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ABSTRACT 
A number of active noise control applications involve the need to control multiple stationary 
frequencies, a single time-varying frequency, or some combination of the two.  The most 
common control approach is typically based on some version of the filtered-x algorithm.  For this 
algorithm, the convergence and tracking speed is dependent on the eigenvalues of the filtered-x 
autocorrelation matrix, with these eigenvalues being frequency dependent.  To maintain stability, 
the system must be implemented based on the slowest converging frequency that will be 
encountered, which can lead to significant degradation in the overall performance of the control 
system.  This paper will present an approach which largely overcomes this frequency dependent 
performance, maintains a relatively simple control implementation, and improves the overall 
performance of the control system.  The control approach is called the eigenvalue equalization 
filtered-x (EE-FXLMS) algorithm and its effectiveness is demonstrated through an application to 
engine noise in a mock cabin.  Experimental results show that the EE-FXLMS algorithm 
provides as much as 3.5 dB additional attenuation compared to the normal filtered-x algorithm. 
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1. INTRODUCTION 
The most common control approach for the active noise control (ANC) of stationary or time-
varying frequency noise is the filtered-x (FXLMS) algorithm1,2.  Though the FXLMS algorithm 
has proven successful for many applications, one of its limitations is that it exhibits frequency 
dependent convergence and tracking behavior leading to a significant degradation in the overall 
performance of the control system.   
 Solutions to the frequency dependent problem have been proposed such as the higher 
harmonic filtered-x (HLMS) algorithm by Clark and Gibbs3, and similar work by Lee et al.4, the 
Filtered-x Gradient Adaptive Lattice (FxGAL) algorithm by Vicente and Masgrau5, the work of 
Kuo et al.6, and the modified FXLMS algorithm7.  The drawback of most of these approaches is 
that they either increase the computational burden of the algorithm, increase the algorithm’s 
complexity, or are only effective for specific applications.   
 This paper discusses a new approach which largely overcomes this frequency dependent 
problem, and improves the overall performance.  The approach is simple to implement, can be 



added to existing FXLMS algorithms with minor modifications, and does not increase the 
computational burden of the algorithm.  The effectiveness of the approach will be demonstrated 
through an application to engine noise in a mock cabin. 

2. BACKGROUND 
For this research, a feedforward implementation of the FXLMS algorithm is used.  The FXLMS 
algorithm involves adaptive signal processing to filter the reference signal in such a way that the 
measured residual noise is minimized.  The measured residual is called the error signal and for 
this research it will be measured as an energy density (ED) quantity.  The advantages of an ED 
based FXLMS algorithm8 in enclosures9,10 and for tractor engine noise11, are well documented.  
Before introducing the new approach, a brief derivation of the FXLMS algorithm is given.   
 

A. FXLMS 
The goal of the FXLMS algorithm is to 
reduce the mean-squared error of the error 
signal at a location where the sound is to be 
minimized.  Boucher, Elliot, and Nelson12 
provide a good reference for the derivation 
of the single channel FXLMS algorithm, 
which is shown in block diagram form in 
Figure 1.  In the figure, and in all equations 
presented, the variable t is used as a discrete 
time index and the variable z is used as a 
discrete frequency domain index.  Signals in 

 

 

Figure 1. Block diagram of the FXLMS algorithm.

the time domain are represented as lower case letters while capital letters are used in the 
frequency domain. Vectors in each domain are represented as bold letters.  
 The mean-squared error is a quadratic function (a “bowl”) with a unique global minimum.  
For each iteration of the algorithm, W(z), an adaptive finite impulse response (FIR) control filter, 
takes a step of size µ, the convergence coefficient, times the gradient in search of a single global 
minimum that represents the smallest attainable mean-squared error.  The control filter update 
equation for W(z) can be expressed in vector notation as 
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where e(t) is the error signal and r(t) and w(t) are defined as 
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 The filtered-x signal, r(t), is the convolution of ĥ(t), the estimate of the secondary path 
transfer function, and x(t), the reference signal.  The secondary path transfer function is an 
impulse response that includes the effects of A/D and D/A converters, reconstruction and anti-
alias filters, amplifiers, loudspeakers, the acoustical transmission path, and the error sensor. 
 

B. Secondary path transfer function 
One difficulty in implementing the FXLMS algorithm is that the secondary path, represented as 
H(z) in Figure 1, is unknown.  An estimate, Ĥ(z), of the secondary path must be used.  The 
estimate is obtained through a process called system identification (SysID).   
 The SysID process is performed either online (while ANC is running), or offline (before 
ANC is started).  For the fastest convergence of the algorithm, an offline approach is used.  The 



offline SysID process consists of playing white noise through the control speaker(s) and 
measuring the output at the error sensor.  The measured transfer function is a FIR filter, ĥ(t), that 
represents Ĥ(z).  The coefficients of Ĥ(z) are stored and used to run control.   

3. FXLMS LIMITATIONS 
The inclusion of Ĥ(z), while necessary for algorithm stability, degrades performance by slowing 
convergence.  One reason for the decreased performance is the delay associated with Ĥ(z).  For 
many ANC applications, such as enclosures of less than a few meters, the delay is on the order of 
10 ms and convergence is still rapid13.  A more significant problem is that the inclusion of Ĥ(z) 
causes frequency dependent convergence behavior.  The frequency dependence can be better 
understood by looking at the eigenvalues of the autocorrelation matrix of the filtered-x signal. 
 The eigenvalues of the autocorrelation matrix of the filtered-x signal relate to the dynamics 
or time constants of the system modes.  Typically, a large spread is observed in the eigenvalues, 
corresponding to fast and slow modes of convergence.  The slowest modes limit the performance 
of the algorithm because it convergences the slowest at these modes.  The fastest modes have the 
fastest convergence and the greatest reduction potential, but limit how large of a convergence 
parameter, µ, can be used14.  For stability, µ is set based on the slowest converging mode (the 
maximum eigenvalue), leading to degraded performance.  If µ is increased, the slower states will 
converge faster, but the faster states will drive the system unstable.   
 The autocorrelation matrix of the filtered-x signal is defined as 

)](*)([ ttE Trr  (3) 

where E[] denotes the expected value of the operand which is the filtered-x signal, r(t), 
multiplied by the filtered-x signal transposed, rT(t).  It has been shown that the algorithm will 
converge and remain stable if the chosen µ is less than 2/ λmax

12, where λmax is the maximum 
eigenvalue of the autocorrelation matrix in the range of frequencies targeted for control.    

4. EIGENVALUE EQUALIZATION 

A. Eigenvalue simulation 
If the variance in the eigenvalues was minimized, the algorithm could converge at the same rate 
at each frequency.  The autocorrelation matrix is directly dependent on the filtered-x signal, 
which is computed by filtering the reference signal with Ĥ(z).  The reference signal is often 
taken directly from the sound field and cannot be changed.  Changes can be made to Ĥ(z), but 
must be done carefully. Errors in its estimation contribute to lower convergence rates and 
instability.  Estimation errors can be considered in two parts: amplitude estimation errors and 
phase estimation errors15.  Phase estimation errors greater than +/- 90 degrees cause algorithm 
instability12, but errors as high as 40 degrees have little effect on the performance12.  Magnitude 
estimation errors can be compensated for by the choice of µ16.  Ideally, changes would be made 
to the magnitude information of Ĥ(z), while the phase information is preserved.   
 The idea to remove the variance in the eigenvalues by changing the magnitude coefficients 
of Ĥ(z), while preserving the phase, will be referred to as the eigenvalue equalization filtered-x 
(EE-FXLMS) algorithm approach.  The remainder of this paper will focus on one method of 
adjusting the magnitude coefficients that is simple to implement, and offers significant 
improvement in the overall sound reduction.   
 

B. EE-FXLMS 
The procedure for implementing the EE-FXLMS is to adjust the coefficients of Ĥ(z) as follows: 



1. Get time domain impulse response ĥ(t) for each Ĥ(z) through an offline SysID process 
2. Take the Fast Fourier Transform (FFT) to obtain Ĥ(z) 
3. Divide each value in the FFT by its magnitude and multiple by the mean value of the FFT 
4. Compute the inverse FFT to obtain a new ĥ(t) and use the new modified ĥ(t) in the 
FXLMS algorithm as normal 

 
This procedure flattens the magnitude coefficients of Ĥ(z) while preserving the phase.  It is 

an offline process done directly following SysID, and can be incorporated into any existing 
algorithm with only a few lines of code.  As an offline process, it adds no computational burden 
to the algorithm while control is running.  The results of the flattening process can be seen in 
Figure 2.   
 
 
 

 

 

 

 

 

 

 

 

 
 

Figure 2.  Original and modified magnitude and phase coefficients of Ĥ(z)
  
Figure 2 shows the original and modified Ĥ(z) magnitude coefficients and shows that the phase 
information of Ĥ(z) has been preserved.  In Figure 2, the two lines representing the original and 
modified phase of Ĥ(z) are directly on top of each other.   

In practice, it is too computationally 
demanding to obtain a real-time estimate of 
the autocorrelation matrix. An offline 
estimate of the autocorrelation matrix is 
made by taking an actual Ĥ(z) model from a 
mock cabin and importing it into a 
numerical computer package.  If a single 
frequency reference signal is used, λmax can 
be computed for that frequency.  If the 
simulation is repeated over a range of 
frequencies, λmax for each frequency can be 
found.  Figure 3 shows an offline simulation 
using both the original Ĥ(z) and the new 
modified Ĥ(z), and tonal inputs from 0-400 
Hz.           

 

Figure 3.  Original and modified eigenvalues. 

In Figure 3, the eigenvalues in both the original, and modified case, have been normalized by 
the largest of the original eigenvalues.  The modified eigenvalues are more uniform (“flat”) over 



all frequencies.  While not the optimum, the improved modified eigenvalues make a noticeable 
improvement in the algorithm’s performance.  

 

5. EXPERIMENTAL RESULTS 
The performance advantages of the EE-FXLMS control approach were verified for the case of a 
single frequency noise, single time-varying frequency noise, and recorded tractor engine noise.  
 

A. Experimental setup 
The experiments were conducted inside a mock tractor cabin with nominal dimensions of 1.0 m 
x 1.5 m x 1.1 m.  The cabin has a steel frame, 0.01 m thick plywood sides, and a 0.003 m thick 
Plexiglass® front panel.  A speaker placed under a chair served as the sound source and three 
loudspeakers were setup in a two channel control configuration.  The control signal for each 
channel was routed through a crossover circuit sending the low-frequency content (below 90 Hz) 
to a subwoofer on the cabin floor, and the high-frequency content (above 90 Hz) to one of two 
smaller satellite speakers mounted in the cabin’s top corners.  A 2-D error sensor consisting of 
four equally spaced microphones around a small disk was placed on the ceiling near where the 
operator’s head would be.  A photo of the cabin, error sensor, and speakers is seen in Figure 4.  

         

 

 

 

 

 

 

 

 

 

 

 Figure 4.  Photo of inside of mock cabin. 

  
 The algorithms were implemented on a Texas Instruments TMS320C6713 DSP, capable of 
1,350 million floating point operations per second.  Both adaptive control filters consisted of 32 
taps, and all secondary path transfer functions were modeled with 128 taps.  All input channels 
were simultaneously sampled at 2 kHz, and all signals had 16 bits of resolution.  Fourth-order 
Butterworth lowpass filters (400 Hz cutoff) provided anti-aliasing and reconstruction of input 
and output signals, respectively.  Performance was monitored using ten precision microphones 
arranged in two horizontal planes, located (0.15 m) and (0.5 m) from the cabin ceiling.  
 

B. Single frequency disturbance 
A function generator was used to generate single sinusoids at 50 Hz, 80 Hz, 113 Hz, 125 Hz, 154 
Hz, 171 Hz, and 195 Hz; frequencies where the response of the cabin is large and where the 
normal FXLMS control is expected to have poor performance.  The convergence coefficient µ 
was determined experimentally by finding the largest stable µ and then scaling it back by a factor 
of ten to ensure stability.  The measured performance was the amount of attenuation in dB and 
the convergence time.  The convergence time was a measure of how long it took the error signal, 
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from the time that control was enabled to reach 1/e of its initial value, where e is the base of the 
natural logarithm.  Each measurement was performed three times and the results are shown in 
Table 1.  In Table 1, EE refers to EE-FLXMS control, and normal refers to FXLMS control. 
 

Table 1.  Results of single frequency experimentation  

   Attenuation (dB) Convergence Time (sec) 

Code Type Freq. (Hz) µ Avg. Stdev. Avg. Stdev. 

Normal 50 1.E-08 37.85 0.34 0.26 0.02 

EE 50 4.E-08 36.98 0.41 0.21 0.04 

Normal 80 1.E-07 20.35 0.06 0.21 0.05 

EE 80 2.E-07 21.77 0.02 0.30 0.02 

Normal 113 1.E-08 13.69 0.01 0.44 0.04 

EE 113 5.E-08 15.63 0.01 0.44 0.02 

Normal 125 6.E-08 22.43 0.02 0.14 0.01 

EE 125 7.E-07 23.68 0.01 0.11 0.01 

Normal 154 3.E-08 1.91 0.01 5.00 0.01 

EE 154 1.E-07 5.26 0.03 0.21 0.00 

Normal 171 2.E-07 3.94 0.02 2.01 2.59 

EE 171 9.E-07 6.61 0.01 0.36 0.16 

Normal 195 9.E-08 16.43 0.29 0.49 0.12 

EE 195 3.E-07 15.32 0.08 0.36 0.04 

       
Total Average Normal 16.66 0.08 1.22 0.40 

  EE 17.89 0.11 0.27 0.04 

 
The results in Table 1 show that on average, the EE-FXLMS converged about a second faster 
and had about 1 dB more attenuation.  The convergence speed was more uniform for EE-
FXLMS with a standard deviation less than 0.05 seconds compared to 0.4 seconds or greater for 
normal FXLMS.  Table 1 also shows that the greatest decreases in convergence time occurred at 
154 Hz and 171 Hz, with a difference of several seconds being seen at these frequencies.  154 Hz 
and 171 Hz correspond to the two largest resonant modes of the cabin below 200 Hz. 
  

C. Single time-varying frequency   
Several swept sine test signals with different sweeping rates were created.  Each test signal 
consisted of a swept sine from 50–200 Hz and the rates ranged from 2 Hz/sec to 256 Hz/sec.  
The time-averaged sound pressure level over the entire duration of the test signal was measured 
with and without control running.  The convergence coefficient µ was determined experimentally 
by finding the largest stable value then scaling it back by a factor of ten to ensure stability.  The 
µ for EE-FXLMS control was 1e-7 and the µ for standard FXLMS control was 1e-8.  The 
attenuation in dB is reported at the error sensor, at a microphone located at the operator’s ear, as 
an average of the ten microphones placed in the two horizontal planes above and below the 
operator’s head, as an average of the eight microphones closest to the operator’s head, and as an 
average of the six microphones closet to the operator’s head.  Each measurement was repeated 
three times.  The actual attenuation is not reported, but the difference in dB between EE-FXLMS 
and FXLMS is shown in Table 2.  The actual attenuation (not shown) at any microphone location 
was as high as 9 dB for the slower sweeps and as low as 1 dB for the faster sweeps.  A positive 
number indicates EE-FXLMS performed better. 



Table 2.  Results of time-varying frequency experimentation 

Sweep Rate Ear Mic Avg. 
Difference  (dB) 

Error Mic Avg. 
Difference  (dB)   

10 Mic Avg. 
Difference  (dB) 

8 Mic Avg. 
Difference  (dB) 

5 Mic Avg. 
Difference  (dB) 

2 Hz 2.86 3.56 2.26 2.97 3.24 

4 Hz 1.33 2.16 0.77 1.40 1.64 

8 Hz 0.72 1.45 0.35 0.80 0.98 

16 Hz 0.64 1.06 0.44 0.72 0.83 

32 Hz 0.14 0.33 0.08 0.19 0.24 

64 Hz 0.15 0.22 0.19 0.20 0.21 

128 Hz -0.07 0.06 -0.08 -0.04 -0.01 

256 Hz -0.10 -0.01 -0.08 -0.06 -0.04 
 

Total Averages 

  Ear Mic Avg. Error Mic Avg.  10 Mic Avg. 8 Mic Avg. 5 Mic Avg. Total Avg. 

Average  0.71 1.10 0.49 0.77 0.89 0.79 

 
 The data show that on average over all of the data, EE-FXLMS performs 1.0 dB better than 
normal FXLMS at the error sensor and about 0.8 dB globally.  The data also show that the 
slower the sweep rate the more advantage EE-FXLMS has.  For the 2 Hz sweep rate, EE-
FXLMS control provides 2.3-3.5 dB more reduction.  At the fastest sweep rates, the differences 
were almost negligible.  At the faster sweep rates, such as 128 Hz/sec, the algorithm has 0.0078 
seconds (1/128 Hz/sec = 0.0078 sec/Hz) to convergence at each frequency.  At a single 
frequency, EE-FXLMS control had the fastest convergence times at about 0.10 seconds; 
however, 0.10 seconds is still too slow to make a performance difference at the faster sweep 
rates. 
 

D. Tractor engine noise 
The performance advantages of the EE-FXLMS algorithm were tested on recordings obtained 
from a CAT wheel-loader tractor for different operating conditions.  As part of the recordings, 
the engine tachometer signal was recorded to use as the reference signal.  The recordings were 
played through the source speaker, and measurements were taken in the same manner as the 
single time-varying frequency measurements for both EE-FXLMS and normal FXLMS control.  
The results are shown in Table 3 for slow, medium, and fast sweep rates of the engine rpm.  A 
positive number indicates that EE-FXLMS performed better. 
 

Table 3.  Results of tractor engine noise 

Sweep Rate Ear Mic Avg. 
Difference  (dB) 

Error Mic Avg. 
Difference  (dB) 

10 Mic Avg. 
Difference  (dB) 

8 Mic Avg. 
Difference  (dB) 

5 Mic Avg. 
Difference  (dB) 

Slow ramp 0.98 0.98 0.86 0.95 0.97 

Medium Ramp 1.23 1.35 1.07 1.21 1.25 

Fast Ramp 0.40 0.35 0.38 0.40 0.41 
 

Total Averages 

  Ear Mic Avg. Error Mic Avg.  10 Mic Avg. 8 Mic Avg. 5 Mic Avg. Total Avg. 

Average  0.87 0.89 0.77 0.85 0.87 0.85 

  



Similar performance advantages for the EE-FXLMS were seen with the tractor recording 
simulations.  On average EE-FXLMS performed 0.9 dB better at the error sensor and globally 
0.85 dB better than the normal case.   

6. CONCLUSIONS 
 A new eigenvalue equalization approach has been demonstrated for the case of engine noise 
in a mock cabin.  It has been shown that adjustments to the magnitude coefficients of Ĥ(z), while 
preserving the phase, leads to faster convergence times and increased attenuation.  Flattening the 
magnitude coefficients leads to an average of 13 % additional attenuation and as much as 50 % 
additional attenuation for some cases.  In terms of dB for the specific cases tested, this was seen 
as on average 1 dB additional attenuation and as high as 3.5 dB additional attenuation. 
The strength of the EE-FXLMS approach is its simplicity.  It can be incorporated into any 
FXLMS algorithm with only a few lines of code and because it is an offline process, it does not 
increase the computational burden of the algorithm. 
 Flattening the magnitude coefficients is but one of many possible methods for adjusting the 
magnitude coefficients to improve the performance of FXLMS based algorithms.  Future work 
will focus on an optimization approach to finding the values of the magnitude coefficients that 
lead to the best performance. 
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