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A generalized inversion method is presented that uses a rotated coordinates tepGoltje and
Fishman, J. Acoust. Soc. Ari8, 1637—16441995] in simulated annealing to invert for both the
location of an acoustic source and parameters that describe the ocean seabed. The rotated
coordinates technique not only aids in the inversion process but also indicates the coupling of the
source and environmental parameters and the relative sensitivities of the cost function to changes in
the various parameters. The information obtained from the rotated coordinates provides insights into
how the inversion problem can be effectively decoupled. An iterative process consisting of multiple
simulated annealing runs that each use a different set of rotated coordinates is demonstrated. This
multistep algorithm is called systematic decoupling using rotated coordinates and is especially
helpful when inverting for a large number of unknown parameters. The cost function minimized in
the inversion algorithm is model-data cross-hydrophone spectra summed coherently over frequency
and receiver pairs. The results of applying this inversion method to simulated data are presented in
this paper. ©2003 Acoustical Society of AmericaDOI: 10.1121/1.156291]2

PACS numbers: 43.30.R9VLS]

I. INTRODUCTION the gradients of the cost function and tend to find the mini-

An iterative, efficient generalized inversion scheme toMum closest tq the starting pos_ition. Global- inversi_on meth-
obtain the location of an acoustic source and the charactePdS: Such as simulated anneafifjand genetic algorithn,
istics of the ocean environment is presented. The primar)?re based on random jumps that cover more of the cost func-
goals of the method are to minimize the numbewmggriori  ton search space and thus are more likely to find the global
decisions and the number of forward calls required to obtaifinimum instead of becoming trapped in a local minimum.
reliable estimates of the parameters. The approach uses milyPrid models combine a gr?glent method with a global
tiple sets of broadband rotated coordinates to systematicalfj?ethod to increase efﬂuep& a _
decouple the parameters in such a way that the most sensi- In the underwater environment, there is often a correla_-
tive parameters are found first. Initial tests of the method!ion between how various parameters influence acoustic
using simulated data, are presented in this paper. propagation. While genetic algorithms are not strongly af-

Matched-field processindMFP) is widely used for fected* by these parameter correlations or couplings, simu-
source localization. Historically, MFP was first performed lated annealing inversions, in which the physical parameters
using complex spectra at a single frequency recorded on @€ varied directly to search for the minimum, are affected.
vertical line array(VLA ). To overcome ambiguities inherent The problems caused by parameter couplings in simulated
to single-frequency MFP, broadband MFP was introducedannealing can be overcome by adding a gradient component
For a review of the literature about MFP, the reader is refo the global search. Hybrid inversions, such as those de-
ferred to Refs. 1 and 2, and the references provided thereigcribed in Refs. 10-13, represent ways in which this may be
One problem facing MFP efforts is environmental mismatch:done. Another option is to employ a rotated coordinate sys-
the use in MFP of replica vectors that are computed fronfém to navigate the parameter search space. The rotated co-
inaccurate environmental informatidn. ordinates, which are based on gradient information, are bet-

To obtain better environmental information, a variety of ter aligned with the primary features of the search space than
matched-field inversion methods, often referred to as enviare the standard physical parameters.
ronmental or geoacoustic inversion methods, have been de- The method of rotated coordinates was introduced in
veloped. Examples of environmental inversion methods ar&ef. 15 and has been used in simulated annealing to obtain
provided in Refs. 4—21 and the references therein. The gergnvironmental parameters accurately and efficiently. The ro-
eral goal of environmental inversion methods is to find thetated coordinates correspond to the orthogonal transforma-
properties of the ocean environment that minimize ation that diagonalize the covariance matrix of the cost func-
matched-field cost function or, equivalently, that maximizetion gradient. In Refs. 15-17, inversions are performed using
the correlation between acoustic data and correspondingtated coordinates calculated from single-frequency data.
modeled values. In real cases, environmental inversion reBecause the individual frequencies are sensitive to different
sults are often hampered by inaccurate information about thparameters, each single-frequency inversion yields accurate
source location. estimates for the parameters that are most sensitive at that

The inversion algorithms most commonly used for envi-frequency. In Ref. 15, the single-frequency results are com-
ronmental inversion can be divided into three categories: lobined to yield reliable estimates for more of the environmen-
cal, global, and hybrid methods. Local inversion methods us#al parameters. In Ref. 18, rotated coordinates calculated for
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broadband data are used in geoacoustic inversion. A similar
reparametrization based on diagonalizing the model covari-
ance matrix is employed in Ref. 19, in sampling at the criti-
cal temperature, and in Refs. 20 and 21, in a Bayesian inver-
sion technique based on a fast Gibbs sampler algorithm to
obtain both source and environmental parameters.

The method presented here builds on previous work and
expands the possibility for efficiently obtaining reliable pa-
rameter estimates. The current work is based on a coherent
broadband cost function, introduced in Ref. 2, in which cor-
re|ati0ns between mode|ed and measured Cross Spectra ﬂ@ 1. Contours of a two-dimensional. cost fUI’]C.tiOI"I that depict how the
summed coherently over mullple frequencies. This fully co-P/aeer: snoss e cupie. Tne i aous tstle e s e,
herent cost function has been applied to broadband matCheﬁf’/rows indicate the directions of the steps when rotated coordinates are
field processing analysf$®? The rotated coordinates ob- employed.
tained from the coherent broadband cost function describe
the relative sensitivities of the broadband acoustic field tal. ROTATED COORDINATES

changes in the parameters and the couplings between the ) . . .
parameters. The basic concept of rotated coordinates is to use infor-

In the current work, both the source location and thematlon about the coupling of the parameters to more effi-

. iently navigate the search space in an inversion algorifhm.
shallow water environment are assumed to be unknown. Th% y 9 P 9

. . lr|]1 general, rotated coordinates define directions approxi-
three parameters that define the source location are deptm’atel arallel and perpendicular to the brominent vallevs of
range, and bearing to the horizontal line ar@iLA). By yp Perp P Y

. . the cost function search space and thus are an efficient pa-
allowing both the source and environmental parameters tg o . . . . .

in the i ion. th is th tential t th rametrization for the inversion. Figure 1 illustrates possible
vary n the inversion, there 1s the potential 1o overcome e, s of a two-dimensional cost function. In this example,
difficulties of both environmental mismatch in MFP and in-

i i tion i . al | ion. E parameters, andx, are coupled, and the resulting valley in
acculra e fsourc<.a information in ;envi)ror;men a mve(;smn.. Xthe search space is oriented obliquely to the standard param-
amples of previous inversions for both source and enviroNg e ayes. In a traditional inversion method, the standard co-

mental parameters include Refs. 20 and 23. Rotatefyinatesx, andx, are varied as illustrated by the thin ar-
coordinates calculated for both source and environmental pagys in Fig. 1. In contrast, the bold arrows in Fig. 1 indicate
rameters provide insights into the parameter couplings ang parametrization for navigating the search space when ro-
relative sensitivities of the cost function to changes in thated coordinates are used. Rotated coordinates increase both
parameters over the specified bounds. The rotated coordine efficiency and the robustness of an inversion.

nates confirm the general parameter hierarchy accepted by The rotated coordinates correspond to the orthogonal
the underwater acoustics commuriifythe cost function is  transformation that diagonalizes the covariance matrix of the
much more sensitive to changes in the source parameteggst function gradienk. The rotated coordinates are calcu-
than to changes in the environmental parameters when larggted by performing an eigenvalue decompositi&VvD) of

bounds are allowed on all the parameters. K, where the elements & are defined as
The wide range of sensitivities of the cost function to JE JE
changes in the various parameters makes it extremely diffi- Kij :f —— _~do. (1)
QIX%; L;'X]

cult to obtain reliable estimates of a large nhumber of param-

eters from a single inversion. The details underlying this dif-a gimensionless parameter arnays used so it is meaningful
ficulty are explained in Sec. Ill. A method called systematiCig compare the partial derivatives of the cost functiowith
decoupling using rotated coordinateSDRQ has been de- regpect to the individual elements ®f The dimensionless
veloped to address this problem. In the SDRC approactparameters are obtained by dividing each physical param-
multiple sets of broadband rotated coordinates, corresponql_r[erai by (Bmaxj—8mini)» Where ama, and ap,, contain the
ing to subsequently smaller parameter bounds, are used inp@inimum and maximum values of the physical parameters.
series of inversions to obtain the desired parameter estimate. contains the dimensionless bounds on the integration:
As shown in this paper, the SDRC method can obtain reliabléx .. xi.}. An efficient Monte Carlo integration scheme is
estimates for the sensitive parameters very efficiently andised to approximate the integfa®* At each point in the
robustly. The SDRC inversion algorithm is a generalizedMonte Carlo integration, numerical partial derivatives are
iterative inversion technique that can be employed with anyevaluated:
cost function, .parameter set, or fprward model. JE E(x+AX)—E(X—Ax)
The remainder of the paper is organized as follows. In — = ,
Sec. I, the method of rotated coordinates is presented. The IXi 2%
systematic decoupling approach is explained in Sec. lll. Thavhere Ax; is chosen such that E§2) gives good local de-
performance of the SDRC method to invert for source andivatives.
environmental parameters is then evaluated using simulated An EVD of K yields its eigenvectorbv;} and the eigen-
data. Conclusions and current work are discussed in Sec. |Values{s;}. The eigenvector$v;} are referred to as the ro-

@
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TABLE I. Case 1 based on the Workshop97 WA case. The values used to 0
generate the simulated data set for case 1 and the bounds on the nine pa-
rameters that define the parameter search space and the bounds for the N
integration,Q) in Eq. (1). The variables are defined in the text. ;
Parameters True Min. Max. 2—2 SN
<
Zs-m 26.42 10 30 CJEY IRCTRUE S WSRO
ro-km 2.22 2.00 2.40 .80
hy-m 115.3 110 120 et
hl-m 271 10 50 %_4 L T S e 8
pr-glen? 1.54 1.4 1.85 2
cp-mis 1516 1500 1600 BO_5 ] i
CrporM/s 1573 1550 1750 —
po-glcn® 1.85 1.60 2.0 e
c,-m/s 1751 1600 1800
]
=7

2 4 6 8
tated coordinates and provide information about the param- Eigenvalue number

eter COUp“ng' The elgenvaluesi} ldentlfy the relative FIG. 2. Example of eigenvalues for case 1 data described in Sec. Il C,

sensitivities of the cost functiok to changes in the corre- caiculated using the bounds defined in Table | and 720 points in the Monte
sponding eigenvectors. Thus, the eigenvectors associat&mrlo integration. The eigenvalues are scaled by the largest eigenvalue; the

with the largest eigenvalues correspond to the combinatiofpd of the resulting scaled eigenvalues is shown.
of standard parameters that, when varied over the bo(inds

affect the cost function the most. The coupling and the relament propertiesto match high sound speeds with high den-
tive sensitivities of the parameters, reflected in the eigenvecsities, for example

tors and eigenvalues &f, depend on the bounds of the mul- A example of the eigenvalues and the eigenvectors of
tidimensional integratioi). When large bounds are allowed g g given in Figs. 2 and 3. The cost functi&nis defined in

for a parameter, the parameter is more likely to be repregq (3) and details of the simulated data gease ] are
sented in an eigenvector associated with a larger eigenvaILtﬁVen in Sec. Il C. The parameter arrayincludes nine val-
than when smaller bounds are used. _ _ues that describe the source location, the water deptha

The bounds() are selected on the basis of the specificsediment layer, and a half-space. The two source parameters

case being studled_ and can reflect the uncertainty of the INkre z andr, which correspond to the source depth and the
tial values. In the first set of examplésase }, the bounds range from the source to the horizontal line ar(iiLA).
specified for the nine unknowns in Table | are used to calcuThe four unknown parameters for the sediment layer are
late the rotated coordinates. The latter examptesg 2 US€  thicknessh,, densityp;, and compressional sound speed at
larger parameter bounds on 15 parameters, defined in Tabjge top and bottom of the layer, and c;p.,. The two un-

II, similar to bounds that might be used when little is known ynowns in the half-space are densjty and compressional

about the source or the environment. The large bounds iggnd speed,. The boundg) for the Monte Carlo integra-
Table Il cover a wide range of source positions and the magon of Eq. (1) are shown in Table I. The resulting scaled
jority of physical values for the ocean sedimefit$n both

case, no external constraints are used to match physical sedi-

1 -
TABLE II. Case 2: The correct environmental values for the case 2 simu-
lated data set and the bounds on the 15 parameters that define the parameter 24 .
search space and the bounds for the integrafibm Eq. (1). The variables
are defined in the text in Sec. Il C. 3]
Parameters True Min. Max. 5 A
Ze-m 40 1 70 g
ro-km 2.218 0.1 10.0 -
6-deg. -18.2 -90 90 g
hi-m 25 2 50 s 61
pr-glen? 1.37 1.0 3.0 &
c,-m/s 1510 1490 1800
ay-dB/m/kHz 0.005 0.0 0.5 71
gcy-1/s 1.0 0.0 5.0
a,,-dB/m/kHz 0.008 0.0 0.5 81
h,-m 50 2 80
po-glen? 2.0 1.0 3.0 91
rC2=Cy/Cipot 1.14 0.9 1.3 . . . -
ay-dB/m/kHz 0.06 0.0 0.5 zr h hopocc, opoc
gc,-1/s 0.2 0.0 5.0
ay-dB/m/kHz 0.12 0.0 0.5 FIG. 3. Example of eigenvectors corresponding to the eigenvalues in Fig. 2.

Parameters that have large amplitudes in an eigenvector are coupled.
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FIG. 4. Comparison of scaled eigenvalues, similar to Fig. 2, obtained when
30 (circles, 60 (diamond$, 120(squarey 360(triangles, 720(line) Monte
Carlo samples are used to approximate the integral in(Hg.

eigenvalues and eigenvectors are shown in Figs. 2 and 3,

respectively. 9 -»—o—o—o—o—o—\/-
The eigenvectors in Fig. 3 or, equivalently, the rotated

coordinates indicate which standard parameters are coupled 2t b, hp ococ

1%b0t P2 ©
in this example. In the first eigenvector, the elements CorreI_:IG. 5. Comparison of rotated coordinates, similar to Fig. 3, obtained when

;ponding toh,,, ro, andc, haV? th? |argeSt_ValueSv indicat- 3q (circles, 60 (diamonds, 120 (square 360 (triangles, and 720(lines)

ing they are coupled: changeshp will most likely decrease Monte Carlo points are used, as in Fig. 4. The horizontal dashed lines
the cost function if the corresponding changes are also madigparate the eigenvectors.

in ro andc, as shown in the first eigenvector. Likewise, in

the second eigenvectas, ro andc, are coupled, indicating  coordinates is important because only the rotated coordinates
the second most likely way to decrease the cost function. Thgjith relatively large eigenvalues are used in the inversion.
third eigenvector indicates a coupling betwden h,,, ¢4,

C1ipot» @NdC,, and so forth.
The eigenvalues indicate the relative sensitivity of thea. Cost function
cost function to changes in the eigenvectors over the speci-

fied parameter bounds. In Fig. 2, the eigenvalues have been The rotated coordinates technique can be used with any

scaled by the largest one, and the log of the resulting scale?)OSt _fun(_:t|on. In our method, a coherent broadband cost
nction is employed so that the broadband features of the

eigenvalues is plotted. The eigenvalue associated with the! ) )
first eigenvector is significantly larger than the remainingsear(_:h space are reflected n the rot_ateq coordlnate_s. The cost
eigenvalues. Therefore, the parameters that have the mJ&ndCt.'og lf‘eddm our analysis was first introduced in Ref. 2

influence on the cost function, when allowed to vary over thefNd 1S defined as
bounds in Table I, are represented in the first eigenvector. E(x)=1-C(x), 3

One question about the calculation of the rotated CoorWhere C(x) is the coherent broadband correlation between

dinates concerns the convergence of the Monte Carlo ap: .
T : ) data and model cross spectra for the set of source and envi-
proximation to the integral in Eq.1). To address how the
ronmental parameters

number of Monte Carlo points affects the rotated coordi-
nates, Figs. 4 and 5 show the scaled eigenvalues and rotated N .

coordinates when 3(ircles, 60 (diamond$, 120 (squares C(X):Z ; ; Di(f)DF ()M (f.)M;(F,%), (4)
and 360(triangles Monte Carlo samples are included in the ) S )

approximation of the integral. The solid lines indicates theWherei andj indicate the receivers, aridienotes frequency.
values when 720 samples are used, as shown in Figs. 2 afi(f) is the measured spectra on itile hydrophone at fre-
3. The different sets of scaled eigenvalues in Fig. 4 are corrfduencyf and is normalized such that

parable, and the parameters represented in the first several
eigenvectors in the various cases in Fig. 5 are the same, with > > > |Dif )DF (f)|>=1. ()
the ocassional exception of a negative sign. When the bounds RS

on the parameters are larger, the agreement between the sé&tse source and environmental parameters iare used to
of rotated coordinates often degrades slightly with increasingalculate the modeled spectral valugs(f,x) for the ith
parameter number. For the iterative algorithm presented ihydrophone at frequendywhich are normalized in the same
this paper, however, only the structure of the first few rotatednanner:
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\/2 3 3 Mi(f0ME (0 [2=1. ®) o) = 1480 m/s
Y

It is important to note that the diagonal elements in Eq.
(4) are not included in the coherent sum. There are two rea-
sons for the exclusion of the diagonal terms. First, the exclu-
sion reduces the severity of the side lobes in the ambiguity

patterns. Second, the exclusion increases the coherence gain c(hy,) = 1460 m/s
of the signal relative to assumed incoherent ndise. hy WC 5
1 P1
B. Simulated annealing hy+hy Clbot P1
The rotated coordinates are used to construct the explicit Half-space cy P2
expression for the parameter perturbations in the simulated

annealing optimization. Specifically, at each step in the in-
version, a single eigenvectpis perturbed, and the new val- FIG. 6. Environment for the simulated data for case 1. The values of the
ues of the standard dimensionless coordinateare environmental parameters are listed in Table I.
1

X=X+ 573\/1’ @) larger bounds are allowed on the source location and envi-
wherey is randomly selected from the interviat1, 1). The  ronmental parameters. The range-independent normal mode
cubed power of the random numbgin Eq. (7) allows large  model ORCA® is used to generate the synthetic broadband
perturbations, but tends towards small perturbations, as delata. The dat®;(f ) and the modeled valued;(f ), which
scribed in Ref. 15, and is efficient with the linear cooling are computed by ORCA for the examples presented in this
schedule used in the fast simulated annealing algorithm. paper, are compared using the cost function in @. For
the inversion, each eigenvector is used one time to vary ththe following examples, 40 frequencies, evenly spaced be-
parameters, as shown in E(), before the temperature is tween 50 and 250 Hz, are included in the sum over frequen-
reduced. From Eq.7), it is clear that a single rotated coor- cies.
dinate can vary all the physical parameters.

1. Case 1

Simulated data for case 1 is based on the WA case from
Workshop97, which is illustrated in Fig. 6. The nine un-
To evaluate the ability of the rotated coordinates inver-knowns are source depth and rangeandr,, water depth
sion method to find source and environmental parameters,,, four sediment parameters, thicknéss densityp,, and
two simulated data sets are used. The first data set consideredmpressional sound speed at the top and bottom of the layer
is based on the WA case from the 1997 Geoacoustic Inver; andc,,y, and two half-space parameters, dengifyand
sion Workshop (Workshop97 and consists of broadband compressional sound speesl The parameter values used to
signals received on an evenly-spaced HLA. The nine ungenerate the data and the bounds on the search space are
knowns correspond to source position, water depth, singlgiven in Table I. The synthetic data set consists of broadband
sediment layer and half-space properties. In the second casmmplex spectra values received on a 51-element, evenly
a realistic tapered HLA is used, and the environment is despaced HLA with total horizontal aperture of 500 m at a
scribed by two sediment layers over a half-space. In case 2lepth of 75 m. The resulting scaled eigenvalues and rotated

C. Numerical results for traditional and rotated
coordinates annealing

TABLE Ill. Comparison of solutions obtained by a simulated annealing inversion algorithm when standard
coordinategthird columr and the various sets of rotated coordinates in Fig. 5 are varied. The bounds in Table
| are used to calculate the rotated coordinates and to define the inversion searcfl spheeotal number of
forward calls to the model, on the last line, includes the calculation of the rotated coordinates. The correct
values are shown in Table I.

Initial phys. 720 360 120 60 30

values coords. pts. pts. pts. pts. pts.
Zs-m 20 26.3 26.6 26.7 26.4 26.4 26.5
ro-km 2.00 2.213 2.221 2.231 2.203 2.217 2.207
h,-m 100 115.2 115.6 115.5 114.9 115.3 115.0
h;-m 50 25.5 26.4 26.1 26.6 26.7 25.1
p1-glen? 15 1.58 1.61 1.64 1.59 1.64 1.71
c,-m/s 1550 1524 1518 1516 1517 1519 1520
CiporM/s 1700 1558 1572 1572 1567 1568 1558
po-glen? 2.0 1.76 1.63 1.98 1.63 1.78 1.94
C,-m/s 1800 1708 1711 1703 1723 1723 1701
E 0.768 0.007 0.009 0.008 0.006 0.006 0.009
Calls 80 000 31500 24 300 22300 19 200 18 750
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1600 . 1700 : 17 18 19 y 0 FIG. 8. Environmental model for case 2 simulated data.
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FIG. 7. Scatter plots of the cost function versus the individual parameter;rhe width of the distributions for |0W Yalues o indica:te
for all the states visited in the inversion detailed in Table Ill. both the sensitivity, or lack of sensitivity, to changes in the
parameters and provide estimates of the uncertainty in the

coordinates obtained using various number of points to ap|_nver5|on results.

proximate the integral in Eq1) are shown in Figs. 2-5.
Table 11l shows the results of inversions when the physi-2- €asé 2
cal and the rotated coordinates are varied. The initial param- As the number of unknowns in the inversion increases,
eter values are given in the second column. The third columioth the traditional annealing method and the rotated coordi-
contains the inversion results from classical simulated annates method have more difficulty finding good parameter
nealing using the physical parameters. The remaining colestimates. To illustrate these difficulties, a simulated data set,
umns show the inversion results when the various sets akferred to as case 2, is used. The source location and the
rotated coordinates shown in Fig. 5 are used in fast simulategroperties of the shallow ocean environment in this example
annealing as described previously. Similar cost function valare given in the second column of Table Il. The realistic
ues and parameter estimates are found in all cases. The rdewnward refracting sound speed profile is shown in Fig. 8.
tated coordinates’ inversions are, however, more efficient. The water depth is 95 m. The 52 receivers are located on a
The variations in the parameter estimates result from théapered, bottom-mounted array that covers a horizontal aper-
non-uniqueness of the inverse problems using the cost fundure of 568 m.
tion and the input data. To illustrate this uncertainty, plots of  In case 2 there are 15 unknown parameters. The three
the cost functiork as a function of the individual parameters source parameters that identify the source locationzare
at all states visited in the inversion are considered in Fig. 7t,, and 6, which correspond to the source depth, the range,

TABLE IV. Inversion results of case 2 data for the parameters that define the source location and the two
sediment layers when standard coordindfesrth column and rotated coordinatd$ifth column) are varied.

The bounds on the parameters for both the rotated coordinates calculation and the inversion are found in Table
Il. The parameter numbers in the first column are used for identification in Figs. 10 and 11.

Initial Results: Results: Correct
No Parameter values standard rotated values
1 Zs-m 6 19.1 39.5 40
2 ro-km 5.0 2.224 2.228 2.218
3 ¢-deg 20 -18.2 -18.2 -18.2
4 h;-m 40 32.3 25.2 25
5 p1-glen? 1.80 1.70 151 1.37
6 c,-m/s 1700 1521 1504 1510
7 a11-dB/m/kHz 0.05 0.033 0.015 0.005
8 gc,-1/s 0.05 0.004 1.47 1.0
9 a1,-dB/m/kHz 0.05 0.41 .013 0.008
10 h,-m 20 80 39.8 50
11 po-glen? 1.6 1.05 2.3 2.0
12 rc,=Cy/Cqpot 0.912 1.17 1.114 1.14
13 ay-dB/m/kHz 0.01 0.002 0.228 0.06
14 gc,-1/s 0.005 0.02 2.95 0.2
15 ay,-dB/m/kHz 0.01 0.17 0.49 0.12
E 0.995 0.161 0.073 0.005
Forward calls 80,000 29,000
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FIG. 9. Rotated coordinates for case 2 data employed in inversion shown iRIG. 10. The accepted values in the inversion using standard coordinates for
Table IV. the cost functiorkE and the 15 parameters detailed in Table Ill. The horizon-
tal lines indicate the correct parameter values.

and the bearing from the source to the horizontal line array
(HLA). Each of the two sediment layeirs- 1,2 is character-

ized by six parameters: thicknebs, densityp;, compres- coupling using rotated coordinaté€SDRQO has been devel-

sional sound speed at the top of the lager or ratio of the oped. In this section, traditional techniques used to improve
compressional sound speeds at the interface, annealing results are discussed. Motivation for use of the
I

=¢;/Ci_ 1o gradient of the compressional sound speed irDRC method is provided, and the SDRC method is de-
the layergc; , and compressional attenuations at the top an@cribed. Examples are given to illustrate how the SDRC
bottom of the layerg;, anda;,. The half-space parameters method improves the likelihood and the efficiency of obtain-
are held fixed. ing reliable estimates for the sensitive parameters.

Table IV shows the results when both standard anneal-
ing with physical parameters and fast annealing with rotated
coordinates are used to find the 15 parameters that define the
source location and the two sediment layers using the case 2 15 W
data. The rotated coordinates used in this example, shown in
Fig. 9, are calculated using 120 points to evaluate the inte-
gral in Eq.(1) over the bounds given in Table Il. Figures 10
and 11 show the progression of the standard and the rotated
coordinates inversions. Both methods obtain good estimates
for the most sensitive parametersg, 6, c;, andrc,. The 10
rotated coordinates method also yields reasonably close val-
ues for two other parameters, and h;, and, in addition,
takes less time than the standard annealing method.

In summary, the inversion method presented here uses
coherent broadband rotated coordinates related to the param-
eter couplings to navigate the parameter search space and to
find the parameters that minimize the cost function in Eq.

(3). The efficiency of the inversion is improved when rotated s —
coordinates are used.

Parameter number

[ll. SYSTEMATIC DECOUPLING

. ) _ 2000 4000 6000
The ability of the rotated coordinates method to find Accepted iterations

good estimates for a large number of parameters in a sing|
Inversion 1s ngt guar?nteeq- To improve the robustness F’f th@ Fig. 9 for the cost functiofE and the 15 parameters detailed in Table 111,
rotated coordinates inversions, the method of systematic dehe horizontal lines indicate the correct parameter values.

G. 11. The accepted values in the inversion using the rotated coordinates
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TABLE V. Example of SDRC method to obtain estimates for three source parameters and three sediment
parameters. The numbers in the first column correspond to the parameter numbers in Figs. 12 and 13.

No. Parameter Initial Step 1 Step 2 Step 3 Step 4 Step 5 Correct

1 zgm 6 5.4 23 36.9 40.3 40.9 40

2 ro-km 5.0 4.279 2.196 2.042 2.170 2.218 2.218

3 6-deg 90 —-20.0 —-18.4 —-18.3 -17.8 —-18.2 -18.2

4 hy-m 5.0 11.2 41.9 49.8 23.2 25.2 25

5 cy;-mis 1600 1587 1518 1495 1506 1510 1510

6 gc-ls 0.0025 477 3.37 4.33 0.58 1.07 1.0
E 0.997 0.85 0.40 0.33 0.14 0.032 0.005
Nyar 2 4 5 6 6

A. How to obtain good estimates with simulated B. Motivation

li . . .
annealing The underlying problem that hampers inversion efforts

Several methods have been developed to improve thfopr a large number of unknown parameters is that less sensi-
results of simulated annealing. Some of these techniques atiwe parameters cannot be reliably obtained if the value of the
to adjust the initial temperature, the cooling schediridra-  cost function is large because of errors in the more sensitive
ditional annealing and the convergence criteria. Additional parameters. At relatively large values of the cost function,
methods often used to obtain better inversion results includehere are a wide range of values for the less sensitive param-
trying multiple initial values and reducing the bounds on theeters that give the same cost function value. The cost func-
parameter search space. Another scheme is to divide the pgen must be reduced by finding good estimates for the most
rameters into two or more groups and to initially vary only sensitive parameters before estimates of the less sensitive
the parameters in the first group while holding the rest fixedparameters can be found. Thus, the basic idea underlying the
Then, the parameters in the second group are varied whil8DRC algorithm is to find estimates for the most sensitive
the others are held at the values obtained by the first invearameters first, to reduce the bounds on those parameters in
sion. The pattern is repeated. An example of this grouping), and then to find estimates for the less sensitive param-
method is found in Ref. 27. While the basic idea of decoueters. SDRC is accomplished by a series of inversions using
pling the parameter set is useful, some unsatisfactory aspeaisultiple sets of rotated coordinates, each set corresponding
of this grouping method are that) the user must decide to subsequently smaller sets of parameter bounds on the in-
how to group the parameters, aff) there is the possibility tegration();. Each inversion is referred to as a step.
that holding sensitive parameters at initial or intermediate  While the SDRC method is reminiscent of the grouping
incorrect values badly influences the results. method discussed at the end of the previous section, the im-

While these different refining techniques result in betterportant difference is that the user does not make the deci-
annealing estimates, they are most useful when the useions. The number of rotated coordinates used to vary the
knowsa priori the values he wants to obtain. In the case ofparameters during each inversion is determined by the prop-
experimental or other real data, one rarely has the luxury oérties of the cost function, which are based on the data. Spe-
knowing the correct answers. A primary goal in the presentifically, for each set of rotated coordinates, the eigenvalues
work is to improve the robustness of simulated annealing byre used to decide which rotated coordinates to vary in that
developing an algorithm that works well when little is known inversion. The rotated coordinates used in the inversion are
about the correct values of the parameters and that depenttsmed the primary rotated coordinates. The primary rotated
less on the specific values chosen for the annealing temperaeordinates are defined as those with scaled eigenvalues
ture, the convergence criteria, the initial parameter valuesyithin 8 of the largest eigenvalue, whegeis typically cho-
and the parameter bounds. sen to be 40 or 60 dB to include eigenvalues within two or

TABLE VI. Bounds); on the six parameters for the rotated coordinates calculation in the last four steps of the
SDRC inversion given in Table V. The bounds on the rotated coordinates calculation inQtepr# listed in
Table 1l. The bounds in Table Il define the limits on the annealing search space for all five steps.

Step 2 Step 3 Step 4 Step 5
Parameter min max min max min max min max
Z&-m 1 70 1 70 20 60 30 50
ro-km 1.5 6.5 1.7 2.7 1.7 2.3 2.0 2.3
/-deg -23 -16 -23 -16 -23 -16 -19 -17
h;-m 2 50 2 50 2 50 2 50
ci-m/s 1495 1800 1495 1800 1495 1800 1495 1600
gcy-1/s 0 5 0 5 0 5 0 5
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FIG. 12. Eigenvalues and eigenvectors for the SDRC inversion detailed in
Table V: step 1 ina) and(b), step 2 in(c) and(d), step 3 in(e) and(f), step
4 in (g) and(h), step 5 in(i) and (j).

three orders of magnitude of the largest one. While only a
subset of the rotated coordinates are employed in the inver-
sion, each rotated coordinate can potentially change all the

phySICal parameter values. . . FIG. 13. Accepted parameter states from the five step SDRC inversion
The physical parameters represented in the primary rogetailed in Table V. The horizontal lines indicate the correct parameter val-

tated coordinates change as the bounds on the integr@tion ues. The vertical lines divide the steps listed in Table V. The cost function

are adjusted. As the bounds on a parameter decrease, tihgreases qt the beginning of each step because the initial temperature is

likelihood also decreases that the parameter has a signiﬁcarﬁ’tSet to a high value.

value in a primary rotated coordinate. In the SDRC method,

each step corresponds to a new set of parameter bdunds ) .

so that the parameters represented in each set of primaf§Meter, independent of the accuracy of the remaining pa-

rotated coordinates are most likely to differ. Specifically, rameter. In such cases, no reliable information about that

each parameter is represented in a primary rotated coordinagrameter can be found.

when the cost function has been reduced to a level at which It should be noted here that the success of the SDRC

it is sensitive to changes in that parameter. In this manner, alnethod is independent of the exact number of Monte Carlo

sensitive parameters can potentially be found regardless ¢oints used to approximate the integral in Eb).because the

the initial values and the parameter bounds. There are caspsincipal features of the primary rotated coordinates are in-

200 400 600
Accepted iterations

where the data is not sensitive to changes in a specific palependent of the number of samples, as shown in Fig. 5.

TABLE VIl. Results of an SDRC inversion for the 15 parameters that define the source location and the two
sediment layers, 4 is the number of rotated coordinates used in each step to vary the parameters. The numbers
in the first column correspond to the parameter numbers in Fig. 14.

No Parameter Initial Step 1 Step 2 Step 3 Step 4 Step 5 Correct
1 zgm 6 7.6 20.5 38.0 39.6 39.6 40
2 ro-km 5 2.318 2.347 2.187 2.179 2.218 2.218
3  6-deg. 90 -19.4 -18.1 -18.2 -18.1 -18.2 -18.2
4 h;-m 40 39.7 2.3 24.0 24.1 25.0 25
5 py-glen? 1.8 1.85 243 111 1.41 1.39 1.37
6 c;-mis 1700 1669 1537 1519 1505 1505 1510
7  a;-dB/m/kHz 0.05 0.048 0.098 0.43 0.036 0.013 0.005
8 gci-1/s 0.0025 4.76 4.30 1.32 1.76 1.37 1.0
9 aq,-dB/m/kHz 0.05 0.05 0.049 0.18 0.035 0.009 0.008
10 h,-m 20.0 195 41.3 46.5 71.1 50.2 50
9 ay,-dB/m/kHz 0.05 0.05 0.049 0.18 0.035 0.009 0.008
10 h,-m 20.0 195 41.3 46.5 71.1 50.2 50
11 p,-glen? 1.6 1.63 1.45 2.22 2.43 2.31 2.0
12 rcy,=Cy/Copn 0.91 0.92 0.97 111 1.14 1.14 1.14
13 a,-dB/m/kHz 0.01 0.10 0.11 0.31 0.05 0.09 0.06
14 gc,-1/s 0.005 0.067 1.36 151 0.72 0.094 0.2
15  a,,-dB/m/kHz 0.01 0.032 0.49 0.18 0.49 0.13 0.12
E 0.995 0.64 0.36 0.20 0.083 0.019 0.005
Nyar 2 5 9 11 13
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TABLE VIII. Bounds (); for the rotated coordinates calculation in the SDRC inversion described in Table VII.
The bounds in Table Il are used to calculate the rotated coordinates used in the first step and define the
annealing search space for all five inversions.

Step 2 Step 3 Step 4 Step 5

Parameter min max min max min max min max
zem 1 70 1 70 25 50 35 45
ro-km 0.1 5.0 2.0 2.7 2.1 2.3 2.15 2.25
¢-deg. -21 -17 -21 -17 -19 -175 187 -17.5
h,-m 2 50 2 50 2 50 23 26
p1-glcn® 1.0 3.0 1.0 3.0 1.0 3.0 1.0 1.8
c,-m/s 1490 1800 1490 1800 1490 1800 1495 1530
a1,-dB/m/kHz 0.0 0.5 0.0 05 0.0 0.5 0.0 05
gc-1/s 0.0 5.0 0.0 5.0 0.0 5.0 0.0 15
a1-dB/m/kHz 0.0 0.5 0.0 05 0.0 0.5 0.0 05
h,-m 2 80 2 80 30 80 30 80
po-glen? 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0
rCy=Cy/Cypot 0.9 1.3 0.9 1.3 1.0 1.3 1.1 1.2
a-dB/m/kHz 0.0 0.5 0.0 05 0.0 0.5 0.0 0.5
gc,-1/s 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0
a-dB/m/kHz 0.0 0.5 0.0 05 0.0 0.5 0.0 0.5

C. The SDRC algorithm forth. Table V also shows the number of primary rotated

The SDRC method proceeds as follows. With Iargecoordinatesn\,aremployed in each step. The initial annealing
bounds on all parameters, the rotated coordinates are Calcﬁa_mperature of each st.epT§:10. .
lated. The primary rotated coordinates are used to vary the The rotated coordinates apd .elgenvalues'calculated for
parameters in simulated annealing. The bound jron the each set of bqunds are shown |n_F|g. 12. The elgenval_ues a_nd
most sensitive parameters, those represented in the first O%ated coordmates_ calpulated with the large bounds listed in
or two rotated coordinates, are reduced. Using the reduce bIe_II are shown in Figs. 1_2) and (b). TW.O Qf the rotated
bounds(),, a new set of rotated coordinates is calculatedCoordma.tes have scaled eigenvalues within 40 dB of the_
The solution from the first step provides the initial values for]""rg(aSt eigenvalue, S0 they are used to vary the parameters in
the second rotated coordinates annealing, performed usi ep 1 of the SDRC Inversion. The parameteyand 0 haye
the second set of primary rotated coordinates. The paramet e largest componen s |n.the_ first two rotated coordinates;
bounds are reduced again to fofry, new rotated coordi- thus, they are primarily varied in the first step. In the second
nates are calculated, and another simulated annealing run JEP; where the bounds o Qnd 0 have begn'reduced, four
performed. This pattern is repeated until all possible |oaramr-0tated goordlnates have clgenva lues within 40 dB of the
eters are found. It is important to note that while the boundéargeSt eigenvalue, as shown in Figs(dand(d), and these
on the integration for the calculation of the rotated coordi-
nates are being reduced between the steps, the bounds on the
annealing search space are never changed. In this manner,
the rotated coordinates describe the features of a smaller and
smaller region of the search space. The initial large bounds
on the annealing search space are maintained to reduce the
possibility of confining the search to the vicinity of a local
minima.

1. Example of an SDRC inversion for six parameters

Parameter number

An example of an SDRC inversion to obtain estimates
for the source location and three sediment parameters is de-
scribed in Tables V and VI and Figs. 12 and 13. The data for
case 2 and 30 Monte Carlo points are used to calculate the
rotated coordinates. The third column of Table V gives the
initial parameter values and cost functi@n The next five
columns give the results of the individual inversiofrs-
ferred to as stepgperformed when the bound3; shown in
Table VI are used to calculate the rotated coordinates. The 2000 4000 6000 8000 10000
large bounds shown in Table Il define the bounds on the Accepted iterations
annealing search space for all five inversions. The resultgig. 14, progression of the five-step SDRC inversion detailed in Table VII.
from step 1 are used as the initial values for step 2, and Sthe vertical lines divide the steps.
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FIG. 15. Scatter plots of the cost function vergasz, , (b) ro, and(c) ¢ for FIG. 17. Scatter plots of the cost function versus@eh,, (b) p,, (C) C,,
the parameter states sampled in the inversion detailed in Table VII. and (d) gc, for the parameter states sampled in the inversion detailed in
Table VII.

four are employed in the annealing. The resulting estimate$2(i) and (j). Additional steps could be performed to lower
for ro and @ are close to the correct answers. Over the rethe cost function further.
duced parameter bounds,, r, is approximately decoupled Approximately 7800 forward call§ncluding the calcu-
from the other parameters because the element correspordtions of the rotated coordinajeare made in this five-step
ing tor is the only large value in the first rotated coordinate.process that obtains good estimates for all six parameters.
The bounds om are again reduced. In the third step, Figs.Figure 13 shows the 874 states that are accepted during the
12(e) and (f), the first five rotated coordinates, which have five inversions. Accepted iterations 1 to 73 in Fig. 13 corre-
eigenvalues within 40 dB of the largest eigenvalue are usedpond to the states accepted during step 1, accepted iterations
The results show a significant improvement in the estimat&4 to 284 represent the progress during step 2, and so forth.
of z;. The bounds om, andz are decreased, and all six of The vertical lines in Fig. 13 are placed at the end of each
the rotated coordinates calculated for step 4, Figég)l&nd inversion step. During the iterations associated with step 1,
(h), have scaled eigenvalues within 40 dB of the largest eiwhen only two rotated coordinates are used, parameters 1, 4,
genvalue. The sediment thickness now has the largest valle and 6, corresponding &, h;, ¢, andgc; are not varied
in the first rotated coordinate and is, consequently, the pasignificantly. Likewise, parameter 2, is not varied signifi-
rameter estimate most improved during this step. Bounds areantly after step 1, and parameter g, is not varied much in
again reduced, and the resulting scaled eigenvalues for stepsfeps 4—5. The jumps in the cost function at the beginning of
are all within 20 dB of the largest value, as shown in Figs.each step are caused by resetting the initial temperature to a
large value at the beginning of each new inversion.

®)

@ @

1500 1600 1700
c
t

FIG. 16. Scatter plots of the cost function versus(@eh,, (b) p;, (c) ¢, FIG. 18. Scatter plots of the cost function versus (@eaq,, (b) a1, (C)
and (d) gc, for the parameter states sampled in the inversion detailed ina,;, and(d) a,, for the parameter states sampled in the inversion detailed in
Table VILI. Table VII.
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2. Example of an SDRC inversion for 15 parameters IV. CONCLUSIONS

The example of an SDRC inversion for six parameters in The SDRC inversion method has been introduced in this
the previous section is given to illustrate the SDRC algo-PaPer as a generalized, iterative inversion technique. The ba-

rithm. The advantages of the SDRC algorithm are more a sic SDRC algorithm proceeds as follows. An initial set of
parent when the number of unknowns in the inversion iSrotated coordinates is calculated. A complete simulated an-
. . nealing run is performed using the rotated coordinates with
larger. The results are now presented for an SDRC mvers'ogignificant eigenvalues to compute the perturbatipig
for 15 unknown parameters that define the source locatio )

dth . £ th i | for th )]. The bounds on the integration for the parameters repre-
and the properties of the two sediment layers for the case gonieq in the primary eigenvectors are reduced. A new set of

data introduced in Sec. Il C. Table VII gives the initial pa- roiated coordinates is calculated, and another simulated an-
rameter values and the results after each of the five iNVehealing run is performed that begins at the parameter values
sions, referred to as steps. The bounds used to calculate thgtained by the previous run. These steps are repeated until
rotated coordinates in each step are shown in Table®lll. reasonable estimates have been found for the desired param-
Thirty Monte Carlo points are used in the calculation of theeters.

rotated coordinates. The starting annealing temperature in  Although the SDRC method is based on a rotated coor-
steps 1-4 is 10 but is reduced to 0.5 for the final step. Thelinates technique that has been reported previously, the work
number of rotated coordinates employed in each sigpis  presented here is unique in several ways. The iterative SDRC
shown at the bottom of Table VII. In steps 1-3, the rotatedalgorithm is more efficient and able to find good estimates
coordinates with scaled eigenvalues within two orders ofor more parameters than either standard annealing or a
magnitude of the largest value are used to vary the paran$ingle rotated coordinates inversion. The ability of the SDRC
eters. In steps 4 and 5, those with scaled eigenvalues withiiethod to obtain good estimates for the most sensitive pa-

three orders of magnitude of the largest value are used tMeters without accurate knowledge of the less sensitive
allow the least sensitive parameters to be varied in the findt@rameters indicates that the SDRC method has the potential

steps. to be useful in real acoustic applications in which reliable

The progression of the SDRC inversion is shown in Fig.e:LrEEtes of the most sensitive parameters are needed very
14. The vert|ca! I|ne§ s_eparate .the inversion steps. The onl9 The SDRC method has been introduced using the cost
parameters varied significantly in the first step egyeand 6. function in Eq.(3), ORCAZ a range-independent forward
During step 2z, rg, hy, ¢1, hy, rc,, andgc, have large o '

I i th . q di q , C{:mdel, and a traditional representation of the source and en-
values in the primary rotated coordinates and are varieqyi o, mena| parameters. The SDRC method is a powerful

Most of the parameters are varied during steps 3—5. The leagkneral inversion technique that can be used with any cost

sensitive parametet,, is not varied substantially until the function, forward model, or set of parameters. The SDRC

last step. method has also been applied to range-independent, experi-
Approximately 30 000 forward calls were made to com-mental, broadband VLA datd and to simulated, range-

plete the SDRC inversion shown in Table VII. The SDRC dependent HLA data with added white Gaussian nifise.

method not only obtained better estimates for more of the
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