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ABSTRACT
A number of active noise control applications inlthe need to control multiple stationary
frequencies, a single time-varying frequency, omsocombination of the two. The most
common control approach is typically based on sweension of the filtered-x algorithm. For this
algorithm, the convergence and tracking speed pemgent on the eigenvalues of the filtered-x
autocorrelation matrix, with these eigenvalues gpdiaquency dependent. To maintain stability,
the system must be implemented based on the slowgesterging frequency that will be
encountered, which can lead to significant degradah the overall performance of the control
system. This paper will present an approach wladely overcomes this frequency dependent
performance, maintains a relatively simple controplementation, and improves the overall
performance of the control system. The controlreagh is called the eigenvalue equalization
filtered-x (EE-FXLMS) algorithm and its effectiveseis demonstrated through an application to
engine noise in a mock cabin. Experimental ressltiew that the EE-FXLMS algorithm
provides as much as 3.5 dB additional attenuationpared to the normal filtered-x algorithm.

1. INTRODUCTION
The most common control approach for the activesena@ontrol (ANC) of stationary or time-
varying frequency noise is the filtered-x (FXLMSyerithm*% Though the FXLMS algorithm
has proven successful for many applications, ongsdfmitations is that it exhibits frequency
dependent convergence and tracking behavior leddimgsignificant degradation in the overall
performance of the control system.

Solutions to the frequency dependent problem Hasen proposed such as the higher
harmonic filtered-x (HLMS) algorithm by Clark andb®s®, and similar work by Leet al.*, the
Filtered-x Gradient Adaptive Lattice (FXGAL) alghmin by Vicente and Masgrauhe work of
Kuo et al.°, and the modified FXLMS algorithin The drawback of most of these approaches is
that they either increase the computational buralethe algorithm, increase the algorithm’s
complexity, or are only effective for specific ajgations.

This paper discusses a new approach which lametycomes this frequency dependent
problem, and improves the overall performance. apgroach is simple to implement, can be
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added to existing FXLMS algorithms with minor madidtions, and does not increase the
computational burden of the algorithm. The effemtiess of the approach will be demonstrated
through an application to engine noise in a modkrca

2. BACKGROUND
For this research, a feedforward implementatiothefFXLMS algorithm is used. The FXLMS
algorithm involves adaptive signal processing lierfithe reference signal in such a way that the
measured residual noise is minimized. The measw®dual is called the error signal and for
this research it will be measured as an energyitgye(i&D) quantity. The advantages of an ED
based FXLMS algorithfhin enclosures™ and for tractor engine noiSeare well documented.
Before introducing the new approach, a brief déioveaof the FXLMS algorithm is given.

A. FXLMS

The goal of the FXLMS algorithm is to

reduce the mean-squared error of the error’) “w W

signal at a location where the sound is to be () - desired signal
minimized. Boucher, Elliot, and NelsGn O putins st
provide a good reference for the derivation a[ o ol

of the single channel FXLMS algorithm, E— f‘{g)-_l;{;g;”h_dﬁ;
which is shown in block diagram form in ' - et econdes b
Figure 1. In the figure, and in all equations ﬂ[ ity f')Updm}i

presented, the variabtes used as a discrete
time index and the variableis used as a
discrete frequency domain index. Signals in
the time domain are represented as lower caseadetthile capital letters are used in the
frequency domain. Vectors in each domain are repted as bold letters.

The mean-squared error is a quadratic functidiio@avl”) with a unique global minimum.
For each iteration of the algorithm/(z), an adaptive finite impulse response (FIR) aariilter,
takes a step of size the convergence coefficient, times the gradierggiarch of a single global
minimum that represents the smallest attainablenrsgaared error. The control filter update
equation folW(z) can be expressed in vector notation as

Figure 1. Block diagram of the FXLMS algorithm.

w(t +1) = w(t) - pe(t)r (t) (1)
wheree(t) is the error signal andt) andw(t) are defined as
tT ) =[r),r=1,...r—-1+1], and w(t) =[w,,w,,...w,,)]. @)

The filtered-x signalr(t), is the convolution ofi(t), the estimate of the secondary path
transfer function, an&(t), the reference signal. The secondary pathsteanfunction is an
impulse response that includes the effects of AM@ B/A converters, reconstruction and anti-
alias filters, amplifiers, loudspeakers, the adeastransmission path, and the error sensor.

B. Secondary path transfer function
One difficulty in implementing the FXLMS algorithma that the secondary path, represented as
H(z) in Figure 1, is unknown. An estima#(z), of the secondary path must be used. The
estimate is obtained through a process called mystentification (SysID).

The SysID process is performed either online @MWNC is running), or offline (before
ANC is started). For the fastest convergence efallgorithm, an offline approach is used. The



offline SysID process consists of playing white seoithrough the control speaker(s) and
measuring the output at the error sensor. The uneddransfer function is a FIR filtei(t), that
represent#l(z). The coefficients oH(z) are stored and used to run control.

3. FXLMS LIMITATIONS
The inclusion offi(z), while necessary for algorithm stability, dedga performance by slowing
convergence. One reason for the decreased perfoenis the delay associated wilifz). For
many ANC applications, such as enclosures of less & few meters, the delay is on the order of
10 ms and convergence is still rafid A more significant problem is that the inclusiohf(z)
causes frequency dependent convergence behavioe. fréquency dependence can be better
understood by looking at the eigenvalues of theaartelation matrix of the filtered-x signal.

The eigenvalues of the autocorrelation matrixhef filtered-x signal relate to the dynamics
or time constants of the system modes. Typicalllarge spread is observed in the eigenvalues,
corresponding to fast and slow modes of convergeiite slowest modes limit the performance
of the algorithm because it convergences the sloatdbese modes. The fastest modes have the
fastest convergence and the greatest reductiomtmdiebut limit how large of a convergence
parametery, can be uséd For stability,u is set based on the slowest converging mode (the
maximum eigenvalue), leading to degraded performaritu is increased, the slower states will
converge faster, but the faster states will diveedystem unstable.

The autocorrelation matrix of the filtered-x sigisadefined as

E[r®*r" ()] €)

where E[] denotes the expected value of the operand whicthasfiltered-x signalr(t),
multiplied by the filtered-x signal transposed(t). It has been shown that the algorithm will
converge and remain stable if the chogeis less than 2kmad?, Wherehmax is the maximum
eigenvalue of the autocorrelation matrix in thegeof frequencies targeted for control.

4. EIGENVALUE EQUALIZATION

A. Eigenvalue simulation

If the variance in the eigenvalues was minimizéd, algorithm could converge at the same rate
at each frequency. The autocorrelation matrixiisatly dependent on the filtered-x signal,
which is computed by filtering the reference signdth H(z). The reference signal is often
taken directly from the sound field and cannot banged. Changes can be madé#lta), but
must be done carefully. Errors in its estimatiomtdbute to lower convergence rates and
instability. Estimation errors can be considenedwo parts: amplitude estimation errors and
phase estimation errd’s Phase estimation errors greater than +/- 90egsgcause algorithm
instability?, but errors as high as 40 degrees have littleetfe the performanée Magnitude
estimation errors can be compensated for by theeetas 4*°. 1deally, changes would be made
to the magnitude information ®f(z), while the phase information is preserved.

The idea to remove the variance in the eigenvabyeshanging the magnitude coefficients
of H(z), while preserving the phase, will be referreds the eigenvalue equalization filtered-x
(EE-FXLMS) algorithm approach. The remainder ab thaper will focus on one method of
adjusting the magnitude coefficients that is simpbe implement, and offers significant
improvement in the overall sound reduction.

B. EE-FXLMS
The procedure for implementing the EE-FXLMS is djuat the coefficients dfi(z) as follows:



1. Get time domain impulse resporig#) for eachf(z) through an offline SysID process

2. Take the Fast Fourier Transform (FFT) to ob#{a)

3. Divide each value in the FFT by its magnitude andtiple by the mean value of the FFT
4. Compute the inverse FFT to obtain a rig#®) and use the new modifiddt) in the

FXLMS algorithm as normal

This procedure flattens the magnitude coefficieft(z) while preserving the phase. It is
an offline process done directly following Syslddacan be incorporated into any existing
algorithm with only a few lines of code. As anloié process, it adds no computational burden
to the algorithm while control is running. Theults of the flattening process can be seen in
Figure 2.
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Figure2. Original and modified magnitude and phase coefficiehfi(z)

Figure 2 shows the original and modififi§z) magnitude coefficients and shows that the phase
information ofH(z) has been preserved. In Figure 2, the two Irepsesenting the original and
modified phase oH(z) are directly on top of each other.

In practice, it is too computationally Original and Modiied Eigenvalues
demanding to obtain a real-time estimate of ! ' n ~Modified
the autocorrelation matrix. An offline 09 — ongnal |

estimate of the autocorrelation matrix is g
made by taking an actuHl(z) model from a 807
mock cabin and importing it into a @ g0¢

numerical computer package. If a single 20-5
frequency reference signal is uséglax can S 04}
be computed for that frequency. If the £os}
simulation is repeated over a range of §o.z
frequenciesimax for each frequency can be “o

found. Figure 3 shows an offline simulation AN o AN ANS o]
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using both the originaf(z) and the new ° Frequency [Hertz]
EOd'f'ed H(z), and tonal inputs from 0-400 Figure3. Original and modified eigenvalues.
z.

In Figure 3, the eigenvalues in both the origiaall modified case, have been normalized by
the largest of the original eigenvalues. The meditigenvalues are more uniform (“flat”) over



all frequencies. While not the optimum, the imprdvmodified eigenvalues make a noticeable
improvement in the algorithm’s performance.

5. EXPERIMENTAL RESULTS
The performance advantages of the EE-FXLMS comipproach were verified for the case of a
single frequency noise, single time-varying freqryenoise, and recorded tractor engine noise.

A. Experimental setup

The experiments were conducted inside a mock traetoin with nominal dimensions of 1.0 m
x 1.5 mx 1.1 m. The cabin has a steel frame, th@hick plywood sides, and a 0.003 m thick
Plexiglas§ front panel. A speaker placed under a chair seagthe sound source and three
loudspeakers were setup in a two channel controfigration. The control signal for each
channel was routed through a crossover circuitisgritie low-frequency content (below 90 Hz)
to a subwoofer on the cabin floor, and the higlydiency content (above 90 Hz) to one of two
smaller satellite speakers mounted in the cabopscorners. A 2-D error sensor consisting of
four equally spaced microphones around a small @ik placed on the ceiling near where the
operator’'s head would be. A photo of the cabimresensor, and speakers is seen in Figure 4.

2-Derror

satellite ]
speakers )

o "..;;/,,‘ subwoofer

sound
source

Figure 4. Photo of inside of mock cabin.

The algorithms were implemented on a Texas IngnismTMS320C6713 DSP, capable of
1,350 million floating point operations per secori8ioth adaptive control filters consisted of 32
taps, and all secondary path transfer function®eweodeled with 128 taps. All input channels
were simultaneously sampled at 2 kHz, and all $gghad 16 bits of resolution. Fourth-order
Butterworth lowpass filters (400 Hz cutoff) provil@anti-aliasing and reconstruction of input
and output signals, respectively. Performance mvasitored using ten precision microphones
arranged in two horizontal planes, located (0.1%ng (0.5 m) from the cabin ceiling.

B. Single frequency disturbance

A function generator was used to generate singlessids at 50 Hz, 80 Hz, 113 Hz, 125 Hz, 154
Hz, 171 Hz, and 195 Hz; frequencies where the mespf the cabin is large and where the
normal FXLMS control is expected to have poor perfance. The convergence coefficignt
was determined experimentally by finding the latggable: and then scaling it back by a factor
of ten to ensure stability. The measured perfooeamas the amount of attenuation in dB and
the convergence time. The convergence time wasasune of how long it took the error signal,



from the time that control was enabled to reachol/fi¢s initial value, where e is the base of the
natural logarithm. Each measurement was perfortheze times and the results are shown in
Table 1. In Table 1, EE refers to EE-FLXMS contasid normal refers to FXLMS control.

Table 1. Results of single frequency experimentation

Attenuation (dB) Convergence Time (sec)
Code Type | Freq. (Hz) 1] Avg. Stdev. Avg. Stdev.
Normal 50 1.E-08 37.85 0.34 0.26 0.02
EE 50 4.E-08 36.98 0.41 0.21 0.04
Normal 80 1.E-07 20.35 0.06 0.21 0.05
EE 80 2.E-07 21.77 0.02 0.30 0.02
Normal 113 1.E-08 13.69 0.01 0.44 0.04
EE 113 5.E-08 15.63 0.01 0.44 0.02
Normal 125 6.E-08 22.43 0.02 0.14 0.01
EE 125 7.E-07 23.68 0.01 0.11 0.01
Normal 154 3.E-08 1.91 0.01 5.00 0.01
EE 154 1.E-07 5.26 0.03 0.21 0.00
Normal 171 2.E-07 3.94 0.02 2.01 2.59
EE 171 9.E-07 6.61 0.01 0.36 0.16
Normal 195 9.E-08 16.43 0.29 0.49 0.12
EE 195 3.E-07 15.32 0.08 0.36 0.04
| Total Average Normal 1666 § o008 | 122 | o040 |
I EE 17.89 I 0.11 I 0.27 I 0.04 I

The results in Table 1 show that on average, thd-KBEMS converged about a second faster
and had about 1 dB more attenuation. The conveggspeed was more uniform for EE-
FXLMS with a standard deviation less than 0.05 sdsaccompared to 0.4 seconds or greater for
normal FXLMS. Table 1 also shows that the greatesteases in convergence time occurred at
154 Hz and 171 Hz, with a difference of severabsds being seen at these frequencies. 154 Hz
and 171 Hz correspond to the two largest resonadesof the cabin below 200 Hz.

C. Single time-varying frequency

Several swept sine test signals with different piree rates were created. Each test signal
consisted of a swept sine from 50-200 Hz and thesreanged from 2 Hz/sec to 256 Hz/sec.
The time-averaged sound pressure level over theeahiration of the test signal was measured
with and without control running. The convergeroefficientu was determined experimentally
by finding the largest stable value then scalingaitk by a factor of ten to ensure stability. The
u for EE-FXLMS control was le-7 and thefor standard FXLMS control was 1e-8. The
attenuation in dB is reported at the error serestoa, microphone located at the operator’s ear, as
an average of the ten microphones placed in thehwr@zontal planes above and below the
operator’s head, as an average of the eight miomgshclosest to the operator’'s head, and as an
average of the six microphones closet to the opesahead. Each measurement was repeated
three times. The actual attenuation is not repotiat the difference in dB between EE-FXLMS
and FXLMS is shown in Table 2. The actual atteiomagnot shown) at any microphone location
was as high as 9 dB for the slower sweeps andvagadol dB for the faster sweeps. A positive
number indicates EE-FXLMS performed better.



Table 2. Results of time-varying frequency experimentation

Sweep Rate Ear Mic Avg. Error Mic Avg. ;0 Mic Avg. _8 Mic Avg. ‘5 Mic Avg.
Difference (dB) Difference (dB) Difference (dB) Difference (dB) Difference (dB)
2 Hz 2.86 3.56 2.26 2.97 3.24
4 Hz 1.33 2.16 0.77 1.40 1.64
8 Hz 0.72 1.45 0.35 0.80 0.98
16 Hz 0.64 1.06 0.44 0.72 0.83
32 Hz 0.14 0.33 0.08 0.19 0.24
64 Hz 0.15 0.22 0.19 0.20 0.21
128 Hz -0.07 0.06 -0.08 -0.04 -0.01
256 Hz -0.10 -0.01 -0.08 -0.06 -0.04
Total Averages

Ear Mic Avg. I Error Mic Avg. I 10 Mic Avg. I 8 Mic Avg. I 5 Mic Avg. || Total Avg.

Average 071 | 110 | o049 | o077 | o8 0.79

The data show that on average over all of the, dfaFXLMS performs 1.0 dB better than
normal FXLMS at the error sensor and about 0.8 tibajly. The data also show that the
slower the sweep rate the more advantage EE-FXLMKS hFor the 2 Hz sweep rate, EE-
FXLMS control provides 2.3-3.5 dB more reductiofit the fastest sweep rates, the differences
were almost negligible. At the faster sweep ratdash as 128 Hz/sec, the algorithm has 0.0078
seconds (1/128 Hz/sec = 0.0078 sec/Hz) to conveggett each frequency. At a single
frequency, EE-FXLMS control had the fastest coneaog times at about 0.10 seconds;
however, 0.10 seconds is still too slow to makeedgomance difference at the faster sweep
rates.

D. Tractor engine noise

The performance advantages of the EE-FXLMS algaoritiere tested on recordings obtained
from a CAT wheel-loader tractor for different optamg conditions. As part of the recordings,
the engine tachometer signal was recorded to usieeaference signal. The recordings were
played through the source speaker, and measurementstaken in the same manner as the
single time-varying frequency measurements for lfERFXLMS and normal FXLMS control.
The results are shown in Table 3 for slow, mediang fast sweep rates of the engine rpm. A
positive number indicates that EE-FXLMS performedtiér.

Table 3. Results of tractor engine noise

Sweep Rate Ear Mic Avg. Error Mic Avg. _10 Mic Avg. _8 Mic Avg. _5 Mic Avg.
Difference (dB) Difference (dB) Difference (dB) Difference (dB) j Difference (dB)
Slow ramp 0.98 0.98 0.86 0.95 0.97
Medium Ramp 1.23 1.35 1.07 1.21 1.25
Fast Ramp 0.40 0.35 0.38 0.40 0.41
I Total Averages
I Ear Mic Avg. | Error Mic Avg. I 10 Mic Avg. | 8 Mic Avg. I 5 Mic Avg. I Total Avg.
| Average 0.87 0.89 | o7 085 | o087 | oss




Similar performance advantages for the EE-FXLMS ewvseen with the tractor recording
simulations. On average EE-FXLMS performed 0.9kafter at the error sensor and globally
0.85 dB better than the normal case.

6. CONCLUSIONS

A new eigenvalue equalization approach has besmdstrated for the case of engine noise
in a mock cabin. It has been shown that adjustsn®enthe magnitude coefficients H{z), while
preserving the phase, leads to faster convergémes aand increased attenuation. Flattening the
magnitude coefficients leads to an average of 1&d#tional attenuation and as much as 50 %
additional attenuation for some cases. In terndBofor the specific cases tested, this was seen
as on average 1 dB additional attenuation andgisds 3.5 dB additional attenuation.

The strength of the EE-FXLMS approach is its sigipli It can be incorporated into any
FXLMS algorithm with only a few lines of code anddause it is an offline process, it does not
increase the computational burden of the algorithm.

Flattening the magnitude coefficients is but ohenany possible methods for adjusting the
magnitude coefficients to improve the performant&XLMS based algorithms. Future work
will focus on an optimization approach to findingetvalues of the magnitude coefficients that
lead to the best performance.
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