) . : -
Szlmllarly, if D Dy~ in the interior andD DY’ at the WA (SV\iLM ,n)+W(IdL ,n))Jr 09
x¢=const boundary, we have that new 1+ S? o o 1+ S?
(U,D@v)+(DPu,v)p=(uj,vnl] g% (20) L
(=A_in) _ +Ayin) (=\_:n)
) . ) Wnew - 1+32(SV\ioId . +Wo|d )_1+—Szﬁtg
If these simple finite difference operators are used to ap-
proximate the spatial derivatives in, for examp(&6), the
time derivative of the discrete energy and leave the zero speed mode unchangéd;” =wQ"
This will ensure that\NE]:;Vt+ ;”)=SV\fn;x* "4 4,g and that
E=(u,Hu)p=h;h, > u?}HijuijUio'j (21)  the following linear combination of in- and outgoing modes
T . +N;n) (=\_;n)_ +N 4 ;n)
] remains unchanged,SW A+ W+ WA =M= gyfehe
gives +ngd =" Note that unles§=0, the outgoing mode will
be modified. When the exact solution is known, the boundary
d . . data required to reproduce it age=g(™*+ W —Sg A,
aE=(Ui~ J(HAMN) Dl 2o ™ (U ,(HAzu),j)hllj;O2 whereg™+:" andg(~*- " are ingoing and outgoing char-
acteristic variables of the exact solution.
+(u,[dH+HB+(HB)T—a,(HA)]u)y, (22) The new modified rhs is obtained by multiplying
+No; —N_; :
(Wew* ™ W™ ™ WD) by Q(n).

where we have not assumed energy conservation.
According to the discrete energy estimate above, to con-
trol the energy growth due to the boundary term, one should 9. Consistency at corners

give data to the incoming variables in the direction or-
thogonal to the boundary in maximally dissipative form, as
shown in Fig. 2. To define the unit normal at the corner of the]!

grid we examine the contribution to the energy estimate duégre ensures numerical stability, to achieve consistency with

to the corner point itself29]. We see that, for example, at the boundary conditions used at the two adjacent sides some
i,j)= extra care is required. Let us assume that the normals to the
(l !J) - (Nl.Nz) we have

two sides defining the corner ame and m and that A

Although giving data to the incoming variables at the cor-
er in the directiom controls the energy growth and there-

2 1 hy =diag(+\, ,—\_,0) withhA.>0, i.e., on each side there is
7UN1NZ(HA1U)N1N2+ ?uNlNZ(HAZU)NlNZ one ingoing, one outgoing, and one zero speed mode. We
give data to the incoming variables at the sides according to
Ll
=—u HA"u , 23
2 N1N2( )N1N2 (23) WE;WM :”):g(n), (24)
where|h|= \/hlzlw.L h2 andn=(h,,h,)/|h| is the unit normal (+hpim)_ (m) 9
at (N1,N,). Similar results hold at the other corners. In par- Whew g
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where, for simplicity, we have assumed no coupling to theany solution of(30)—(32) which satisfies the constraints ini-
outgoing fields. At the continuum these two conditions will tially, will satisfy them at later times, even in the presence of

be satisfied also at the corner. Let us assume that at tHsundaries.

corner data are given in the directign We must translate
(24) and (25) in terms of characteristic variables in the di-

rectionp. If Q(r) denotes the orthogonal matrix defining the

characteristic variables in the generic direction w("
=Q'(r)u, then we find that at the corner we must use
w+ P =W P+ g(P) with a non-trivial coupling

[QT(MQ(P)11{QT(NQ(P) 12— (N=m)

[QT(MQ(P) 114 QT(NQ(P)]11— (n=>m)’
(26)

and boundary data

o [QUMQ(P)]:g™—(n—m)
[QT(MQ(P 114 QT(MQ(P) l11— (n—>m)

where[ QJ;; denotes théj matrix element ofQ. The notation

(27)

Sinced does not appear in Eq831) and (32), we will
drop Eq.(30) from the system. The constraints are replaced
by Cij=4d;;d;;=0, which also propagate trivially. Interest-
ingly, if Eq. (32) and the constraints are discretized using
difference operators satisfyird; ,D;]=0, which is usually
the case, then the time derivative of the discrete constraint
variableC;; = Dy;d;; will also vanish. In particular, for initial
data such thatl;=0, the discrete constraints will be identi-
cally satisfied during evolution.

To simplify the problem we assume that the background
metric is axisymmetric, which implies that there exists a
spacelike Killing fieldy=¢*d,,=d,. We always use coor-
dinate systems adapted to the Killing field, so that the metric
components are independent of feoordinate and, in par-
ticular, 9,#"=0. Since we are only interested in axisym-
metric solutions of the wave equation, i.e., solutions which
do not depend owb, the variabled, can be eliminated from
the system. Thus, the first order axisymmetric wave equation

(n—m) indicates that the preceding term is repeated witH°OnSists of Eqs(31) and (32), where the Latin indices now

the exchange of the vectamsandn. In particular, ifg™ and
g™ vanish, thery® also vanishes. However, in general, the

absence of coupling on the two adjacent sides is not consis-

tent with a vanishings at the corner, Eq(26).

B. The massless scalar field on a curved background
1. The axially symmetric system

We now turn to the massless scalar field propagating on
curved backgroundM,g). The equation of motion is the
second order wave equation

V,VEd=0, (28)

whereV denotes the covariant derivative associated with thff42] For the system to be hyperbo

Lorentz metric g. In terms of the tensor density*”
=+/—gg"”, the wave equation can be written
d,(y*"9,®)=0. (29

We introduce the auxiliary variableb= ¢, andd;= 4D,
and rewrite Eq(29) in first order form,

HP=T, (30
aT=—[YaT+a(y"T)+a(y'd))

+ YT+ aytd; 1", (31)
4:d;=09,T. (32

The & component of a sufficiently smooth solution

span only two dimensions, and one constraint.

2. Characteristic speeds

The characteristic speeds in an arbitrary directionvith
In|=1, are given by the eigenvalues of

_ ,ynj/,ytt

] i _2,ytn/,ytt
A=A n; 0

a n;

(33

These eigenvalues a =[ y"= (y™)Z— yT/")/(— 41
=pB"*ah" ands,=0, wherea is the lapse functiong’

the shift vector, anch;; is the induced 3-metric on the
=const slices in the Arnowitt-Deser-Misner decomposition
lic it is essential that
(v'M2—'y""=h""=0, which will be true as long as the
t=const hypersurfaces are spacelike. We also 1seeth be
bounded in the domain of interest, which will be the case in
a cylindrical or spherical coordinate systéfar r=ry>0),
provided that the solution does not depend on the azimuthal
coordinates.

3. Symmetrizer, conserved energy, and characteristic variables

One can verify that

. . _ ,ytt O

is the most general symmetric matrix that satisfiés!
=(HANT. When positive definite, which will be the case if

(P,T,d;) of the first order system satisfies the second ordeand only if ¢; is timelike and%>0, it represents the most

wave equation provided that the constrai@is=d;— o;®

general symmetrizer of syste(®@1),(32). If we use a coordi-

=0 are satisfied. An attractive feature of this particular firstnate system adapted to the timelike Killing fiekeF o, the
order formulation is that the constraint variables propagateomponents ofy*” will be time independent. In this case the

trivially, namely 9,C;=0 [13]. In particular, this ensures that

symmetrizer
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H:

_ At 0
7 ) (35

0 7”

satisfies Eq(13) and gives rise to a conserved energy.

The boosting of the black hole will be performed by a

PHYSICAL REVIEW D69, 044020 (2004
i Ty 10y (o 1
oT=—{y'DiT+Di(y" )+ 5Di(y"d)) + 5" Did,

1 ij tt ti tt
+§(9i‘y dj+(9t‘)/ T+(9t’)/ di v,

Lorentz transformation. The time coordinate of the boosted

frame will no longer be adapted to the timelike Killing field.

In this case the time derivative of

=JQ(—7“T2+ y'd;d;)d?x (36)
is given by
—E 2f (TY'T+Tyd))n, da-l—f (TaAT
+2TapyMd; +diayy' d;) d?x (37

We assume that in a neighborhood of the outer boundary

1 1 . 1 )
ddi= EDiT"' E( 3y huD;(YMT) - 5( 3y D id YT,

where 3y~! denotes the inverse of!.

Alternatively, one can simply replace the partial deriva-
tive g; in Egs.(31) and(32) with the finite difference opera-
tor D; satisfying(19) and(20) and obtain the semi-discrete
system

3T ==[¥"DiT+D;(y'T) +Dy(yidy) + a/'T
+(91’}’tjdj]/'}’tta (43)

0 di=D;T, (44)

is timelike. The integrand of the surface term can be written

as

2(TYTHTyIdp)n =  wlthe M2y (-2
(39)
where\ . = y"+ 9" and
(=N+in) \/1+—
wEre N =+~ 2 \/_m (39
wOm =4l d, (40)

are the orthonormal characteristic variabledi&". To sim-
plify the notation we have introduced the quantitig8

=+ ,wy””y”” 7””=7””/y and yJ_ The latter satisfies

5,]7l yL=1and§; v\ ¥I"=0. To express the primitive vari-

which also satisfies the estima®2?). It is this discretization
that will be used throughout this work, even in the boosted
black hole case 4,v*"#0), where the energy36) is not
conserved. We analyze the discretization at the axis of sym-
metry in the next sections.

IV. MINKOWSKI BACKGROUND

The energy method for constructing stable finite differ-
ence schemes has, until recently, received little attention in
numerical relativity. Thus we first present the wave equation
in axisymmetric Minkowski space to demonstrate the
method, before moving to the more complicated black hole
configurations. In this section we give energy preserving dis-
cretizations for cylindrical and spherical coordinates. In par-
ticular, we will show how to discretize the system on the axis
of symmetry in an energy conserving way. The next section

ables in terms of the characteristic variables we invert Eqsexamines discretizations for a Schwarzschild black hole in

(39 and (40),

1+ ,;/tn 1— ,;/tn B
=_V\fw(+x n_NTTY e
2

V2
(41
fyin W(+)\+;n) W(ﬂ\,;n)
di= —( + ) + 9, wOm, (42)
\/ ~tn \/ _~tn
1+vy 1-vy

Equationg39)—(42) will be used in the boundary conditions.

4. Discretization

Even when there is no conserved energy, it may be desir-

able to discretize the right hand side 1) and (32) in a
manner that satisfies the optimal estimégg), such ag16)
or other alternatives, where the symmetriteis given by
(35).

The discretization of the wave equation accordinglt6)
leads to

Kerr-Schild spherical coordinates.

A. Cylindrical coordinates
1. The system

In a Minkowski background in cylindrical coordinates,
{t,p,z, ¢}, the second order axisymmetric wave equation has
the form

1
b= ;ap(papd>)+a§d>. (45)
We consider the first order formulation
1
(9tT— p(pP)—I—& Z, (46)
aP=4,T, (47)
(?tZ: é’ZT7 (48)

044020-8



SPHERICAL EXCISION FOR MOVING BLACK HOLE . .. PHYSICAL REVIEW D 69, 044020 (2004

where T=9,®, P=4,®, and Z=9,P are functions of where their computation does not involve points which do

(t,0,2) €[0,TTIX[0,0max] X[ Zmin s Zmax] - not belong to the grid, and are first order accurate one sided
difference operators otherwise. The regularity condition,
2. Regularity conditions at the axip=0 Poj=0 for j=0, ... N,, is enforced for alt, and Eq.(49)

Smoothness at the=0 axis requires that the odd de- ~ €NSUres tha_D(f)POi is, in fact, a second order approxima-
rivatives of the scalar field vanish on the axis, namelytion. A solution of (54),(55),(56) conserves the discrete en-

J"D(t,p,2)|,—o=0 for n=1,2,... . This implies that €9y
the following conditions for the auxiliary variabl&s P, and
Z, have to hold during evolution Nz [N, 1
2, p2, 52 2
, E=2 | X (Ti+Pi+Z0)pioibp+ 7 (Th,
Pl,oo=0?"P|,-q=0 for n=1,2,... (49 =0 [i=1
G2, 0= 12Z],.o=0 for n=1,2,... . (50) +25)Ap? | oAz, (57)

If the initial data satisfy(49) and (50), and the prescription

P(t,02)=0 is used as a boundary condition@t0, then  \yhich is consistent with the continuum expressitsi).
the above conditions will hold at later times. More precisely, using the fact thasTo=(2/Ap)Py;
+D®Z,; and the basic properties of the finite difference

3. The boundary conditions operators, one can see that the following estimate

Since in this coordinate syster is a Killing field, the

energy(36) is conserved. The time derivative of q N, N,
Zmax [ Pmax &EZZZO TNpiprPijo-jAZ+221 (TiNZZiNZ
E= f (T2+ P2+ 7%)pdpdz (51) = o
Zmi 0
min 1
~Ti0Zio)piTiAp+= (Ton.Zon.— TooZoo) Ap?
gives only boundary terms which can be controlled by giving 10Zi0)pi0iA P+ 5 (Ton,Zon, ~ TooZoo) A
appropriate boundary data (58)
d Zmax
EEZZJ T(t, pmax:2) R(t, pmax: Z) pmad Z holds, consistently with the continuum lin{&2).
Zmin As it is pointed out in Sec. 12.7 of Ref27], one order

Prmax _ less accuracy at the boundary is allowed, in the sense that it

+2J [T(t.P,Z)Z(t,P,Z)]Zi:;XPdP- (52 does not affect the overall accuracy of the scheme, provided

0 that the physical boundary conditions are approximated to

) _ o the same order as the differential operators at the inner

4. Energy conserving discretization points.
The discretization of the right hand side of E46) at the

p=0 axis deserves special attention. As a consequence of the 5. Discrete boundary conditions

regularity conditions we have that By inspecting the boundary terms of the discrete energy

1 estimate(58), we can readily see how the boundary data
lim —3,(pP)=24,P],—o. (53)  should be given at each boundary grid poipEQ, j=N,,
p—07" andi=N,). In the case of a uniform gridXp=Az), in
o i i order to control the energy growth boundary data should be
and therefore no infinities appear on the right hand side.  given in maximally dissipative form in the directions shown
This suggests considering the semi-discrete approximag, Fig. 3.
tion [30] The presence of lower order terms(®7), in addition to
ensuring that the discrete energy is positive definite on the

Pp . @7 . = N .

2D7Poj+ D Z,; 1=0 axis, indicates how to specify boundary data at the corner
aTj=4 1 , (54  grid points that lie on the axis.

p—D<P>(pP)ij+D<Z>zij, i=1

[
) B. Spherical coordinates
P =DWTy, =1 (55) . . o o
In this section we discretize the wave equation in

Z; -DOT.. i=0 (56) Minkowski space with spherical coordinatfisr, 6, ¢}.

ij o

where p;=iAp and = Zy+jAz, With N,Ap=pyay and 1. The system

N,AZ=2Zy0— Zmin. The difference operator®?) and D The second order axisymmetric wave equation on a flat
are second order accurate centered difference operatdbsickground in spherical coordinates
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2. Regularity conditions on the axi®=0 and 0=

AAAAAAAAAAA Smoothness requires that the oglderivatives of the sca-
lar field vanish on the axis of symmetry, namelybat 0 and
0= . This implies that

0p—0-=03"0]y—0,=0 n=12,... (63

93" Tly-0,=05" "Rly-0,=0 n=1,2,.... (64

As in the cylindrical case, it is possible to show that if the
initial data satisfy(63) and(64) and the boundary conditions
0|y-0,=0 are used during evolution, then the above regu-
larity conditions will continue to hold.

3. Boundary conditions

Since we are interested in a domain of the fofin
={(r,0) € Rr pin=<I <r na,0< <}, wherer >0, the
characteristic speeds are bounded by fhax;}. The con-

YYYYYVYYYYVYVYYVYYVYYVYYYY

YYYYYVYVYYYYY served energy is
FIG. 3. This figure shows how the unit normal at the boundary fmax (7 2 )
grid points should be chosen. We note that at the corners which lie E= J f T°+R°+—|rsingdédr, (65)
on the axis of symmetry we must apply both the regularity and the Fmin /0 r

boundary conditions. o S
and its time derivative is given by

1 1
Pd=—d,(r20,d)+ J4(sin0a,®), (59 d [ 2pr=ma
(= a7 P) 04SN0, giE=2] R Zjmsingd. (66)
is written in first order form as :
At r=r . andr=r.;, boundary data must be given to the
incoming modes.

1
— 2 ;
dT= r_z(?f(r R)+ r2sin g J¢(Sin 0O) (60) 4. Energy conserving discretization
As a consequence of the regularity conditions on the axis
aR=0,T (61) of symmetry, we have that
1 .
00=49,T, (62) lim ——3d,(sin00®)=29,0|y—ms, mM=0,1. (67)
omnSINO
where T=9,®, R=9,®, and ®=9,d are functions of
(t,r,0) [0, T1X[Fmin,F mad X[0,7]. We discretize the right hand side (60)—(62) as
|
1 2 .
_ZD(r)(rZR)”"‘_ZD(IG)@” j:O,Ng
ri ri
aTy=1 | (69)
1 ’ P .
—DO(r?R);+ ——D(sin0O);; j=1,... Ny~1
r rising,
aR;;=D"T, (69)

ijo

{7'[®ij :D(G)T (70)

ij o
whereri=rn,+iAr and 6;=jA 60, with N Ar=r 0~ min
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V. FIXED BLACK HOLE BACKGROUND

This section is a generalization of the results of the pre-
vious section to the case of a static black hole background.
The background metric is Schwarzschild in Kerr-Schild co-
ordinateqg 43]. The Cartesian components of the background
metric can be written as

2M
g,uV: 7];LV+ Teuevv (73)

where 7,,=diag(~1,+1,+1,+1), r’=x*+y?+z? and
€M=(1,>Z/r). In these coordinates the determinant of the
four-metric isg=—1.

The tensor density componengs”, which are needed to
write down the 3D wave equation in first order form, are
given by

2M
Y=t = e, (74)

where¢#= "¢ .= (—1xIr).
As we do not wish to consider cylindrical excision in this
paper, we analyze here only the spherical coordinate case.

A. Spherical coordinates

FIG. 4. According to the discrete energy estimate, boundary 1. The system
data should be given to the incoming variable in the direction indi-

cated in the figure. In spherical Kerr-Schild coordinates the components of

y#? on a Schwarzschild background are
andNyA 6=, The condition@ioz(@ma:o on the axis is

enforced at all times. The following discrete energy y*'=r2sin 0( nt’— TI”“I”),
¢ Np-1 2
=2 & (T‘Z‘+Rﬁ+r_; sty fAr nw:diag{ IR ] (75
y ! T2 r3site)
—I—%;O (Ti20+ Rizo)rizoisinAﬂgAr ¢#=(—1,+1,0,0).
1 M A The first order axisymmetric wave equation is
+5 2 (TR, +RA riosind6—o-Ar, (71

2M 2M 1
ﬁtT: —+c7rT+—+(9r(rT)+ —+(9r(rr _R)
is conserved by the semi-discrete system. Its time derivative ' r r

~ 1
d Ny 1 - +—9,(sined® 76)
aEzzgl (TijRijri2)|:=g'fsin0,—A0+(TioRiori2) rrtsing ol ) (
O AY R H4R=0,T (77
XS|nA07+(TiN6RiN0ri)|i:0'smA07,
ﬂt®=&9T, (78)
(72

wherer*=r+2M, T=9,®, R=9,®, and®=9,®. In the
gives only boundary terms consistently with the continuumregion of interestQ ={(r, ) e R22M <r <r,,,0< <},
estimate(66). with M>0, the characteristic speeds are bounded.
5. Discrete boundary conditions 2. Regularity conditions on the axi®=0 and 0=

The choice of unit normal at the boundary grid points (  Smoothness requires that the oflderivatives of the sca-
=0 andi=N,) is illustrated in Fig. 4. lar field vanish on the axis of symmetry. This implies that
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Olp0,=03"0g—0,=0 Nn=12,... (79
95" Tg=0x=05" "Rly=0-=0 n=12,.... (80

3. The boundary conditions

PHYSICAL REVIEW D69, 044020 (2004

The time derivative of the energy

Fmax (7
:f f(rr+T2+rr’R2+®2)sin0d0dr, (82
2M 0

A symmetrizer which gives rise to a conserved energy isgives only boundary terms

given by
H=diagd{rr *sin@,rr “sin@,sin6}, (81

which is positive definite for & <7z andr>2M. Inside

the event horizom,<2M, the vector field?, becomes space-

like and the system is only strongly hyperbolic.

d
giE= 2f (2MrT2+1r " TR)| Jm@singde.  (83)

In addition to the regularity conditio® =0 at the axis,
the problem requires boundary datar atr ,y.

4. Energy conserving discretization

We discretize the right hand side Gf6)—(78) as

2M 2M 1
— DT+ —DO(rT); +—D"(rr -
i il il
W Tij=
M (r) ZM () 1 (r)
_+D T|J+_+D (rT)|J+_+D (rr
ri rir; il
atRij:D(r)Tij
30;=DT;

I]Y

wherer;=2M+iAr and ;=jA 6, with N;Ar=r,,—2M
andN,A = 7. The following discrete energy,

ﬁ
2 (K To+rr R +O7)singoA 9AT

II
I M,z

A0
(rr Ta+rr; Rlo)asmAO—Ar

HMZ

1
2

Zz

+ Ao
(rr Ta, Tl TR, )asmAa—Ar

* 2

N| =

is conserved. Its time derivative is given by

Ny—1

d -
GiE= 22 (2Mr T2 411 TRy Zy'sin6,A 0

, A
+(2MriTi0+r r: T|0R|O) S|nA07

2 — i=N;_. Ag
+(2MriTiN9+riri TiNeRiNg)i:O smA07.

We point out that, sinc®i0=®i,\,6=0, the discrete energy
is positive definite on the axis. However, becauge=0, it

_ w0 j=0N,
- (84)
1 . .
“R)jj+ ———D{"(sin#®);; j=1,...Ny,—1
riry sing;
(895
(86)

does not control the growth dRy; on the event horizon.
Numerical experiments indicate that this does not cause any
problems. Moreover, experiments do not suggest that placing
rmin Within the horizon, where the equations are only
strongly hyperbolic, leads to an unstable scheme.

5. Discrete boundary conditions

Data should be given to the incoming modesat ., as
in Fig. 4. Unlike the Minkowski case, no boundary condi-
tions should be given when the inner boundary/ i, is at
or within the event horizon.

VI. BOOSTED BLACK HOLE BACKGROUND

Finally, we consider the case in which the scalar field
propagates on a boosted black hole background. To solve this
problem we introduce two coordinate patches: one patch
fixed to the outer boundaries and one patch comoving with
the black hole, and fixed to the inner excision boundary. We
choose cylindrical coordinates for the first coordinate patch,
boosted with respect to the black hole such that the hole
moves with velocityB along the symmetry axis in these
coordinates. Spherical coordinates are used on the second
patch. These coordinates are chosen by fixing the event ho-
rizon at a constant coordinate valug £2M), and requiring
that all data in both coordinate systems are simultaneous. By
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adapting these coordinates to the black hole horizon, we may
excise the spherical grid at =2M for all values of the

boost parameter. In this section we first write down the com-
ponents of the 4-metric in a boosted Cartesian coordinate
system, then discuss the two coordinate systems in some

PHYSICAL REVIEW D 69, 044020 (2004

detail.
We recall that in a Cartesian coordinate sys{g¢m,y,z},

with respect to which the black hole is at rest, the metric

components have the form given {@3). Under a Lorentz
boost, i.e., in the new coordinates

t=9(t—Bz)

X=X

87

y=y
z=1y(z- pt),

where y=(1—8?) "2, the components of the Kerr-Schild
metric become

. 2M
g/.LV: 77,uV+ 76;76;1

n,=diag—1,+1,+1,+1},

¢=(r,x,y,2)Ir,

where r=1y(r+8z), z=y(z+pr), z=y(z+pt), andr?
=x*+y?+2°=x*+y’+y*(z+ Bt)*. Attime t the singular-
ity is located at X,y,z)=(0,0,— Bt).

A. Boosted cylindrical coordinates

~We now choose cylindrical coordinatés, p,z, ¢}, with
p cos¢p=x andp sin =Yy, giving

2M
90~ Nt Tfﬂi,
ny=diag—1,+1,+1,+p2,

€,=(1,p,2,0)/r

and

— 1
nﬂvzdiag{ -1,+1,+ l,+:2} , (89
p

Cr=(—T,p.2,0)/r,

where z=y(z+Bt) and r2=p2+y3(z+ Bt)2 Unfortu-

—24

NI

FIG. 5. The regions delimited by the curves are regions in which
the system in not symmetrizable hyperbolic, but only strongly hy-
perbolic for 8=0,—1/4,—1/2,—3/4 [the black hole is located at

(p,2)=(0,0) and moves in the-z directior]. As the boost param-
eterB increases in magnitude there is a larger part of the cylindrical
domain in which the system in only strongly hyperbolic.

unpleasant form: the components ¢f” have a nontrivial
dependence on the three coordingteendz, and especially,

t.

~ The analytic expressions for the time derivatives of the
y'* components are needed. Using the fact tlaat
=Byzlr, 9t =Byzlr, anddz= Byrir we get

Iy t=2M Bypr (32T—2r2)Ir5,

Iy'P=2M Byp2(r2—3zN)Ir®, (89)

Iy 2=2M Byp(r22+rf2—3212)/r5.

In this coordinate system our first order formulation has

no conserved energy{y*”#0). The region in which the
system is symmetrizable hyperbolic is determined by the set
of points in whichg; is timelike,

2Mr?2
~ 0.
.

—On=1- (90)

Figure 5 shows the regions of lack of symmetric hyperbolic-

nately, in these coordinates the wave equation has a rathéy for different values of the boost parameter.
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On the axis of symmetryd=0) the equations need to be {t,X,y,z}, the coordinates in which the black hole is at rest,
expressed in a form which avoids “0/0.” This can be done bybY

taking the limit p—0 in the equations. It is convenient to

introduce the quantities

—
—
N

t'=t=y(t— Bz)

tt
~tw. Y ~%, Y ~z. Y
7t=7, Y==. 7 e r'=Vx2+y?+22
(91)
i A A z
yPP:__ , ’yP :__2 Y zZ_— — 0,:C0371
P P VX2 +y2+ 72

which have a finite limit for;—>0 (since the singularity is
excised we can assume thatr,>0). The right hand side

of (31) at p=0 becomes
FT=[Y20,T+ 25T+ a3 7T)+ 2y g,P + 2577
+ VD) + I T+ 2.
B. Comoving spherical coordinate system

We introduce a spherical coordinate systgmr’,6',¢'}

¢'=tan?!

d

We emphasize thd®1) is not a Lorentz transformation. The
coordinates are adapted to the event horizon in the sense that
its location ¢’'=2M) is time independent, and settirig

=t maintains simultaneity in the two coordinate systems.
The metric components and the components;xbf”' are

which is related to the unboosted Cartesian coordinatemore conveniently written in matrix form

g,u’v’
1 2M 1/2M 2M 1 )
| —1+— —|——=pBcosh’| 1— — —(r'=2M)Bsind’ 0
vy r’ Yir' r’ Y
2M H ! ! !
= : (1+pBcosb’) 1—,6’cos¢9’+—,(1+,8c050’) Bsind'[(r'—2M)Bcosd’ —2M] 0 )
r
r'[r'—B%sinfd’ (r' —2M)] 0
- r'2sin’ e’
1 H 3 ! ! ! ! a1 !
—;r’sme’[r’+2M Y?(1+Bcosh’)?] r'sing'[2M—pBcosd’(r'—2M)] pBr Sirfg 0
1 .
;r’(r’—ZM)sme’ 0 0
Y= sing’ (92)
0
Y
1
ysing'
|
We have symmetric hyperbolicity for’>2M and 0<6’ t't’ t'r! o
<. U Y T Y “He Y
On the axis of symmetryd’ =0 or §' = ) the equations sin ¢’ sin ¢’ sin’ ¢’
need to be expressed in a form that avoids “0/0.” This can be . oo
done by taking the limi#’ — 6,, wheref,= 0,7 in the equa- i _ Y ~00_"Y
tions. If we introduce the quantities sing’ sing’
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LA A A A hAhAdd second order Lagrangian interpolation, which, for a scalar
quantity, is given by

f|m(xi+aAX,yj+bAy):(l_a)(l_b)fij +(1_a)bfi,j+l

St +a(l-b)fi. g +abfiigj.g,

where O<a,b<<1. Higher-order interpolation stencils may
also be used, though for the cases examined here, improve-
ments in the resulting solutions are slight, resulting in no
increase in the order of accuracy.

The boosted cylindrical and comoving spherical coordi-

. . nate systems are related by

- & _
A RN -
% p=r'sing’
F YYYYYYY Y g i (94)

z=7y"'r'cosf’ — Bt

ML
y

YYVY VY

FIG. 6. The first figure shows the overlapping grids for the
axisymmetric wave equation on a boosted black hole background. g: @',
The spherical grid is used to excise the black hole from the com-
putational domain. The dashed line represents=aconst curve on  and the inverse transformation
the spherical patch. This is where the cylindrical coordinate system

terminates. The arrows on the outer boundary indicate how the unit t'=t
normal is chosen at each boundary grid point where boundary data
must be specified. The circles and the square are used to mark = /:p2+ 72(?+ Bt_)z

points of the spherical and cylindrical grid respectively which are

updated through interpolation. As shown in the second figure, the (95

value of the fields on the grid poirR of the spherical grid are 0 =tan ! p
computed by interpolating the values of the fields on the four neigh- y(;+ ,3'[_)
boring points.

¢'=¢.

which have a finite limit for si®’—0, then the right hand

side of(31) on axis becomes The evolved fields are not scalar quantities, but components
of a 1-form. So, in addition to the coordinate transformation
between the two coordinate systems, the communication of
the values of the fields requires the use of the transformation
+2’,}0’6’&g,®1]/(_f}'/t’t’), (93) law of 1-forms. In this case we have

T =Y 00T +0. (P TH=23 T +4,.(3 "'R")

sing’

r!

where the components af*'*" are understood to be evalu- T=T'+yBcost’'R'—yp 0’

ated atd’ =0,.
0s6’

!

C. Overlapping grids P=sing'R’"+ 0’ (96)

r

As mentioned in Sec. Il, the method of overlapping grids
gives a natural method for solving finite difference problems — sing’
on multiple domains. For the boosted black hole, we use the Z=vyC0osSO'R' — vy -
cylindrical grid as our base grid and introduce the spherical r
grid adapted to the inner boundaigvent horizon The two
grids overlap as shown in Fig. 6.

The spherical grid requires boundary dataratr .y, = 5
which does not constitute a physical boundary in this prob-
lem. Here the data are computed by interpolating the values
of the field from the cylindrical grid. Similarly, the values of R'=sin6'P+
the fields at the grid points of the cylindrical grid near the
excision region, which lack a neighboring point in a coordi- o
nate directionthese points are marked with a square in Fig. O'=r'cosd Pt 4 52
6), are also updated via interpolation. In this work we used '

0,

and

cosf’'—

Z (97)
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where (T,P,Z) and (T’,R’,®’) are the fields on the cylin- 22 ~ 1T ~ T ~ T~ T~ 1 =T =T "~ T "1
drical and spherical grids, respectively. 201

1. Discretization on the axis 166
The discretization of the system in boosted cylindrical 1A4:
coordinates in the interior and at the outer boundary iidoneém %

according to Egs(43) and (44) where the componentg"” 310
are given in(88). On the axis of symmetry we use

0.8

e = - — = 06l
FT=[y"*DOT+2y"*T+D@(H'*T)+2y*DYP+2yZ 0al

PR IR NI TR /T N SN NNV (T NU

+DO(YZ) 4 0y TH oY ZU(- ).
0.0 PR I I | I I T I I
0

0.01 0.02 003 004 005 006 0.07 008 0.09
c

o

Similarly, the discretization of the system in comoving
spherical coordinates in the interior and on the event horizon FIG. 7. The Courant limits for the 2D first order wave equation
is done according to Eq$43) and (44), where the compo- duy,=4'u;, du;=a,uy for fourth order (4RK) and third order
nents Ofyu’v’ are given in(92). On the axis of symmetry Runge-Kutta(3RK). The calculation assumes no boundaries and
(6=0 and 6= ) we use second order centered difference operators for the approximation of

the spatial derivatives. The value of represents the amount of
—_— o _— artificial dissipation,— 022 ;h3(DYD")2u, added to the rhs of
JpT' =[Y " DUIT +DIP T )£250 0T the equations.

(Y=Y N TV Tt
DY RO+ 2yT DO (= ). five-point stencil, we find that the long-term behavior of the
- code is improved in some cases by interpolating two points
2. Boundary conditions at all inter-grid boundaries.

Boundary conditions in maximally dissipative form are
given at the outer boundary of the cylindrical grid in the 4. Choice of Courant factor
directions indicated in Fig. 6. In the boosted case, instead of

" ) X ) The fully discrete system is obtained by integrating the
overwn:ung the F'ght hand side at _the boundar_y a<_:cord|ng tosemi—discrete system with third or fourth order Runge-Kutta.
Olsson’s prescription, we overwrite the solution itself. The

reason for doing so is that it avoids the tedious task of ComyVhenever explicit finite difference schemes are used to ap-
o g sc proximate hyperbolic problems, the ratio between the time
puting time derivatives of the boundary data.

It is interesting to notice that the outer boundary of theStep sizekand the mesh size=min{hy}, the Courant factoy
S Sting . Y cannot be greater than a certain val4e]. This Courant
cylindrical grid could become at some points purely inflow

(s, >0) for very large values oB. (We exclude the case in limit is inversely proportional to the characteristic speeds of

which the black hole is outside the outer boundady. and the system. We estimate allowable values for the Courant

near these inflow boundary points the system is only stronghzaCtOr by examining the 2D wave equation in first order

X ; : orm, d;Ug=4d'u;, d;U;=d;uy. Assuming second order, cen-
hyperbolic and the energy method fails to give the correc ered differencing for the spatial derivatives, we plot the
boundary conditions. As it is pointed out in RE34], apply- 9 P ' b

) ) N s Courant limits for third and fourth order Runge-Kutta as a
ing maximally dissipative boundary conditions to stronglyfunction of the artificial dissipation parameter in Fig. 7.

hyperbolic. systems.can lead to. an ill posed IBVP. Wherg the The characteristic speeds in the cylindrical grid are
boundary is purely inflow we give data to the two incoming bounded by 1 in magnitude. Looking at Fig. 7, this would

gng:mglijsr r;ijargle;rlcal experimentSec. V1) indicate that the suggest that one could use a Courant factor as large as 2.0
' (using fourth order Runge-Kutta and ignoring the fact that

this is a variable coefficient problem with lower order terms

and with boundarigs However, in the spherical grid the
Whereas the single grid schemes do not require any arteharacteristic speeds along the axis of symmetry have a mag-

ficial dissipation, it is known that overlapping grids require nitude of

explicit dissipation for stabilityf35]. To the right hand side

of the discretized system a term of the fof&8]

3. Artificial dissipation

3y (R 124 13 P20 (2)\2 1-18I’ %9
Qgu=—0c[h7(DY’'D)*+h3(DY’D¥)“Ju  (98)

is added. This dissipative operator is modified near the outewhich is greater than 1 fo8+0. For example, fo3=0.9

and inner boundary, as was done in Rdf3]. Near and on the characteristic speeds in the spherical grid can be as large
the axis of symmetry dissipation is computed exploiting theas y19~4.359. In this case a Courant factor larger than
regularity conditions of the fields. As this dissipation has a~0.46 is likely to lead to numerical instability.
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VII. NUMERICAL EXPERIMENTS 0.020 ' ' |

To our knowledge there are no stability proofs for two - — w2
dimensional hyperbolic problems with overlapping grids. To
check the convergence of our code we must rely on numeri-

cal experimentation. R

Let u(t,i) be the exact solution of the continuum problem

o
T
|

and v} the solution of the fully discrete approximation. If, * e |
for anyt, asnk—t,
0.005 |- —
R 1/2
eh=| a2 o] —u(nkoxi[2] - =O(h?)+O(icY)
0-0000 I 50|00 ] 10(|)00
T

ask,h—0, the difference scheme is said to be convergent of FIG. 8. These long term runs done at a fairly course resolution
order (p,q). This implies that the overall order of conver- for B=M=0 suggest that the interpolation between the overlap-

gence of the scheme, assumiign= const, is ping grids does not introduce any power law or exponential growth.
Here the exact solution is given by the real part of {7e0 mode
with =2, with the ingoing Hankel function for the radial variable

" in Eg. (101). The dissipation parameter is set &o=0.02. The
Q=lim |092_h: min{p,q} (100 ranges of the dependent variables are(3<10, —10<z=<10, 1
h—0 € <r=<5, and 6= ¢=<m. The coarsest resolutions for the cylindrical

and spherical grids are 90170 and 5X 68, respectively.

asnk—t, wheret is some fixed time. To use this equation

we must know an exact solution of the continuum problem. V.V*w—-F=0, (103
Exact solutions for the scalar wave equation in

Minkowski space are well known. To test our overlapping

grid system we use spherical waJé$] given by whereF is given by
ot cosné -
‘DI; feo(r)P¢(cosg)e ", (10D F=———[2r cogt+r)—nsint+r)]
, r
sinn@ .
where P,(cosf) are the Legendre polynomials and we _nrzsinecoseswtﬂ)' (104)

choosef,(r) to be the Hankel functions, which asymptoti-
cally represent in- and outgoing waves. We tested the long-
term behavior of our code by evolving an ingoing sphericalBoth w and F are scalar quantities. The evolution equation
wave exact solution, and computing the norm of the error(31) is modified according to
These results are shown in Fig. 8.

When an exact solution is not available, which is often the _ , - .
case, the following standard technique of numerical analysis &,T=—[y"6;T+a,(y"T)+ (¥ d))+ 3,y T+ 3,y d;
can be useful. Lewv be an arbitrary function and let us re- "
write the partial differential equation ds(u)=0. If w is _‘/__9':]/7 ' (109
inserted into the equation, in general, it will produce a

nonvanishing right hand side, where g=det(g,,). On the axis of symmetry we use the

limits limg_o(sinnd/sing)=n and lim,_ ,(Sinné/sin 6)
=(—1)""!n. The results of our convergence tests for different
values of the boost parameter ane2 are summarized in
Fig. 9. Movies are also availabld6].

L(w)=F. (102

Clearly, the modified equatiob(u)=L(u)—F=0 hasw as

an exact solution and the convergence of the code can be

tested using Eq(100). Systems with moving boundaries arise in a variety of situ-
We chosew(t,r, ) =sin(+r)cosfd), where{t,r,6} are ations, and their solution typically involves introducing co-

the spherical coordinates of the rest frame amlan integer.  ordinates adapted to the boundaries. These may be either a

This is an exact solution of single, global coordinate system, such as those used in binary

VIIl. CONCLUSION
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FIG. 9. In these figures we plot the convergence faq¢r) =log,(el/ey,) as a function ot=nk for a sufficiently small value of the
spacingh. The convergence test was carried out with the modified sy&t08) for boosting paramete®8= —0.5, —0.75, and—0.95, from
top to bottom, suggesting that the equations are correctly implemented and that the overall scheme is second order accurate. The resolutions
used in the cylindrical and spherical grid are 28812, 128< 384 and 51X 1024, 256<768. The domain extends from10M to +10M
in the z direction and up te+ 10M in the p direction. The spherical patch covers the regidh<2r’'<3M. We used a Courant factor of 1.15,
0.75, and 0.32, and a dissipation parametes&f0.02. The evolution is stopped just before the spherical grid touches the outer boundary
of the cylindrical grid. In theB= —0.95 the system in only strongly hyperbolic at the bottom right corner of the cylindrical grid. We found
that, to achieve convergence, we must give data to all fields at this point.

black hole evolution$47,48 that keep the black holes and ping grids, where different but equivalent problems are
the outer boundary at fixed coordinate positions, or, as advaolved on separate grids. To communicate data between grids
cated here, multiple coordinate patches. Whichever approachie used interpolation on all fields.
is adopted, fixing coordinates to the boundaries allows one to The discrete version of the energy method, based on dif-
unambiguously specify proper boundary conditions, as referencing operators that satisfy the summation by parts prop-
quired for well-posed problems. Moreover, boundaries aerty, has demonstrated to be particularly effective for the
fixed grid coordinates eliminate the need for extrapolatectonstruction of a stable discretization scheme on the axis of
data at points that emerge from a moving boundary. symmetry, and for the identification of discrete boundary
In our model problem we have evolved an axisymmetricconditions. The stability proofs, which hold on individual
scalar field on a boosted Schwarzschild background. We usegtids, cannot be immediately extended to the overlapping
a cylindrical coordinate patch with respect to which the outergrid scheme, due to the interpolation of data from one grid to
boundary is fixed, and we introduced an overlapping spherianother. We note, however, that it may be possible to define
cal coordinate patch comoving with the hole. At any givenorthogonal projection operators for the interpolation that
time in the comoving coordinate system the location of thecould allow to analytically demonstrate numerical stability
inner boundary(the horizon corresponds to a=const sur- [49]. This is a question of active interest. Nevertheless, our
face. This surface can be represented exactly on the numeriumerical tests indicate that our scheme is convergent, even
cal grid and allows one to smoothly excise a large volume ofor very high values of the boost parameter, and does not
spacetime, much larger than that permitted by cubical excisuffer from long term power-law or exponential growth in
sion. Our numerical implementation made use of overlapthe error.
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The model problem that we presented in this work is pri- 04 - - - 1
marily intended as a proof of concept, and several avenues ¢
research remain to be explored. Foremost might be the addi
tion of the Einstein equations to the system for a dynamic 5l _
black-hole spacetime, where the locations of the black hole
singularity and event horizon are not a priori known. De-
pending on the dimensionality of the problem, one or more
coordinate patches adapted to the inner boundary would hav= %2[" ]
to be generated during evolution, along with the relationship
between the various coordinate systems. By monitoring the
characteristic speeds on the excision boundeith respect 0.1F =
to the coordinate system adapted to that boungamye can | _— -7
guarantee its purely outflow properties, an essential require |  __——————"77" |

ment of excision. g : I . L s !

Although alternative numerical approaches may be pos- °© [ 0.04 0.05
sible, the overlapping grid method has struck us for its
strength and its simplicity. Owing to its flexibility in repre- FIG. 10. This figure indicates the limitations of cubical excision
senting smooth, time dependent boundaries, we believe thét the Kerr spacetime in rectangular Kerr-Schild coordinates. We
this technique, or a similar one, will play a significant role in assume that the excision cube is centered on the hole, and that the
the solution of the binary black hole problem. faces of the cube are atb. (See description in teytValues ofb

for which an inner boundary has no incoming modes, and thus a
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r2+a?'r24a2'r

rx+ay ry—ax z)

1 1
r2:§(p2_a2) + \/Z(p2_32)2+3222,
APPENDIX
. o o . . wherep?=x2+y?+ 272,
To gain some insight into the limitations of cubical exci- We center a cube of side length=2b on the black hole

sion and the consequent need for a smooth excision boungi(fe[_b b]. In order to excise this region from the compu-

ary, we;(;:(;nsmv?/r the a?alyt'ﬁ Schwarzscfhnd ar:jd Cl:<err S_OIU’[ationaI domain, we must ensure that its boundary is purely
tions [20,21]. We employ the commonly used Cartesian , .y je., that no information can enter the computational
Kerr-Schild coordinates, which are smooth across the hor'aomain To determine the allowed valueskfve calculate

zon, and write the metric as the characteristic speeds on each face of the cube and check

that the inequalitys’: <0, wheren is the outward unit nor-

mal to the boundary, is satisfied. The Schwarzschild solution

is obtained by settingg=0, and the calculation give0]

0<b=2.3/9M~0.389M. The calculations for Kerr g

Mr #0) are more involved, and we present our numerically gen-

He — erated results in Fig. 10. We find that because of the ring
r2+a2cos’ singularity (p=a,z=0), in addition to a maximum size for

Our= Nuyt2HE 0,

where 7, is the Minkowski metricH is a scalar,
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the excision cube, there is alsar@animumsize. In addition,
we notice that no cubical excision is possible far

PHYSICAL REVIEW D69, 044020 (2004

spin. We note, however, that this limitation is coordinate de-
pendent and that it might be possible to choose coordinates

=0.085M. This is a severe constraint on the spin param-in which cubical excision may be done for higher values
eter, and precludes cubical excision for interesting values off a.

[1] L. Lehner, Class. Quantum Grai8, R25(200J).

[2] L. Smarr and J. York, Phys. Rev. I7, 2529(1978.

[3] D. Eardley and L. Smarr, Phys. Rev.1I9, 2239(1979.

[4] 3.M. Bardeen and T. Piran, Phys. R496, 205(1983.

[5] M. Alcubierre, B. Brigmann, P. Diener, M. Kopptiz, D. Poll-
ney, E. Seidel, and R. Takahashi, Phys. Rev6D) 084023
(2003.

[6] R. Wald,General RelativityUniversity of Chicago Press, Chi-
cago, 1984

[7] W. Unruh, quoted in J. Thornburg, Class. Quantum G#av.
1119(1987.

[8] E. Seidel and W.-M. Suen, Phys. Rev. L&®, 1845(1992.

[28] Some recent examples of numerical relativity studies in axi-

symmetry include: M.W. Choptuik, E.W. Hirschmann, S.L.
Liebling, and F. Pretorius, Phys. Rev.@8, 044007(2003; F.
Siebel, J.A. Font, E. Mier, and P. Papadopouloiid. 67,
124018(2003; M. Shibata,ibid. 67, 024033(2003; M.W.
Choptuik, E.W. Hirschmann, S.L. Liebling, and F. Pretorius,
Class. Quantum Gra20, 1857(2003; J. Frauendiener, Phys.
Rev. D66, 104027(2002; H. Dimmelmeier, J.A. Font, and E.
Muiller, Astron. Astrophys393 523(2002; 388, 917 (2002;

F. Siebel, J.A. Font, E. Mler, and P. Papadopoulos, Phys.
Rev. D65, 064038(2002; H. Dimmelmeier, J.A. Font, and E.
Mdiller, Astrophys. J. Lett560, L163 (2001); J.A. Font, H.

[9] M.A. Scheel, S.L. Shapiro, and S.A. Teukolsky, Phys. Rev. D
51, 4208(1995. tron. Soc.325, 1463(2001); M. Alcubierre, B. Brigmann, D.
[10] M. Alcubierre and B. Brgmann, Phys. Rev. 3, 104006 Holz, R. Takahashi, S. Brandt, E. Seidel, and J. Thornburg, Int.
(2002). J. Mod. Phys. D10, 273 (200); M. Shibata, Prog. Theor.
[11] L. Kidder, M.A. Scheel, and S.A. Teukolsky, Phys. Rev6) Phys.104, 325(2000; D. Garfinkle and G.C. Duncan, Phys.
064017(2002). Rev. D63, 044011(2002); S. Brandt, J.A. Font, J.M. I6&a, J.

[12] F. Pretorius, Ph.D. thesis, University of British Columbia, Van- Massg and E. Seidel, Comput. Phys. Commui24, 169
couver, British Columbia, 2002. (2000; P. Papadopoulos and J.A. Font, Phys. Rev5®
[13] G. Calabrese, L. Lehner, D. Neilsen, J. Pullin, O. Reula, O. 024005(1998; P. Anninos, S.R. Brandt, and P. Walkéid.
Sarbach, and M. Tiglio, Class. Quantum Gra0, L245 57, 6158(1998; S. Bonazzola, J. Frieben, and E. Gourgoul-
(2_003' ) hon, Astrophys. J60, 379(1996; M. Bocquet, S. Bonazzola,
[14] Binary Black Hole Grand Challenge Alliance, Phys. Rev. Lett. E. Gourgoulhon, and J. Novak, Astron. Astroph@81, 757
[15] go‘;rzﬁiilgRg%orrell R. Guez, M. Hug, P. Laguna, L. Leh- (1999; P. Anninos, D. Hobill, E. Seidel, L. Smarr, and W.-M.
) T o o o T Suen, Phys. Rev. B2, 2044(1995; R. Gomez, P. Papadopou-

1, rret, 2 Mekner B N, 3 U € g ot 5 T, 10810
N ' ' - PhyS: ' ' nos, D. Hobill, E. Seidel, L. Smarr, and W.-M. Suen, Phys.

Dimmelmeier, A. Gupta, and N. Stergioulas, Mon. Not. R. As-

5496 (2000.
[16] H. Yo, T.W. Baumgarte, and S.L. Shapiro, Phys. Rev6dD Rev. Lett.71, 2851(1993.
124011(2001) [29] P. Olsson, Math. Compub4, 1035(1999; 64, S23(1995; 64,

[17] D. Shoemaker, K.L. Smith, U. Sperhake, P. Laguna, E. Schnet- 1473(1995.
ter, and D. Fiske, Class. Quantum Grag, 3729(2003. [30] O. Sarbac{unpublished
[18] U. Sperhake, K.L. Smith, B. Kelly, P. Laguna, and D. Shoe-[31] G. Starius, Numer. Mat85, 241 (1980.
maker, Phys Rev. mo be pub“she}j gr-qc/0307015 [32] G. Chessire and W.D. Henshaw, J. Comput PBQS]. (1990
[19] O. Reula, Living Rev. Relativi, 3 (1998. [33] H.-O. Kreiss and J. OligeiMethods for the Approximate So-
[20] M. Scheel, Talk at Miniprogram on Colliding Black Holes: lution of Time-Dependent ProblemSARP Publication Series
Mathematical Issues in Numerical Relativity, Institute for The- No. 10 (World Meteorological Organization, Geneva, 1973
oretical Physics, University of California at Santa Barbara,[34] G. Calabrese and O. Sarbach, J. Math. Ph¥s3888(2003.
January, 2000. Available at http://online.kitp.ucsb.edu/online/[35] F. Olsson and N.A. Petersson, Comput. Fll28s583(1996.
numrel00 [36] J. Thornburg, Class. Quantum Grav, 1119 (1987);
[21] L. Lehner(private communication gr-qc/0012012; gr-qc/0306056; and unpublished.
[22] A. Pfeiffer, L. Kidder, M. Scheel, and S. Teukolsky, Comput. [37] B. Strand, J. Comput. Phy$10, 47 (1994).
Phys. Commun152, 253(2003. [38] G. Calabrese, L. Lehner, O. Reula, O. Sarbach, and M. Tiglio,
[23] A. Dadone and B. Grossman, AIAA 32, 285 (1994. gr-qc/0308007.
[24] F. Bassi and S. Rebay, J. Comput. PHy38 251 (1997. [39] L. Lehner, D. Neilsen, O. Reula, and M. Tiglianpublishegl
[25] S. Husa(private communication [40] H.O. Kreiss and J. Lorendnitial-Boundary Value Problems
[26] L. Lehner, M. Hug, and D. Garrison, Phys. Rev6R, 084016 and the Navier-Stokes Equatioridcademic Press, Boston,

(2000. 1989.
[27] B. Gustafsson, H. Kreiss, and J. Oligéme Dependent Prob- [41] P.D. Lax and R.S. Phillips, Commun. Pure Appl. M&lB, 427
lems and Difference Method®Viley, New York, 1995. (1960.

044020-20



SPHERICAL EXCISION FOR MOVING BLACK HOLE . .. PHYSICAL REVIEW D 69, 044020 (2004

[42] R. Arnowitt, S. Deser, and C. Misner, i@ravitation: An In- [44] R. Courant, K.O. Friedrichs, and H. Lewy, Math. ArirQ0, 32

troduction to Current Researcledited by L. Witten(Wiley, (1928.
New York, 1962. [45] J.D. JacksonClassical Electrodynami¢cSrd ed.(Wiley, New
[43] R.P. Kerr and A. Schild, irApplications of Nonlinear Partial York, 1999.

Differential Equations in Mathematical Physics, Proceedings[46] http://relativity.phys.Isu.edu/movies/axisymmetry
of the 17th Symposium in Applied Mathematics, New York[47] M. Alcubierre, B. Brigmann, D. Pollney, E. Seidel, and R.

1964 (American Mathematical Society, Providence, 196b); Takahashi, Phys. Rev. B4, 061501(2001).

Atti del Covegno Sulla RelativitaGenerale: Problemi [48] M. Alcubierre, W. Benger, B. Bigmann, G. Lanfermann, L.
dellEnergia e Onde Gravitazionali, Firenzesdited by G. Nerger, E. Seidel, and R. Takahashi, Phys. Rev. L&f.
Barbera(Comitato Nazionale per la Manifestazioni Celabra- 271103(2001).

tive, Roma, 1964 [49] P. Olssonprivate communication

044020-21



