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Spherical excision for moving black holes and summation by parts for axisymmetric systems

Gioel Calabrese* and David Neilsen
Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001,

~Received 20 August 2003; published 27 February 2004!

It is expected that the realization of a convergent and long-term stable numerical code for the simulation of
a black hole inspiral collision will depend greatly upon the construction of stable algorithms capable of
handling smooth and, most likely, time dependent boundaries. After deriving single grid, energy conserving
discretizations for axisymmetric systems containing the axis of symmetry, we present a new excision method
for moving black holes using multiple overlapping coordinate patches, such that each boundary is fixed with
respect to at least one coordinate system. This multiple coordinate structure eliminates all need for extrapola-
tion, a commonly used procedure for moving boundaries in numerical relativity. We demonstrate this excision
method by evolving a massless Klein-Gordon scalar field around a boosted Schwarzschild black hole in
axisymmetry. The excision boundary is defined by a spherical coordinate system comoving with the black hole.
Our numerical experiments indicate that arbitrarily high boost velocities can be used without observing any
sign of instability.
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I. INTRODUCTION

Inspiraling black holes are among the strongest as
physical sources of gravitational radiation. The expectat
that such systems may soon be studied with gravitatio
wave detectors has focused attention on solving Einste
equations for predictions of gravitational wave content. A
though the Einstein equations present several unique c
lenges to the numerical relativist@1#, on several of which we
do not elaborate here, black holes present one particular
ditional challenge: they contain physical curvature singula
ties. While the infinities of the gravitational fields associat
with this singularity cannot be represented directly on a co
puter, the spacetime near the black hole must be given
equately to preserve the proper physics.

Different strategies have thus been developed to com
tationally represent black holes, while removing the sing
larity from the grid. One method exploits the gauge freed
of general relativity by choosing a time coordinate that a
vances normally far from a singularity, slows down as a s
gularity is approached, and freezes in the immediate vicin
Coordinates with this property are ‘‘singularity avoiding
@2–4#. While singularity avoiding coordinates have some a
vantages, one potential disadvantage is that the hype
faces of constant time may become highly distorted, lead
to large gradients in the metric components. These sl
stretching ~or ‘‘grid-stretching’’! effects, however, can b
partially avoided through an advantageous combination
lapse and shift conditions. For example, long-term evoluti
of single black holes have been reported by Alcubierreet al.
@5#. Singularity avoiding slicings may be combined wi
black hole excision, a second method for removing the s
gularities from the computational domain. Currently, lon
term binary black hole evolutions have only been perform
using both techniques together.

*Present address: School of Mathematics; University of So
ampton, Southampton SO17 1BJ, United Kingdom.
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Excision is based on the physical properties of event
rizons and the expectation that singularities always fo
within such horizons, and thus cannot be seen by dis
observers, as formulated by the cosmic censor conjecture@6#.
As no future-directed causal curve connects events inside
black hole to events outside, Unruh proposed that one co
simply remove the black hole from the computational d
main, leaving the exterior computation unaffected@7#. Thus
the black hole singularity is removed by placing an inn
boundary on the computational domain at or within the ev
horizon. Excision has been extensively used in numer
relativity in the context of Cauchy formulations@8–18#. In
particular, excision with moving boundaries, which is t
primary focus of this paper, was explored in Refs.@14–18#.

The physical principles that form the basis of excisi
make the idea beautiful in its simplicity. Translating the
into a workable numerical recipe for black hole evolution
on the other hand, requires some attention to detail. T
general questions arise regarding the implementation of
cision: ~1! Where and how to define the inner boundary?~2!
How to move the boundary? The first question applies to
excision algorithms, while the last question is specific
implementations where the excision boundary moves w
respect to the grid. In addressing these questions we ass
a symmetric~or at least strongly! hyperbolic formulation
@19#. This is because excision fundamentally relies on
characteristic structure of the Einstein equations near e
horizons, a structure which can only be completely defin
and understood for strongly and symmetric hyperbolic s
of equations.

The first question involves several considerations, incl
ing the location of the boundary, its geometry, and its d
crete representation. The requirement that all modes at
excision boundary are leaving the computational domain
be non trivial. It may appear that this condition would b
satisfied simply by choosing any boundary within the ev
horizon ~or, for practical purposes, the apparent horizo!.
However, the outflow property of the excision boundary d
pends on the characteristic speeds of the system in the
-
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mal directions to the boundary. For example, in the anal
Schwarzschild solution, assuming that the system has c
acteristic speeds bounded by the light cone, a sphe
boundary can be excised atr<2M . A cubical boundary, on
the other hand, imposes an onerous restriction on the e
sion volume: in Cartesian Kerr-Schild coordinates the fa
of a cube centered on the black hole must be less t
4A3/9M'0.7698M in length @13,20#. Remarkably, as was
first noticed by Lehner@21#, for the rotating Kerr solution in
Kerr-Schild coordinates a well-defined cubical excisi
boundary is impossible for interesting values of the spin
rameter.~See the Appendix for further discussion.! Whereas
with a pseudospectral collocation method the implemen
tion of a smooth spherical excision boundary is trivial@22#,
this is generally not the case for finite differencing. As m
be expected, smooth boundaries, which can be adapted t
spacetime geometry, allow the excision boundary to be as
from the singularity as possible, making the most efficie
use of the technique.

The discrete representation of boundaries can be a
cate issue, especially in numerical relativity where ma
large-scale finite difference computations are done in Ca
sian coordinates. We focus our attention on smooth bou
aries that may be defined as a constant value in the com
tational coordinates, e.g.,r 5r 0 in spherical coordinates
describes a simple spherical boundary. The importance
accurately representing smooth boundaries has been de
strated for the Euler equations, for example, by Dadone
Grossman for finite volume methods@23#, and Bassi and
Rebay@24# using finite elements. Bassi and Rebay stud
high resolution planar fluid flow around a cylinder. The
report spurious entropy production near the cylinder w
which corrupts the solution even on extremely refined gri
when the cylindrical boundary is approximated by a polyg
Furthermore, in the conformal field equations approach
general relativity, a smooth boundary is required to av
uncontrollable numerical constraint violation@25#.

The second question applies to excision boundaries
move with respect to the grid. When the inner bound
moves, points that previously were excised enter the phys
part of the grid, and must be provided with physical data
all fields. In recently proposed excision algorithms, the
data are obtained by extrapolating the solution from
physical domain of the calculation. Numerical experime
have indicated that the stability of the method is very sen
tive to the details of the extrapolation, see e.g., Re
@16,17,26#. To examine the black hole excision problem wi
moving inner boundaries, we adopt an approach with so
unique features. The heart of our method for moving ex
sion is to use multiple coordinate patches such that e
boundary is at a fixed location in one coordinate syste
Adapting coordinate patches to the boundary geometry
lows us to excise as far from the singularity as possible
simplifies the determination of the outflow character of t
excision boundary. The motion of the boundaries is incor
rated through the relationships among the various coordi
systems. The grids representing the different coordin
patches overlap and communicate via interpolation. T
technique is an extension of the one used in well-posed
04402
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proofs for problems in general domains~see Sec. 13.4 o
Ref. @27#!. In this paper we demonstrate the algorithm
solving the massless Klein-Gordon equation on a fix
boosted Schwarzschild background. We find that the al
rithm is stable for~apparently! all values of the boost param
eter,b5v/c, and present results here showing stable evo
tions for several cases withb<0.95.

We specialize to axially symmetric spacetimes to redu
the computational requirements for our single-proces
code. Axially symmetric spacetimes have sometimes b
avoided in numerical relativity, with notable exceptions, s
e.g., Ref.@28#, owing to the difficulties in developing stabl
finite difference equations containing the axis of symme
In this paper we further present finite differencing metho
for the wave equation in axially symmetric spacetimes
canonical cylindrical and spherical coordinates. These dif
encing schemes are second order accurate and their sta
for a single grid is proved using the energy method@27#.
Maximally dissipative boundary conditions are applied us
the projection method of Olsson@29#. We present the differ-
encing algorithm in detail, and indicate precisely how boun
ary conditions are applied.

This paper is organized as follows: In Sec. II we motiva
our approach and review the overlapping grid method.
recall the concept of conserved energy for a first order sy
metrizable hyperbolic system in Sec. III and provide
energy-preserving discretization. In Sec. IV we analyze
axisymmetric wave equation around a Minkowski bac
ground as an introduction to our numerical methods. T
analysis is then repeated for the black hole background c
in Sec. V. The excision of a boosted black hole with t
overlapping grid method is described in Sec. VI. The nume
cal experiments, along with several convergence tests,
included in Sec. VII.

II. OVERVIEW

Our primary goal is to obtain a numerical algorithm f
excision with moving black holes that is stable and conv
gent~in the limit that the mesh spacing goes to zero!. These
desired properties for the discrete system closely mirror
continuum properties of well-posed initial boundary val
problems~IBVPs!: the existence of a unique solution th
depends continuously on the initial and boundary data. F
thermore, we believe that we will not obtain long-term co
vergent discrete solutionsunlessthe underlying continuum
problem is also well-posed. Unfortunately there are f
mathematical results concerning the well-posedness of g
eral classes of equations. The energy method, however,
be used with symmetric hyperbolic IBVPs, and gives su
cient conditions for well-posedness.

When a black hole moves with respect to some coordin
system, the inner excision boundary must also move. We
multiple coordinate patches, such that every boundary
fixed with respect to at least one coordinate system. Coo
nate transformations relate the coordinate systems, and
come time dependent when the hole moves. The movem
of the inner boundary is also expressed by these tim
dependent coordinate transformations. These ideas are
0-2
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trated in Fig. 1. In our axially symmetric model problem of
scalar field on a boosted Schwarzschild spacetime, the c
putational frame is covered with cylindrical coordinate
while a second patch of spherical coordinates is comov
with the black hole.~In these coordinates the event horizon
always located atr 52M while the time coordinate is take
from the cylindrical patch so that data on all grids are sim
taneous.! The inner boundary of the spherical grid, located
or within the event horizon, is a simple outflow bounda
and requires no boundary condition. The cylindrical dom
has an inner boundary somewhere near the black h
whether inside or outside of the horizon is immaterial,
long as it is covered by the spherical coordinate patch.
exchange of information between the two coordinate patc
is required to provide boundary conditions at the inner cy
drical boundary and the outer spherical boundary.

On each grid the discrete system is constructed using
energy method@27#. We define an energy for the sem
discrete system and, using difference operators that sa
summation by parts, we obtain a discrete energy estim
@13#. Well-posed boundary conditions can then be identifi
by controlling the boundary terms of the discrete energy
timate. The conditions are discretized using Olsson’s pro
tion method@29#. In particular, the symmetry axis (r50 in
canonical cylindrical coordinates! is included in the discrete
energy estimate@30#, allowing us to naturally obtain a stabl
discretization for axisymmetric systems.

We implement our excision algorithm using overlappi
grids, also known as composite mesh difference met
@27,31,32#. The two grids are coupled by interpolatio
which is done for all the components of the fields bei
evolved. If the system is hyperbolic this means that one
actually over specifying the problem. However, as it

FIG. 1. A singularityS surrounded by an event horizon]V is
moving with respect to the base coordinate system. A coordin
patch ~shaded region! adapted to]V follows the motion of the
singularity. With respect to this patch,]V is a purely outflow
boundary and requires no boundary conditions. The base sy
terminates somewhere inside the shaded region and it gets bou
data from the moving patch. Similarly, the data at the outer bou
ary of the moving patch are taken from the base system.
04402
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pointed out in Sec. 13.4 of Ref.@27# and as it is confirmed by
our experiments, this does not lead to a numerical instabi
The fully discretized system is completed by integrating
semi-discrete equations with an appropriate method for o
nary differential equations~ODEs!; we choose third and
fourth order Runge-Kutta, which does not spoil the ene
estimate of the semi-discrete system@13#. Kreiss-Oliger dis-
sipation@33# is added to the scheme, as some explicit dis
pation is generally necessary for stability with overlappi
grids @35#. Whereas the stability theory for overlapping grid
for elliptic problems is well developed, there are very fe
results concerning hyperbolic systems. Starius presents a
bility proof for overlapping grids in one dimension@31#. Fi-
nally, we note that Thornburg has also explored multip
grids in the context of numerical relativity with black ho
excision@36#.

The structure of the overlapping grids used in this work
illustrated in Fig. 6. The additional complication of the ax
of symmetry is discussed below. For simplicity we choo
the outer boundary to be of rectangular shape. The introd
tion of a smooth spherical outer boundary, along with a
other grid overlapping with the base cylindrical grid, is ce
tainly possible and, we believe, likely to improve th
absorbing character of the outer boundary when the inc
ing fields are set to zero.

III. THE WAVE EQUATION

To demonstrate our excision algorithm, we choose
evolution of a massless Klein-Gordon scalar field on an a
symmetric, boosted Schwarzschild background as a mo
problem. In this section we summarize basic definitions
linear, first order hyperbolic initial-boundary value problem
@19,27#. We employ the energy method to identify wel
posed boundary conditions. The discrete version of t
method, based on difference operators satisfying the sum
tion by parts rule@37#, is then used to discretize the righ
hand side of the system and the boundary conditions o
single rectangular grid.~For an introduction to these method
in the context of numerical relativity see Refs.@13,38,39#.!
We then introduce the axisymmetric scalar field equations
a curved background, along with their semi-discrete appro
mation.

In this paper we adopt the Einstein summation convent
and geometrized units (G5c51). Latin indices range ove
the spatial dimensions, and Greek indices label space
components.

A. Hyperbolic systems in first order form

Consider a linear, first order, hyperbolic IBVP in two sp
tial dimensions, consisting of a system of partial different
evolution equations, and initial and boundary data, of
form

] tu5Ai~ t,xW !] iu1B~ t,xW !u ~ t,xW !P@0,T#3V ~1!

u~0,xW !5 f ~xW ! xWPV ~2!

Lu~ t,xW !5g~ t,xW ! ~ t,xW !P@0,T#3]V, ~3!
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-

0-3



-

ti

l

t-

is
ar
on

tic
n
sp

re
P
n
e

at
s
im
t

dary

tu-
ls.

o

ei-
he
te-

nts
e
ns

a

s

ous

con-

i-

G. CALABRESE AND D. NEILSEN PHYSICAL REVIEW D69, 044020 ~2004!
where i 51,2, u5u(t,xW ) and f (xW ) are vector valued func
tions with m components,Ai andB arem3m matrices that
depend on the spacetime coordinates but not on the solu
u, and ] i stands for]/]xi. The boundary ofV,R2 is as-
sumed to be a simple smooth curve. The operatorL and the
datag that appear in the boundary condition~3! will be de-
fined below in Eqs.~10! and ~11!.

1. Strong and symmetric hyperbolicity

System ~1!–~3! is said to be strongly hyperbolic in
O,@0,T#3V if, at each point (t0 ,xW0)PO, the matrix

P̂~ t0 ,xW0 ,vW !5Aj~ t0 ,xW0!v j , ~4!

with vW PR2 and uvW u25v1
21v2

251, can brought into rea

diagonal form by a transformationT(vW ), such thatT(vW ) and
T21(vW ) are uniformly bounded with respect tovW . The sys-
tem is said to besymmetricor symmetrizablehyperbolic inO

if, at each point (t0 ,xW0)PO, there exists a smooth, symme
ric positive definite matrixH(t0 ,xW0), independent ofvW , such
thatHAi5(HAi)T for i 51,2. The matrixH is usually called
the symmetrizer. Clearly, a symmetric hyperbolic system
also strongly hyperbolic. Strong hyperbolicity is a necess
condition for well-posedness and consequently for the c
struction of stable numerical schemes.

2. Characteristic speeds

The characteristic speedsin the direction nW 5(n1 ,n2)
PR2, with n1

21n2
251, at the point (t0 ,xW0)P@0,T#3V are

the eigenvalues ofAn(t0 ,xW0)[niA
i(t0 ,xW0). In Sec. VII we

will show how the maximum value of the characteris
speeds in the region@0,T#3V can be used to compute a
upper bound for the ratio between the time step and the
tial mesh size.

3. Energy method

The specification of proper boundary conditions requi
careful consideration in order to achieve a well-posed IBV
and we use the energy method to identify appropriate bou
ary conditions@27,40#. Here one defines the energy of th
system at timet to be

E~ t !5iu~ t,• !iH
2 5E

V
uT~ t,xW !H~ t,xW !u~ t,xW !d2x, ~5!

whereH is some positive definitem3m symmetric matrix
and uT denotes the transpose ofu. To ensure continuous
dependence of the solution on the initial and boundary d
the energy must be bounded in terms of appropriate norm
the data. To determine this bound one usually takes a t
derivative of the energy~5!, with the further assumptions tha
u is a smooth solution of~1! and thatH is a symmetrizer. The
energy estimate is then
04402
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E~ t !5E

]V
uTHAnuds1E

V
uT@] tH1HB1~HB!T

2] i~HAi !#ud2x, ~6!

where Gauss’s theorem was used to obtain the boun
term, andni is the outward unit normal to the boundary]V.
To control the growth of the energy of the solution, we na
rally need to control both the boundary and volume integra
We consider the boundary integral first.

The matrixHAn is symmetric, and can be brought int
diagonal form by an orthogonal transformationQ(n),

QT~n!HAnQ~n!5L5diag~L1 ,2L2,0!, ~7!

whereL6.0 are positive definite diagonal matrices, the
genvalues of which, in general, do not coincide with t
characteristic speeds. This allows one to rewrite the in
grand of the boundary integral in Eq.~6! by introducing the
vector w(n)5(w(1L1 ;n),w(2L2 ;n),w(0;n))T5QT(n)u as the
difference between two non-negative terms,

uTHAnu5w(1L1 ;n)TL1w(1L1 ;n)

2w(2L2 ;n)TL2w(2L2 ;n). ~8!

The components ofw(n) are thecharacteristic variablesin
the directionnW . In particular, the components ofw(1L1 ;n)

are theingoing characteristic variables, and the compone
of w(2L2 ;n) are theoutgoingcharacteristic variables. We se
that prescribing homogeneous boundary conditio
(w(1L1 ;n)5Sw(2L2 ;n), with S sufficiently small, i.e.,
STL1S<L2), ensures that the boundary term will give
non-positive contribution to the energy estimate. TheS50
case~no coupling! is of particular interest as it usually yield
a good approximation for absorbing~Sommerfeld! boundary
conditions.

The second term of the energy estimate~6!, the volume
integral, can be estimated by 2aiu(t,•)iH

2 , where a
5 1

2 max(t,xW)i]tH1HB1(HB)T2]i(HAi)i is a constant that
does not depend on the solution. Thus, for homogene
boundary conditions we have

d

dt
iu~ t,• !iH

2 <2aiu~ t,• !iH
2 , ~9!

which implies thatiu(t,•)iH<exp(at)ifiH . Similar energy
estimates can be obtained for inhomogeneous boundary
ditions @27,40#, i.e.,

w(1L1 ;n)5Sw(2L2 ;n)1g, ~10!

whereg has to satisfy compatibility conditions with the in
tial data.

Boundary conditions of the form~10! are referred to as
maximally dissipativeboundary conditions@41#. From Eq.
~10! we see that the operatorL introduced in~3! has the form

L5P(1)QT~n!2SP(2)QT~n!, ~11!
0-4
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where P(1)(w(1),w(2),w0)T5(w(1),0,0)T and
P(2)(w(1),w(2),w0)T5(0,w(2),0)T. Finally, it is important
to recognize that if the matrixH is not a symmetrizer, as
would be the case ifH symmetrizesAi but fails to be positive
definite, then the boundary condition above will not, in ge
eral, lead to a well-posed problem, as one would likely e
up specifying boundary data to the wrong quantities.

4. Strict stability

Discretizing the spatial derivatives in the right hand s
of system~1!, but leaving time continuous, leads to a syste
of ODEs called thesemi-discrete system. If an initial value
problem satisfies the estimateiu(t,•)iH<K exp(at)iu(0,
•)iH at the continuum, it would be desirable to obtain
discretization such that a similar estimate holds at the
crete level. Following Ref.@27#, we will say that a semi-
discrete system isstrictly stableif

iu~ t !ih<KSeaStiu~0!ih , ~12!

whereaS<a1O(h) andi•ih is a discrete energy consiste
with the one of the continuum.

5. Conserved energy

Clearly, the requirement thatHAi be symmetric does no
uniquely determine the symmetrizer. For example, ifH is a
symmetrizer, thenf H with f .0 is also a symmetrizer. In
some circumstances, as for the scalar field considered he
is possible to select a preferred symmetrizer which satis
the additional requirement

] tH1HB1~HB!T2] i~HAi !50. ~13!

When this condition holds, the energy defined by that sy
metrizer will be conserved. By this we mean that the cha
in energy of our system is solely due to the boundary term
~6!, which can be controlled by using maximal dissipati
boundary conditions~10!. In particular, when homogeneou
boundary conditions are used, or when no boundaries
present, the energy cannot increase.

6. Energy conserving schemes

Let us assume momentarily that there exists a sym
trizer for which Eq.~13! holds ~the system admits a con
served energy!, and that no boundaries are present. In
variable coefficient case@more precisely, if] j (HAi)Þ0 for
i 5 j ], the naive discretization] tu5AiDiu1Bu, where u
now represents a vector valued grid function, althou
strictly stable when a second order accurate centered di
ence operator is used@29#, does not conserve the discre
energy

E5~u,Hu!h5h1h2(
i j

ui j
T Hi j ui j , ~14!

whereHi j 5H(t,xW i j ). Its time derivative gives

d

dt
E~ t !5~u,@HAi ,Di #u!h1„u,] i~HAi !u…hÞ0, ~15!
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where we used the fact that (v,Diu)h1(Div,u)h50. The
lack of a Leibniz rule at the discrete level is only part
responsible for this. In general, even if this rule were sa
fied, the discrete estimate would not vanish, (d/dt)E
5„u,@] i(HAi)2Di(HAi)#u…hÞ0. Any semi-discrete ap-
proximation that preserves the discrete energy~14! is anen-
ergy conservingscheme. Remarkably, whenever a system
mits a conserved energy at the continuum it is alwa
possible to construct an energy conserving sche
@13,38,39#. The following ‘‘1/211/2’’ splitting, for example,

] tu5
1

2
AiDiu1

1

2
H21Di~HAiu!1S B2

1

2
H21] i~HAi ! Du,

~16!

ensures that the discrete energy~14! remains constant
Clearly, an energy conserving scheme is strictly stable, s
a5aS50. We note that, depending on the problem, the
may be alternative, simpler discretizations than the ‘‘1
11/2’’ splitting which lead to the same energy estima
Moreover, a discretization such as~16! is a consistent ap-
proximation of ] tu5Ai] iu1Bu whether or not condition
~13! holds.

7. Rectangular grid

Consider a rectangular domainV5$(x1,x2)uxmin
1 <x1

<xmax
1 ,xmin

2 <x2<xmax
2 %, with the grid points xW i j 5(xmin

1

1 ih1 ,xmin
2 1 jh2), i 50, . . . ,N1 and j 50, . . . ,N2, and hk

5(xmax
k 2xmin

k )/Nk , k51,2. From the continuum analysis w
expect that boundary data should be given to the incom
characteristic variables in the direction orthogonal to
boundary surface. In addition, at the corners the bound
data have to satisfy compatibility conditions. We now rep
the same analysis for the semi-discrete system in orde
determine appropriate boundary conditions for the compu
tional grid. In particular, we examine the application
boundary conditions at the corner points of the grid.

We define the following one dimensional scalar produ
between vector valued grid functions,

~u,v !h1
5h1(

i 50

N1

ui
Tv is i , ~u,v !h2

5h2(
i 50

N2

ui
Tv is i ,

~17!

wheres i5$1/2,1, . . . ,1,1/2%. The 2D scalar product is

~u,v !h5h1h2(
i 50

N1

(
j 50

N2

ui j
T v i j s is j . ~18!

To simplify the notation we introduceD ( i )5D (xi ). If we ap-
proximate]1 with the second order centered difference o
erator D0

(1)ui j 5(ui 11,j2ui 21,j )/(2h1) in the interior (1< i
<N121, 0< j <N2) and with the first order one-sided dif
ference operators D1

(1)u0 j5(u1,j2u0,j )/h1 , D2
(1)uN1 j

5(uN1 , j2uN121,j )/h1 at the x15const boundary we have
that
0-5
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~u,D (1)v !h1~D (1)u,v !h

5h2(
j 50

N2 S h1(
i 50

N1

ui j D
(1)v i j s i1h1(

i 50

N1

D (1)ui j v i j s i Ds j

5~ui • ,v i •!h2
u i 50
i 5N1 . ~19!

Similarly, if D (2)5D0
(2) in the interior andD (2)5D6

(2) at the
x25const boundary, we have that

~u,D (2)v !h1~D (2)u,v !h5~u
• j ,v

• j !h1
u j 50
j 5N2 . ~20!

If these simple finite difference operators are used to
proximate the spatial derivatives in, for example,~16!, the
time derivative of the discrete energy

E5~u,Hu!h5h1h2(
i j

ui j
T Hi j ui j s is j ~21!

gives

d

dt
E5„ui • ,~HA1u! i •…h2

u i 50
i 5N11 „u

• j ,~HA2u!
• j…h1

u j 50
j 5N2

1„u,@] tH1HB1~HB!T2] i~HAi !#u…h , ~22!

where we have not assumed energy conservation.
According to the discrete energy estimate above, to c

trol the energy growth due to the boundary term, one sho
give data to the incoming variables in the directionnW , or-
thogonal to the boundary in maximally dissipative form,
shown in Fig. 2. To define the unit normal at the corner of
grid we examine the contribution to the energy estimate
to the corner point itself@29#. We see that, for example, a
( i , j )5(N1 ,N2) we have

h2

2
uN1N2

T ~HA1u!N1N2
1

h1

2
uN1N2

T ~HA2u!N1N2

5
uhu
2

uN1N2

T ~HAnu!N1N2
, ~23!

whereuhu5Ah1
21h2

2 andnW 5(h2 ,h1)/uhu is the unit normal
at (N1 ,N2). Similar results hold at the other corners. In pa

FIG. 2. The energy estimate for the semi-discrete initi
boundary value problem on domains with corners shows tha
order to control the growth due to the boundary term, boundary d
must be given to the incoming modes with respect to the unit n

mal nW . At the corner, the unit normal depends on the mesh spac
h1 andh2.
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ticular, this shows that for uniform grids (h15h2), data
should be given in the 45° direction.

8. Olsson’s boundary conditions

Let us assume that at the boundary there is one incom
one outgoing, and one zero speed mode and thatL
5diag(1l1 ,2l2,0) with l6.0. At each grid point be-
longing to the boundary, boundary conditions are imp
mented according to Olsson’s prescription@29#. Namely, if
nW 5(n1 ,n2) is the outward pointing unit normal, we carr
out the following steps:

~1! Compute (Wold
(1l1 ;n) ,Wold

(2l2 ;n) ,Wold
(0;n))T5Q(n)TP,

whereP is the discretized right hand side andQ(n) is
the orthogonal matrix that diagonalizes the bound
matrix HAn, Q(n)THAnQ(n)5L.

~2! If the boundary condition at the continuum isw(1l1 ;n)

5Sw(2l2 ;n)1g, overwrite the ingoing and outgoing
modes according to

Wnew
(1l1 ;n)

5
S

11S2
~SWold

(1l1 ;n)
1Wold

(2l2 ;n)
!1

1

11S2
] tg

Wnew
(2l2 ;n)

5
1

11S2
~SWold

(1l1 ;n)
1Wold

(2l2 ;n)
!2

S

11S2
] tg

and leave the zero speed mode unchanged,Wnew
(0;n)5Wold

(0;n) .
This will ensure thatWnew

(1l1 ;n)
5SWnew

(2l2 ;n)
1] tg and that

the following linear combination of in- and outgoing mod
remains unchanged,SWnew

(1l1 ;n)
1Wnew

(2l2 ;n)
5SWold

(1l1 ;n)

1Wold
(2l2 ;n) . Note that unlessS50, the outgoing mode will

be modified. When the exact solution is known, the bound
data required to reproduce it areg5g(1l1 ,n)2Sg(2l2 ;n),
whereg(1l1 ;n) andg(2l2 ;n) are ingoing and outgoing char
acteristic variables of the exact solution.

The new modified rhs is obtained by multiplyin
(Wnew

(1l1 ;n) ,Wnew
(2l2 ;n) ,Wnew

(0;n))T by Q(n).

9. Consistency at corners

Although giving data to the incoming variables at the co
ner in the directionnW controls the energy growth and ther
fore ensures numerical stability, to achieve consistency w
the boundary conditions used at the two adjacent sides s
extra care is required. Let us assume that the normals to
two sides defining the corner arenW and mW and that L
5diag(1l1 ,2l2,0) with l6.0, i.e., on each side there i
one ingoing, one outgoing, and one zero speed mode.
give data to the incoming variables at the sides accordin

wnew
(1l1 ;n)

5g(n), ~24!

wnew
(1l1 ;m)

5g(m), ~25!

-
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where, for simplicity, we have assumed no coupling to
outgoing fields. At the continuum these two conditions w
be satisfied also at the corner. Let us assume that at
corner data are given in the directionpW . We must translate
~24! and ~25! in terms of characteristic variables in the d
rectionpW . If Q(r ) denotes the orthogonal matrix defining th
characteristic variables in the generic directionrW, w(r )

5QT(r )u, then we find that at the corner we must u
w(l1 ;p)5Sw(2l2 ;p)1g(p), with a non-trivial coupling

S52
@QT~m!Q~p!#13@QT~n!Q~p!#122~n↔m!

@QT~m!Q~p!#13@QT~n!Q~p!#112~n↔m!
,

~26!

and boundary data

g(p)5
@QT~m!Q~p!#13g

(n)2~n↔m!

@QT~m!Q~p!#13@QT~n!Q~p!#112~n↔m!
, ~27!

where@Q# i j denotes thei j matrix element ofQ. The notation
(n↔m) indicates that the preceding term is repeated w
the exchange of the vectorsm andn. In particular, ifg(n) and
g(m) vanish, theng(p) also vanishes. However, in general, t
absence of coupling on the two adjacent sides is not con
tent with a vanishingS at the corner, Eq.~26!.

B. The massless scalar field on a curved background

1. The axially symmetric system

We now turn to the massless scalar field propagating o
curved background (M ,g). The equation of motion is the
second order wave equation

¹m¹mF50, ~28!

where¹ denotes the covariant derivative associated with
Lorentz metric g. In terms of the tensor densitygmn

5A2ggmn, the wave equation can be written

]m~gmn]nF!50. ~29!

We introduce the auxiliary variablesT5] tF and di5] iF,
and rewrite Eq.~29! in first order form,

] tF5T, ~30!

] tT52@g t i] iT1] i~g i tT!1] i~g i j dj !

1] tg
ttT1] tg

t jdj #/g
tt, ~31!

] tdi5] iT. ~32!

The F component of a sufficiently smooth solutio
(F,T,di) of the first order system satisfies the second or
wave equation provided that the constraintsCi[di2] iF
50 are satisfied. An attractive feature of this particular fi
order formulation is that the constraint variables propag
trivially, namely] tCi50 @13#. In particular, this ensures tha
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any solution of~30!–~32! which satisfies the constraints in
tially, will satisfy them at later times, even in the presence
boundaries.

SinceF does not appear in Eqs.~31! and ~32!, we will
drop Eq.~30! from the system. The constraints are replac
by Ci j [] [ idj ]50, which also propagate trivially. Interes
ingly, if Eq. ~32! and the constraints are discretized usi
difference operators satisfying@Di ,D j #50, which is usually
the case, then the time derivative of the discrete constr
variableCi j 5D [ idj ] will also vanish. In particular, for initial
data such thatdi50, the discrete constraints will be ident
cally satisfied during evolution.

To simplify the problem we assume that the backgrou
metric is axisymmetric, which implies that there exists
spacelike Killing fieldc5cm]m5]f . We always use coor-
dinate systems adapted to the Killing field, so that the me
components are independent of thef coordinate and, in par-
ticular, ]fgmn50. Since we are only interested in axisym
metric solutions of the wave equation, i.e., solutions wh
do not depend onf, the variabledf can be eliminated from
the system. Thus, the first order axisymmetric wave equa
consists of Eqs.~31! and ~32!, where the Latin indices now
span only two dimensions, and one constraint.

2. Characteristic speeds

The characteristic speeds in an arbitrary directionnW , with
unW u51, are given by the eigenvalues of

An5Aini5S 22g tn/g tt 2gn j/g tt

ni 0 D . ~33!

These eigenvalues ares65@g tn6A(g tn)22g ttgnn#/(2g tt)
5bn6aAhnn ands050, wherea is the lapse function,b i

the shift vector, andhi j is the induced 3-metric on thet
5const slices in the Arnowitt-Deser-Misner decompositi
@42#. For the system to be hyperbolic it is essential th
(g tn)22g ttgnn5hnn>0, which will be true as long as the
t5const hypersurfaces are spacelike. We also needs6 to be
bounded in the domain of interest, which will be the case
a cylindrical or spherical coordinate system~for r>r 0.0),
provided that the solution does not depend on the azimu
coordinatef.

3. Symmetrizer, conserved energy, and characteristic variable

One can verify that

H~ t,xW !5h~ t,xW !S 2g tt 0

0 g i j D ~34!

is the most general symmetric matrix that satisfiesHAi

5(HAi)T. When positive definite, which will be the case
and only if ] t is timelike andh.0, it represents the mos
general symmetrizer of system~31!,~32!. If we use a coordi-
nate system adapted to the timelike Killing fieldk5] t , the
components ofgmn will be time independent. In this case th
symmetrizer
0-7
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H5S 2g tt 0

0 g i j D ~35!

satisfies Eq.~13! and gives rise to a conserved energy.
The boosting of the black hole will be performed by

Lorentz transformation. The time coordinate of the boos
frame will no longer be adapted to the timelike Killing field
In this case the time derivative of

E5E
V

~2g ttT21g i j didj !d
2x ~36!

is given by

d

dt
E52E

]V
~Tg t iT1Tg i j dj !nids1E

V
~T] tg

ttT

12T] tg
t jdj1di] tg

i j dj !d
2x. ~37!

We assume that in a neighborhood of the outer boundar] t
is timelike. The integrand of the surface term can be writ
as

2~Tg t iT1Tg i j dj !ni5l1w(1l1 ;n)22l2w(2l2 ;n)2

~38!

wherel65gn6g tn and

w(6l6 ;n)56
A16ĝ tn

A2
T1

1

A2

ĝ indi

A16ĝ tn
~39!

w(0;n)5g'
i di ~40!

are the orthonormal characteristic variables ofHAn. To sim-
plify the notation we have introduced the quantitiesgn

5Admngmngnn, ĝmn5gmn/gn and g'
i . The latter satisfies

d i j g'
i g'

j 51 andd i j g'
i g jn50. To express the primitive vari

ables in terms of the characteristic variables we invert E
~39! and ~40!,

T5
A11ĝ tn

A2
w(1l1 ;n)2

A12ĝ tn

A2
w(2l2 ;n)

~41!

di5
ĝ in

A2
S w(1l1 ;n)

A11ĝ tn
1

w(2l2 ;n)

A12ĝ tn
D 1g'

i w(0;n). ~42!

Equations~39!–~42! will be used in the boundary conditions

4. Discretization

Even when there is no conserved energy, it may be de
able to discretize the right hand side of~31! and ~32! in a
manner that satisfies the optimal estimate~22!, such as~16!
or other alternatives, where the symmetrizerH is given by
~35!.

The discretization of the wave equation according to~16!
leads to
04402
d

n
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ir-

] tT52S g t iDiT1Di~g i tT!1
1

2
Di~g i j dj !1

1

2
g i j Didj

1
1

2
] ig

i j dj1] tg
ttT1] tg

t idi D Y g tt,

] tdi5
1

2
DiT1

1

2
~ 3g21! ikD j~gk jT!2

1

2
~ 3g21! ik] jg

k jT,

where 3g21 denotes the inverse ofg i j .
Alternatively, one can simply replace the partial deriv

tive ] i in Eqs.~31! and~32! with the finite difference opera
tor Di satisfying~19! and ~20! and obtain the semi-discret
system

] tT52@g t iDiT1Di~g i tT!1Di~g i j dj !1] tg
ttT

1] tg
t jdj #/g

tt, ~43!

] tdi5DiT, ~44!

which also satisfies the estimate~22!. It is this discretization
that will be used throughout this work, even in the boos
black hole case (] tg

mnÞ0), where the energy~36! is not
conserved. We analyze the discretization at the axis of s
metry in the next sections.

IV. MINKOWSKI BACKGROUND

The energy method for constructing stable finite diffe
ence schemes has, until recently, received little attention
numerical relativity. Thus we first present the wave equat
in axisymmetric Minkowski space to demonstrate t
method, before moving to the more complicated black h
configurations. In this section we give energy preserving d
cretizations for cylindrical and spherical coordinates. In p
ticular, we will show how to discretize the system on the a
of symmetry in an energy conserving way. The next sect
examines discretizations for a Schwarzschild black hole
Kerr-Schild spherical coordinates.

A. Cylindrical coordinates

1. The system

In a Minkowski background in cylindrical coordinate
$t,r,z,f%, the second order axisymmetric wave equation h
the form

] t
2F5

1

r
]r~r]rF!1]z

2F. ~45!

We consider the first order formulation

] tT5
1

r
]r~rP!1]zZ, ~46!

] tP5]rT, ~47!

] tZ5]zT, ~48!
0-8
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where T5] tF, P5]rF, and Z5]zF are functions of
(t,r,z)P@0,T#3@0,rmax#3@zmin ,zmax#.

2. Regularity conditions at the axisrÄ0

Smoothness at ther50 axis requires that the oddr de-
rivatives of the scalar field vanish on the axis, nam
]r

2n21F(t,r,z)ur5050 for n51,2, . . . . This implies that
the following conditions for the auxiliary variablesT, P, and
Z, have to hold during evolution

Pur505]r
2nPur5050 for n51,2, . . . ~49!

]r
2n21Tur505]r

2n21Zur5050 for n51,2, . . . . ~50!

If the initial data satisfy~49! and ~50!, and the prescription
P(t,0,z)50 is used as a boundary condition atr50, then
the above conditions will hold at later times.

3. The boundary conditions

Since in this coordinate system] t is a Killing field, the
energy~36! is conserved. The time derivative of

E5E
zmin

zmaxE
0

rmax
~T21P21Z2!rdrdz ~51!

gives only boundary terms which can be controlled by giv
appropriate boundary data

d

dt
E52E

zmin

zmax
T~ t,rmax,z!R~ t,rmax,z!rmaxdz

12E
0

rmax
@T~ t,r,z!Z~ t,r,z!#z5zmin

z5zmaxrdr. ~52!

4. Energy conserving discretization

The discretization of the right hand side of Eq.~46! at the
r50 axis deserves special attention. As a consequence o
regularity conditions we have that

lim
r→01

1

r
]r~rP!52]rPur50 . ~53!

and therefore no infinities appear on the right hand side.
This suggests considering the semi-discrete approxi

tion @30#

] tTi j 5H 2D1
(r)P0 j1D (z)Z0 j , i 50

1

r i
D (r)~rP! i j 1D (z)Zi j , i>1

~54!

] tPi j 5D (r)Ti j , i>1 ~55!

] tZi j 5D (z)Ti j , i>0, ~56!

where r i5 iDr and zj5zmin1 j Dz, with NrDr5rmax and
NzDz5zmax2zmin . The difference operatorsD (r) and D (z)

are second order accurate centered difference oper
04402
y

the
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ors

where their computation does not involve points which
not belong to the grid, and are first order accurate one si
difference operators otherwise. The regularity conditio
P0 j50 for j 50, . . . ,Nz , is enforced for allt, and Eq.~49!
ensures thatD1

(r)P0 j is, in fact, a second order approxima
tion. A solution of ~54!,~55!,~56! conserves the discrete en
ergy

E5(
j 50

Nz F(
i 51

Nr

~Ti j
2 1Pi j

2 1Zi j
2 !r is iDr1

1

4
~T0 j

2

1Z0 j
2 !Dr2Gs jDz, ~57!

which is consistent with the continuum expression~51!.
More precisely, using the fact that] tT0 j5(2/Dr)P1 j
1D (z)Z0 j and the basic properties of the finite differen
operators, one can see that the following estimate

d

dt
E52(

j 50

Nz

TNr jrNr
PNr js jDz12(

i 51

Nr

~TiNz
ZiNz

2Ti0Zi0!r is iDr1
1

2
~T0Nz

Z0Nz
2T00Z00!Dr2

~58!

holds, consistently with the continuum limit~52!.
As it is pointed out in Sec. 12.7 of Ref.@27#, one order

less accuracy at the boundary is allowed, in the sense th
does not affect the overall accuracy of the scheme, provi
that the physical boundary conditions are approximated
the same order as the differential operators at the in
points.

5. Discrete boundary conditions

By inspecting the boundary terms of the discrete ene
estimate~58!, we can readily see how the boundary da
should be given at each boundary grid point (j 50, j 5Nz ,
and i 5Nr). In the case of a uniform grid (Dr5Dz), in
order to control the energy growth boundary data should
given in maximally dissipative form in the directions show
in Fig. 3.

The presence of lower order terms in~57!, in addition to
ensuring that the discrete energy is positive definite on
axis, indicates how to specify boundary data at the cor
grid points that lie on the axis.

B. Spherical coordinates

In this section we discretize the wave equation
Minkowski space with spherical coordinates$t,r ,u,f%.

1. The system

The second order axisymmetric wave equation on a
background in spherical coordinates
0-9
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] t
2F5

1

r 2
] r~r 2] rF!1

1

r 2sinu
]u~sinu]uF!, ~59!

is written in first order form as

] tT5
1

r 2
] r~r 2R!1

1

r 2sinu
]u~sinuQ! ~60!

] tR5] rT ~61!

] tQ5]uT, ~62!

where T5] tF, R5] rF, and Q5]uF are functions of
(t,r ,u)P@0,T#3@r min ,r max#3@0,p#.

FIG. 3. This figure shows how the unit normal at the bound
grid points should be chosen. We note that at the corners whic
on the axis of symmetry we must apply both the regularity and
boundary conditions.
where r i5r min1 iDr and u j5 j Du, with NrDr 5r max2r min

04402
2. Regularity conditions on the axisuÄ0 and uÄp

Smoothness requires that the oddu derivatives of the sca-
lar field vanish on the axis of symmetry, namely atu50 and
u5p. This implies that

Quu50,p5]u
2nQuu50,p50 n51,2, . . . ~63!

]u
2n21Tuu50,p5]u

2n21Ruu50,p50 n51,2, . . . . ~64!

As in the cylindrical case, it is possible to show that if th
initial data satisfy~63! and~64! and the boundary condition
Quu50,p50 are used during evolution, then the above reg
larity conditions will continue to hold.

3. Boundary conditions

Since we are interested in a domain of the formV
5$(r ,u)PR2ur min<r<r max,0<u<p%, where r min.0, the
characteristic speeds are bounded by max$1,r min

21%. The con-
served energy is

E5E
r min

r maxE
0

pS T21R21
Q2

r 2 D r 2sinududr, ~65!

and its time derivative is given by

d

dt
E52E

0

p

r 2RTur 5r min

r 5r maxsinudu. ~66!

At r 5r max and r 5r min boundary data must be given to th
incoming modes.

4. Energy conserving discretization

As a consequence of the regularity conditions on the a
of symmetry, we have that

lim
u→mp

1

sinu
]u~sinuQ!52]uQuu5mp , m50,1. ~67!

We discretize the right hand side of~60!–~62! as

y
lie
e

] tTi j 55
1

r i
2

D (r )~r 2R! i j 1
2

r i
2

D6
(u)Q i j j 50,Nu

1

r i
2

D (r )~r 2R! i j 1
1

r i
2sinu j

D0
(u)~sinuQ! i j j 51, . . . ,Nu21

~68!

] tRi j 5D (r )Ti j , ~69!

] tQ i j 5D (u)Ti j , ~70!
0-10
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and NuDu5p. The conditionQ i05Q iNu
50 on the axis is

enforced at all times. The following discrete energy

E5(
i 50

Nr

(
j 51

Nu21 S Ti j
2 1Ri j

2 1
Q i j

2

r i
2 D r i

2sinu js iDuDr

1
1

2 (
i 50

Nr

~Ti0
2 1Ri0

2 !r i
2s isinDu

Du

2
Dr

1
1

2 (
i 50

Nr

~TiNu

2 1RiNu

2 !r i
2s isinDu

Du

2
Dr , ~71!

is conserved by the semi-discrete system. Its time deriva

d

dt
E52 (

j 51

Nu21

~Ti j Ri j r i
2!u i 50

i 5Nrsinu jDu1~Ti0Ri0r i
2!

3sinDu
Du

2
1~TiNu

RiNu
r i

2!u i 50
i 5NrsinDu

Du

2
,

~72!

gives only boundary terms consistently with the continu
estimate~66!.

5. Discrete boundary conditions

The choice of unit normal at the boundary grid pointsi
50 andi 5Nr) is illustrated in Fig. 4.

FIG. 4. According to the discrete energy estimate, bound
data should be given to the incoming variable in the direction in
cated in the figure.
04402
e

V. FIXED BLACK HOLE BACKGROUND

This section is a generalization of the results of the p
vious section to the case of a static black hole backgrou
The background metric is Schwarzschild in Kerr-Schild c
ordinates@43#. The Cartesian components of the backgrou
metric can be written as

gmn5hmn1
2M

r
,m,n , ~73!

where hmn5diag(21,11,11,11), r 25x21y21z2, and
,m5(1,xW /r ). In these coordinates the determinant of t
four-metric isg521.

The tensor density componentsgmn, which are needed to
write down the 3D wave equation in first order form, a
given by

gmn5hmn2
2M

r
,m,n, ~74!

where,m5hmn,n5(21,xW /r ).
As we do not wish to consider cylindrical excision in th

paper, we analyze here only the spherical coordinate cas

A. Spherical coordinates

1. The system

In spherical Kerr-Schild coordinates the components
gmn on a Schwarzschild background are

gmn5r 2sinuS hmn2
2M

r
l ml nD ,

hmn5diagH 21,11,1
1

r 2
,1

1

r 2sin2u
J , ~75!

,m5~21,11,0,0!.

The first order axisymmetric wave equation is

] tT5
2M

r 1
] rT1

2M

rr 1
] r~rT !1

1

rr 1
] r~rr 2R!

1
1

rr 1sinu
]u~sinuQ! ~76!

] tR5] rT ~77!

] tQ5]uT, ~78!

wherer 65r 62M , T5] tF, R5] rF, andQ5]uF. In the
region of interest,V5$(r ,u)PR2u2M<r<r max,0<u<p%,
with M.0, the characteristic speeds are bounded.

2. Regularity conditions on the axisuÄ0 and uÄp

Smoothness requires that the oddu derivatives of the sca-
lar field vanish on the axis of symmetry. This implies tha

y
i-
0-11
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Quu50,p5]u
2nQuu50,p50 n51,2, . . . ~79!

]u
2n21Tuu50,p5]u

2n21Ruu50,p50 n51,2, . . . . ~80!

3. The boundary conditions

A symmetrizer which gives rise to a conserved energy
given by

H5diag$rr 1sinu,rr 2sinu,sinu%, ~81!

which is positive definite for 0,u,p and r .2M . Inside
the event horizon,r ,2M , the vector field] t becomes space
like and the system is only strongly hyperbolic.
04402
s

The time derivative of the energy

E5E
2M

r maxE
0

p

~rr 1T21rr 2R21Q2!sinududr, ~82!

gives only boundary terms

d

dt
E52E

0

p

~2MrT21rr 2TR!ur 52M
r 5r maxsinudu. ~83!

In addition to the regularity conditionQ50 at the axis,
the problem requires boundary data atr 5r max.
4. Energy conserving discretization

We discretize the right hand side of~76!–~78! as

] tTi j 55
2M

r i
1

D (r )Ti j 1
2M

r ir i
1

D (r )~rT ! i j 1
1

r i r i
1

D (r )~rr 2R! i j 1
2

r i r i
1

D6
(u)Q i j j 50,Nu

2M

r i
1

D (r )Ti j 1
2M

r ir i
1

D (r )~rT ! i j 1
1

r i r i
1

D (r )~rr 2R! i j 1
1

r i r i
1sinu j

D0
(u)~sinuQ! i j j 51, . . . ,Nu21

~84!

] tRi j 5D (r )Ti j ~85!

] tQ i j 5D (u)Ti j , ~86!
any
cing
ly

i-

ld
this
tch
ith

We
ch,
ole
e
cond
ho-

. By
where r i52M1 iDr and u j5 j Du, with NrDr 5r max22M
andNuDu5p. The following discrete energy,

E5(
i 50

Nr

(
j 51

Nu21

~r i r i
1Ti j

2 1r i r i
2Ri j

2 1Q i j
2 !sinu js iDuDr

1
1

2 (
i 50

Nr

~r i r i
1Ti0

2 1r i r i
2Ri0

2 !s isinDu
Du

2
Dr

1
1

2 (
i 50

Nr

~r i r i
1TiNu

2 1r i r i
2RiNu

2 !s isinDu
Du

2
Dr ,

is conserved. Its time derivative is given by

d

dt
E52 (

j 51

Nu21

~2Mr iTi j
2 1r i r i

2Ti j Ri j !u i 50
i 5Nrsinu jDu

1~2Mr iTi0
2 1r i r i

2Ti0Ri0! i 50
i 5NrsinDu

Du

2

1~2Mr iTiNu

2 1r i r i
2TiNu

RiNu
! i 50

i 5NrsinDu
Du

2
.

We point out that, sinceQ i05Q iNu
50, the discrete energy

is positive definite on the axis. However, becauser 0
250, it
does not control the growth ofR0 j on the event horizon.
Numerical experiments indicate that this does not cause
problems. Moreover, experiments do not suggest that pla
r min within the horizon, where the equations are on
strongly hyperbolic, leads to an unstable scheme.

5. Discrete boundary conditions

Data should be given to the incoming modes atr 5r max as
in Fig. 4. Unlike the Minkowski case, no boundary cond
tions should be given when the inner boundary,r 5r min , is at
or within the event horizon.

VI. BOOSTED BLACK HOLE BACKGROUND

Finally, we consider the case in which the scalar fie
propagates on a boosted black hole background. To solve
problem we introduce two coordinate patches: one pa
fixed to the outer boundaries and one patch comoving w
the black hole, and fixed to the inner excision boundary.
choose cylindrical coordinates for the first coordinate pat
boosted with respect to the black hole such that the h
moves with velocityb along the symmetry axis in thes
coordinates. Spherical coordinates are used on the se
patch. These coordinates are chosen by fixing the event
rizon at a constant coordinate value (r 852M ), and requiring
that all data in both coordinate systems are simultaneous
0-12
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adapting these coordinates to the black hole horizon, we
excise the spherical grid atr 852M for all values of the
boost parameter. In this section we first write down the co
ponents of the 4-metric in a boosted Cartesian coordin
system, then discuss the two coordinate systems in s
detail.

We recall that in a Cartesian coordinate system$t,x,y,z%,
with respect to which the black hole is at rest, the me
components have the form given in~73!. Under a Lorentz
boost, i.e., in the new coordinates

t̄ 5g~ t2bz!

x̄5x
~87!

ȳ5y

z̄5g~z2bt !,

whereg5(12b2)21/2, the components of the Kerr-Schil
metric become

gm̄n̄5hm̄n̄1
2M

r
, m̄, n̄ ,

hm̄n̄5diag$21,11,11,11%,

, m̄5~ r̂ ,x̄,ȳ,ẑ!/r ,

where r̂ 5g(r 1bz), ẑ5g(z1br ), z5g( z̄1b t̄ ), and r 2

5x21y21z25 x̄21 ȳ21g2( z̄1b t̄ )2. At time t̄ the singular-
ity is located at (x̄,ȳ,z̄)5(0,0,2b t̄ ).

A. Boosted cylindrical coordinates

We now choose cylindrical coordinates$ t̄ ,r̄,z̄,f̄%, with
r̄ cosf̄5x̄ and r̄ sinf̄5ȳ, giving

gm̄n̄5hm̄n̄1
2M

r
, m̄, n̄ ,

hm̄n̄5diag$21,11,11,1 r̄2%,

, m̄5~ r̂ ,r̄,ẑ,0!/r

and

gm̄n̄5 r̄S hm̄n̄2
2M

r
, m̄, n̄D ,

hm̄n̄5diagH 21,11,11,1
1

r̄2J , ~88!

, m̄5~2 r̂ ,r̄,ẑ,0!/r ,

where z5g( z̄1b t̄ ) and r 25 r̄21g2( z̄1b t̄ )2. Unfortu-
nately, in these coordinates the wave equation has a ra
04402
ay
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unpleasant form: the components ofgm̄n̄ have a nontrivial
dependence on the three coordinatesr̄ andz̄, and especially,
t̄ .

The analytic expressions for the time derivatives of t
g t̄ m̄ components are needed. Using the fact that] t̄ r

5bgz/r , ] t̄ r̂ 5bg ẑ/r , and] t̄ ẑ5bg r̂ /r we get

] t̄g
t̄ t̄52Mbgr̄ r̂ ~3zr̂22rẑ!/r 5,

] t̄g
t̄ r̄52Mbgr̄2~rẑ23zr̂!/r 5, ~89!

] t̄g
t̄ z̄52Mbgr̄~rẑ21r r̂ 223zr̂ẑ!/r 5.

In this coordinate system our first order formulation h
no conserved energy (] t̄g

m̄n̄Þ0). The region in which the
system is symmetrizable hyperbolic is determined by the
of points in which] t is timelike,

2gt̄ t̄512
2Mr̂ 2

r 3
.0. ~90!

Figure 5 shows the regions of lack of symmetric hyperbo
ity for different values of the boost parameter.

FIG. 5. The regions delimited by the curves are regions in wh
the system in not symmetrizable hyperbolic, but only strongly h
perbolic for b50,21/4,21/2,23/4 @the black hole is located a

( r̄,z̄)5(0,0) and moves in the1 z̄ direction#. As the boost param-
eterb increases in magnitude there is a larger part of the cylindr
domain in which the system in only strongly hyperbolic.
0-13
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On the axis of symmetry (r̄50) the equations need to b
expressed in a form which avoids ‘‘0/0.’’ This can be done
taking the limit r̄→0 in the equations. It is convenient t
introduce the quantities

g̃ t̄ t̄5
g t̄ t̄

r̄
, g̃ t̄ r̄5

g t̄ r̄

r̄2
, g̃ t̄ z̄5

g t̄ z̄

r̄
,

g̃ r̄r̄5
gr̄r̄

r̄
, g̃ r̄ z̄5

gr̄ z̄

r̄2
, g̃ z̄z̄5

g z̄z̄

r̄
,

which have a finite limit forr̄→0 ~since the singularity is
excised we can assume thatr>r 0.0). The right hand side
of ~31! at r̄50 becomes

] t̄ T̄5@ g̃ t̄ z̄] z̄T̄12g̃ t̄ r̄T̄1] z̄~ g̃ t̄ z̄T̄!12g̃ r̄r̄] r̄P̄12g̃ r̄ z̄Z̄

1] z̄~ g̃ z̄z̄Z̄!1] t̄ g̃
t̄ t̄ T̄1] t̄ g̃

t̄ z̄Z̄#/~2g̃ t̄ t̄ !.

B. Comoving spherical coordinate system

We introduce a spherical coordinate system$t8,r 8,u8,f8%
which is related to the unboosted Cartesian coordina
b

04402
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$t,x,y,z%, the coordinates in which the black hole is at re
by

t85 t̄ 5g~ t2bz!

r 85Ax21y21z2

~91!

u85cos21S z

Ax21y21z2D
f85tan21S y

xD .

We emphasize that~91! is not a Lorentz transformation. Th
coordinates are adapted to the event horizon in the sense
its location (r 852M ) is time independent, and settingt8
5 t̄ maintains simultaneity in the two coordinate system
The metric components and the components ofgm8n8 are
more conveniently written in matrix form
gm8n8

5S 1

g2 S 211
2M

r 8
D 1

g F2M

r 8
2b cosu8S 12

2M

r 8
D G 1

g
~r 822M !b sinu8 0

• ~11b cosu8!S 12b cosu81
2M

r 8
~11b cosu8!D b sinu8@~r 822M !b cosu822M # 0

• • r 8@r 82b2sin2u8~r 822M !# 0

• • • r 82sin2u8

D ,

gm8n851
2

1

g
r 8sinu8@r 812Mg2~11b cosu8!2# r 8sinu8@2M2b cosu8~r 822M !# br 8sin2u8 0

•

1

g
r 8~r 822M !sinu8 0 0

• •

sinu8

g
0

• • •

1

g sinu8

2 . ~92!
We have symmetric hyperbolicity forr 8.2M and 0,u8
,p.

On the axis of symmetry (u850 or u85p) the equations
need to be expressed in a form that avoids ‘‘0/0.’’ This can
done by taking the limitu8→u0, whereu050,p in the equa-
tions. If we introduce the quantities
e

g̃ t8t85
g t8t8

sinu8
, g̃ t8r 85

g t8r 8

sinu8
, g̃ t8u85

g t8u8

sin2u8
,

g̃ r 8r 85
g r 8r 8

sinu8
, g̃u8u85

gu8u8

sinu8
,

0-14
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which have a finite limit for sinu8→0, then the right hand
side of ~31! on axis becomes

] t8T85@ g̃ t8r 8] r 8T81] r 8~ g̃ t8r 8T8!62g̃ t8u8T81] r 8~ g̃ r 8r 8R8!

12g̃u8u8]u8Q8#/~2g̃ t8t8!, ~93!

where the components ofg̃m8n8 are understood to be evalu
ated atu850,p.

C. Overlapping grids

As mentioned in Sec. II, the method of overlapping gr
gives a natural method for solving finite difference proble
on multiple domains. For the boosted black hole, we use
cylindrical grid as our base grid and introduce the spher
grid adapted to the inner boundary~event horizon!. The two
grids overlap as shown in Fig. 6.

The spherical grid requires boundary data atr 5r max,
which does not constitute a physical boundary in this pr
lem. Here the data are computed by interpolating the va
of the field from the cylindrical grid. Similarly, the values o
the fields at the grid points of the cylindrical grid near t
excision region, which lack a neighboring point in a coor
nate direction~these points are marked with a square in F
6!, are also updated via interpolation. In this work we us

FIG. 6. The first figure shows the overlapping grids for t
axisymmetric wave equation on a boosted black hole backgro
The spherical grid is used to excise the black hole from the c
putational domain. The dashed line represents ar 85const curve on
the spherical patch. This is where the cylindrical coordinate sys
terminates. The arrows on the outer boundary indicate how the
normal is chosen at each boundary grid point where boundary
must be specified. The circles and the square are used to
points of the spherical and cylindrical grid respectively which a
updated through interpolation. As shown in the second figure,
value of the fields on the grid pointP of the spherical grid are
computed by interpolating the values of the fields on the four ne
boring points.
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second order Lagrangian interpolation, which, for a sca
quantity, is given by

f Int~xi1aDx,yj1bDy!5~12a!~12b! f i j 1~12a!b fi , j 11

1a~12b! f i 11,j1ab fi 11,j 11 ,

where 0<a,b,1. Higher-order interpolation stencils ma
also be used, though for the cases examined here, impr
ments in the resulting solutions are slight, resulting in
increase in the order of accuracy.

The boosted cylindrical and comoving spherical coor
nate systems are related by

t̄ 5t8

r̄5r 8sinu8
~94!

z̄5g21r 8cosu82bt8

f̄5f8,

and the inverse transformation

t85 t̄

r 85Ar̄21g2~ z̄1b t̄ !2

~95!

u85tan21S r̄

g~ z̄1b t̄ !
D

f85f̄.

The evolved fields are not scalar quantities, but compone
of a 1-form. So, in addition to the coordinate transformati
between the two coordinate systems, the communicatio
the values of the fields requires the use of the transforma
law of 1-forms. In this case we have

T̄5T81gb cosu8R82gb
sinu8

r 8
Q8

P̄5sinu8R81
cosu8

r 8
Q8 ~96!

Z̄5g cosu8R82g
sinu8

r 8
Q8,

and

T85T̄2bZ̄

R85sinu8P̄1
cosu8

g
Z̄ ~97!

Q85r 8cosu8P̄2r 8
sinu8

g
Z̄,

d.
-

m
it
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0-15



-

a
on

g
zo

re
e

d
t

he
m

he
w

g
ec

ly
th
ng

ar
re

ut

th

he
ints

he
ta.
ap-
me

of
ant
er
-

he
a

re
ld
2.0

at
s

e
ag-

arge
an

on

nd
n of
f

G. CALABRESE AND D. NEILSEN PHYSICAL REVIEW D69, 044020 ~2004!
where (T̄,P̄,Z̄) and (T8,R8,Q8) are the fields on the cylin
drical and spherical grids, respectively.

1. Discretization on the axis

The discretization of the system in boosted cylindric
coordinates in the interior and at the outer boundary is d
according to Eqs.~43! and ~44! where the componentsgm̄n̄

are given in~88!. On the axis of symmetry we use

] t̄ T̄5@ g̃ t̄ z̄D ( z̄)T̄12g̃ t̄ r̄T̄1D ( z̄)~ g̃ t̄ z̄T̄!12g̃ r̄r̄D1
( r̄)P̄12g̃ r̄ z̄Z̄

1D ( z̄)~ g̃ z̄z̄Z̄!1] t̄ g̃
t̄ t̄ T̄1] t̄ g̃

t̄ z̄Z̄#/~2g̃ t̄ t̄ !.

Similarly, the discretization of the system in comovin
spherical coordinates in the interior and on the event hori
is done according to Eqs.~43! and ~44!, where the compo-
nents ofgm8n8 are given in~92!. On the axis of symmetry
(u50 andu5p) we use

] t8T85@ g̃ t8r 8D (r 8)T81D (r 8)~ g̃ t8r 8T8!62g̃ t8u8T8

1D (r 8)~ g̃ r 8r 8R8!12g̃u8u8D6
(u8)Q8#/~2g̃ t8t8!.

2. Boundary conditions

Boundary conditions in maximally dissipative form a
given at the outer boundary of the cylindrical grid in th
directions indicated in Fig. 6. In the boosted case, instea
overwriting the right hand side at the boundary according
Olsson’s prescription, we overwrite the solution itself. T
reason for doing so is that it avoids the tedious task of co
puting time derivatives of the boundary data.

It is interesting to notice that the outer boundary of t
cylindrical grid could become at some points purely inflo
(s6.0) for very large values ofb. ~We exclude the case in
which the black hole is outside the outer boundary.! At and
near these inflow boundary points the system is only stron
hyperbolic and the energy method fails to give the corr
boundary conditions. As it is pointed out in Ref.@34#, apply-
ing maximally dissipative boundary conditions to strong
hyperbolic systems can lead to an ill posed IBVP. Where
boundary is purely inflow we give data to the two incomi
fields. Our numerical experiments~Sec. VII! indicate that the
scheme is stable.

3. Artificial dissipation

Whereas the single grid schemes do not require any
ficial dissipation, it is known that overlapping grids requi
explicit dissipation for stability@35#. To the right hand side
of the discretized system a term of the form@33#

Qdu52s@h1
3~D1

(1)D2
(1)!21h2

3~D1
(2)D2

(2)!2#u ~98!

is added. This dissipative operator is modified near the o
and inner boundary, as was done in Ref.@13#. Near and on
the axis of symmetry dissipation is computed exploiting
regularity conditions of the fields. As this dissipation has
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l
e

n

of
o

-

ly
t

e

ti-

er

e
a

five-point stencil, we find that the long-term behavior of t
code is improved in some cases by interpolating two po
at all inter-grid boundaries.

4. Choice of Courant factor

The fully discrete system is obtained by integrating t
semi-discrete system with third or fourth order Runge-Kut
Whenever explicit finite difference schemes are used to
proximate hyperbolic problems, the ratio between the ti
step sizek and the mesh sizeh5min$hi%, theCourant factor,
cannot be greater than a certain value@44#. This Courant
limit is inversely proportional to the characteristic speeds
the system. We estimate allowable values for the Cour
factor by examining the 2D wave equation in first ord
form, ] tu05] iui , ] tui5] iu0. Assuming second order, cen
tered differencing for the spatial derivatives, we plot t
Courant limits for third and fourth order Runge-Kutta as
function of the artificial dissipation parameter in Fig. 7.

The characteristic speeds in the cylindrical grid a
bounded by 1 in magnitude. Looking at Fig. 7, this wou
suggest that one could use a Courant factor as large as
~using fourth order Runge-Kutta and ignoring the fact th
this is a variable coefficient problem with lower order term
and with boundaries!. However, in the spherical grid th
characteristic speeds along the axis of symmetry have a m
nitude of

A11ubu
12ubu

, ~99!

which is greater than 1 forbÞ0. For example, forb50.9
the characteristic speeds in the spherical grid can be as l
as A19'4.359. In this case a Courant factor larger th
'0.46 is likely to lead to numerical instability.

FIG. 7. The Courant limits for the 2D first order wave equati
] tu05] iui , ] tui5] iu0 for fourth order ~4RK! and third order
Runge-Kutta~3RK!. The calculation assumes no boundaries a
second order centered difference operators for the approximatio
the spatial derivatives. The value ofs represents the amount o
artificial dissipation,2s( i 51

2 hi
3(D1

( i )D2
( i ))2u, added to the rhs of

the equations.
0-16
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VII. NUMERICAL EXPERIMENTS

To our knowledge there are no stability proofs for tw
dimensional hyperbolic problems with overlapping grids.
check the convergence of our code we must rely on num
cal experimentation.

Let u(t,xW ) be the exact solution of the continuum proble
and v i j

n the solution of the fully discrete approximation. I
for any t, asnk→t,

eh
n[S h1h2(

i j
iv i j

n 2u~nk,xW i j !i2D 1/2

5O~hp!1O~kq!

ask,h→0, the difference scheme is said to be convergen
order (p,q). This implies that the overall order of conve
gence of the scheme, assumingk/h5const, is

Q[ lim
h→0

log2

eh
n

eh/2
n

5min$p,q% ~100!

as nk→t, wheret is some fixed time. To use this equatio
we must know an exact solution of the continuum proble

Exact solutions for the scalar wave equation
Minkowski space are well known. To test our overlappi
grid system we use spherical waves@45# given by

F5(
,

f ,~r !P,~cosu!e2 ivt, ~101!

where P,(cosu) are the Legendre polynomials and w
choosef ,(r ) to be the Hankel functions, which asympto
cally represent in- and outgoing waves. We tested the lo
term behavior of our code by evolving an ingoing spheri
wave exact solution, and computing the norm of the er
These results are shown in Fig. 8.

When an exact solution is not available, which is often
case, the following standard technique of numerical anal
can be useful. Letw be an arbitrary function and let us re
write the partial differential equation asL(u)50. If w is
inserted into the equation, in general, it will produce
nonvanishing right hand side,

L~w!5F. ~102!

Clearly, the modified equationL̃(u)[L(u)2F50 hasw as
an exact solution and the convergence of the code can
tested using Eq.~100!.

We chosew(t,r ,u)5sin(t1r)cos(nu), where $t,r ,u% are
the spherical coordinates of the rest frame andn is an integer.
This is an exact solution of
04402
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¹m¹mw2F50, ~103!

whereF is given by

F5
cosnu

r 2
@2r cos~ t1r !2n2sin~ t1r !#

2n
sinnu

r 2sinu
cosu sin~ t1r !. ~104!

Both w and F are scalar quantities. The evolution equati
~31! is modified according to

] tT52@g t i] iT1] i~g i tT!1] i~g i j dj !1] tg
ttT1] tg

t jdj

2A2gF#/g tt, ~105!

where g5det(gmn). On the axis of symmetry we use th
limits limu→0(sinnu/sinu)5n and limu→p(sinnu/sinu)
5(21)n11n. The results of our convergence tests for differe
values of the boost parameter andn52 are summarized in
Fig. 9. Movies are also available@46#.

VIII. CONCLUSION

Systems with moving boundaries arise in a variety of si
ations, and their solution typically involves introducing c
ordinates adapted to the boundaries. These may be eith
single, global coordinate system, such as those used in bi

FIG. 8. These long term runs done at a fairly course resolu
for b5M50 suggest that the interpolation between the overl
ping grids does not introduce any power law or exponential grow
Here the exact solution is given by the real part of the,50 mode
with v52, with the ingoing Hankel function for the radial variab
in Eq. ~101!. The dissipation parameter is set tos50.02. The
ranges of the dependent variables are 0<r<10, 210<z<10, 1
<r<5, and 0<u<p. The coarsest resolutions for the cylindric
and spherical grids are 903170 and 50368, respectively.
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FIG. 9. In these figures we plot the convergence factorQ(t)5 log2(eh
n/eh/2

n ) as a function oft5nk for a sufficiently small value of the
spacingh. The convergence test was carried out with the modified system~105! for boosting parametersb520.5, 20.75, and20.95, from
top to bottom, suggesting that the equations are correctly implemented and that the overall scheme is second order accurate. The
used in the cylindrical and spherical grid are 2563512, 1283384 and 51231024, 2563768. The domain extends from210M to 110M

in the z̄ direction and up to110M in the r̄ direction. The spherical patch covers the region 2M<r 8<3M . We used a Courant factor of 1.15
0.75, and 0.32, and a dissipation parameter ofs50.02. The evolution is stopped just before the spherical grid touches the outer bou
of the cylindrical grid. In theb520.95 the system in only strongly hyperbolic at the bottom right corner of the cylindrical grid. We fo
that, to achieve convergence, we must give data to all fields at this point.
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black hole evolutions@47,48# that keep the black holes an
the outer boundary at fixed coordinate positions, or, as ad
cated here, multiple coordinate patches. Whichever appro
is adopted, fixing coordinates to the boundaries allows on
unambiguously specify proper boundary conditions, as
quired for well-posed problems. Moreover, boundaries
fixed grid coordinates eliminate the need for extrapola
data at points that emerge from a moving boundary.

In our model problem we have evolved an axisymme
scalar field on a boosted Schwarzschild background. We u
a cylindrical coordinate patch with respect to which the ou
boundary is fixed, and we introduced an overlapping sph
cal coordinate patch comoving with the hole. At any giv
time in the comoving coordinate system the location of
inner boundary~the horizon! corresponds to ar 5const sur-
face. This surface can be represented exactly on the num
cal grid and allows one to smoothly excise a large volume
spacetime, much larger than that permitted by cubical e
sion. Our numerical implementation made use of overl
04402
o-
ch
to
-
t
d

c
ed
r
i-

e

ri-
f
i-
-

ping grids, where different but equivalent problems a
solved on separate grids. To communicate data between g
we used interpolation on all fields.

The discrete version of the energy method, based on
ferencing operators that satisfy the summation by parts p
erty, has demonstrated to be particularly effective for
construction of a stable discretization scheme on the axi
symmetry, and for the identification of discrete bounda
conditions. The stability proofs, which hold on individu
grids, cannot be immediately extended to the overlapp
grid scheme, due to the interpolation of data from one grid
another. We note, however, that it may be possible to de
orthogonal projection operators for the interpolation th
could allow to analytically demonstrate numerical stabil
@49#. This is a question of active interest. Nevertheless,
numerical tests indicate that our scheme is convergent, e
for very high values of the boost parameter, and does
suffer from long term power-law or exponential growth
the error.
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The model problem that we presented in this work is p
marily intended as a proof of concept, and several avenue
research remain to be explored. Foremost might be the a
tion of the Einstein equations to the system for a dynam
black-hole spacetime, where the locations of the black h
singularity and event horizon are not a priori known. D
pending on the dimensionality of the problem, one or m
coordinate patches adapted to the inner boundary would h
to be generated during evolution, along with the relations
between the various coordinate systems. By monitoring
characteristic speeds on the excision boundary~with respect
to the coordinate system adapted to that boundary!, one can
guarantee its purely outflow properties, an essential requ
ment of excision.

Although alternative numerical approaches may be p
sible, the overlapping grid method has struck us for
strength and its simplicity. Owing to its flexibility in repre
senting smooth, time dependent boundaries, we believe
this technique, or a similar one, will play a significant role
the solution of the binary black hole problem.
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APPENDIX

To gain some insight into the limitations of cubical exc
sion and the consequent need for a smooth excision bo
ary, we consider the analytic Schwarzschild and Kerr so
tions @20,21#. We employ the commonly used Cartesi
Kerr-Schild coordinates, which are smooth across the h
zon, and write the metric as

gmn5hmn12H,m,n ,

wherehmn is the Minkowski metric,H is a scalar,

H5
Mr

r 21a2cos2u
,

04402
-
of

di-
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le
-
e
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p
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e-
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s
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s
n
-
r
s
is

,
.
r
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e

d-
-

i-

and,m is a null vector,

,m5S 1,
rx1ay

r 21a2
,
ry2ax

r 21a2
,
z

r D .

The parameterM represents the mass of the black hole a
J5aM is the total angular momentum. The spheroidal co
dinatesr andu are given by

cosu5
z

r

r 25
1

2
~r22a2!1A1

4
~r22a2!21a2z2,

wherer25x21y21z2.
We center a cube of side lengthL52b on the black hole,

xiP@2b,b#. In order to excise this region from the comp
tational domain, we must ensure that its boundary is pur
outflow, i.e., that no information can enter the computatio
domain. To determine the allowed values ofb, we calculate
the characteristic speeds on each face of the cube and c
that the inequalitys6

n <0, wherenW is the outward unit nor-
mal to the boundary, is satisfied. The Schwarzschild solu
is obtained by settinga50, and the calculation gives@20#
0,b<2A3/9M'0.385M . The calculations for Kerr (a
Þ0) are more involved, and we present our numerically g
erated results in Fig. 10. We find that because of the r
singularity (r5a,z50), in addition to a maximum size fo

FIG. 10. This figure indicates the limitations of cubical excisi
in the Kerr spacetime in rectangular Kerr-Schild coordinates.
assume that the excision cube is centered on the hole, and tha
faces of the cube are at6b. ~See description in text.! Values ofb
for which an inner boundary has no incoming modes, and thu
candidate for an excision boundary, are indicated by the sha
region in the figure. The structure of the Kerr spacetime result
both maximum and minimum limits to the size of the excision cu
We find that, in this particular coordinate system, cubical excis
for Kerr is well-defined only for very small spin parameters,a
&0.0851M , wherea5J/M . For values ofb below the dashed line
the excision cube intersects the ring singularity.
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the excision cube, there is also aminimumsize. In addition,
we notice that no cubical excision is possible fora
*0.0851M . This is a severe constraint on the spin para
eter, and precludes cubical excision for interesting value
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of

spin. We note, however, that this limitation is coordinate d
pendent and that it might be possible to choose coordin
in which cubical excision may be done for higher valu
of a.
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Massó, and E. Seidel, Comput. Phys. Commun.124, 169
~2000!; P. Papadopoulos and J.A. Font, Phys. Rev. D58,
024005~1998!; P. Anninos, S.R. Brandt, and P. Walker,ibid.
57, 6158 ~1998!; S. Bonazzola, J. Frieben, and E. Gourgou
hon, Astrophys. J.460, 379~1996!; M. Bocquet, S. Bonazzola
E. Gourgoulhon, and J. Novak, Astron. Astrophys.301, 757
~1995!; P. Anninos, D. Hobill, E. Seidel, L. Smarr, and W.-M
Suen, Phys. Rev. D52, 2044~1995!; R. Gomez, P. Papadopou
los, and J. Winicour, J. Math Phys.35, 4184~1994!; P. Anni-
nos, D. Hobill, E. Seidel, L. Smarr, and W.-M. Suen, Phy
Rev. Lett.71, 2851~1993!.

@29# P. Olsson, Math. Comput.64, 1035~1995!; 64, S23~1995!; 64,
1473 ~1995!.

@30# O. Sarbach~unpublished!.
@31# G. Starius, Numer. Math.35, 241 ~1980!.
@32# G. Chessire and W.D. Henshaw, J. Comput. Phys.90, 1 ~1990!.
@33# H.-O. Kreiss and J. Oliger,Methods for the Approximate So

lution of Time-Dependent Problems, GARP Publication Series
No. 10 ~World Meteorological Organization, Geneva, 1973!.

@34# G. Calabrese and O. Sarbach, J. Math. Phys.44, 3888~2003!.
@35# F. Olsson and N.A. Petersson, Comput. Fluids25, 583 ~1996!.
@36# J. Thornburg, Class. Quantum Grav.4, 1119 ~1987!;

gr-qc/0012012; gr-qc/0306056; and unpublished.
@37# B. Strand, J. Comput. Phys.110, 47 ~1994!.
@38# G. Calabrese, L. Lehner, O. Reula, O. Sarbach, and M. Tig

gr-qc/0308007.
@39# L. Lehner, D. Neilsen, O. Reula, and M. Tiglio~unpublished!.
@40# H.O. Kreiss and J. Lorenz,Initial-Boundary Value Problems

and the Navier-Stokes Equations~Academic Press, Boston
1989!.

@41# P.D. Lax and R.S. Phillips, Commun. Pure Appl. Math.13, 427
~1960!.
0-20



gs
or
;

a-

.

.

SPHERICAL EXCISION FOR MOVING BLACK HOLES . . . PHYSICAL REVIEW D 69, 044020 ~2004!
@42# R. Arnowitt, S. Deser, and C. Misner, inGravitation: An In-
troduction to Current Research, edited by L. Witten~Wiley,
New York, 1962!.

@43# R.P. Kerr and A. Schild, inApplications of Nonlinear Partial
Differential Equations in Mathematical Physics, Proceedin
of the 17th Symposium in Applied Mathematics, New Y
1964 (American Mathematical Society, Providence, 1965)in
Atti del Covegno Sulla Relativita` Generale: Problemi
dell’Energia e Onde Gravitazionali, Firenze,edited by G.
Barbera~Comitato Nazionale per la Manifestazioni Celabr
tive, Roma, 1964!.
04402
k,

@44# R. Courant, K.O. Friedrichs, and H. Lewy, Math. Ann.100, 32
~1928!.

@45# J.D. Jackson,Classical Electrodynamics, 3rd ed.~Wiley, New
York, 1999!.

@46# http://relativity.phys.lsu.edu/movies/axisymmetry
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