209

Newport Beach, CA, USA

ACTIVE 95

1995 July 06-08

ACTIVE CONTROL OF STRUCTURAL INTENSITY IN
CONNECTED STRUCTURES

Moongyung Nam *, Sabih 1. Hayek *, and Scott D. Sommerfeldt #

*Department of Engineering Science and Mechanics, # Graduate Program in
Acoustics, Penn State University, University Park, PA, 16802

INTRODUCTION

Flexural vibration energy from machinery can be transmitted through a structure, such as a panel,
to a connected beam-like structure. The connected structure can dissipate this energy through
coupling to an acoustic medium or to other structures. The objective of this work is to prevent the
energy from flowing to the connection point. An elastic plate is connected to another structure with
a resistive connection point impedance. The elastic plate is excited to vibration by a point load at a
single frequency. The point force is located at a certain position and acts as the primary mechanical
source of vibration for an interally damped, simply supported plate. A point damper, representing
a resistively connected structure, located at another position, acts as an energy sink which models
the power flow transmission to a connected beam-like structure. The damping coefficient of the
point damper represents the degree of energy transmission at the connection point. A control force
is applied to the plate in order to reduce the structural intensity (SI) at the point damper location.

The analysis and measurement of SI has been studied by few authors. The measurement of SI
has been reported in Ref[1-6]. Analytical studies of active control of power flow in beams and
plates, and shells were reported in Ref.[ 7-16], and experimental studies in Ref.[17-20].

STRUCTURAL INTENSITY IN A CONNECTED PLATE

The structural intensity vector is the mechanical power flow per vector unit area, which has
direction and magnitude as a function of position in the structure. Thus, a structural intensity map,
being composed of structural intensity vectors, shows the power flow from an energy source to all
points in the plate. The real part of the structural intensity is the active intensity and propagates
along the structure representing the net power flow. The x- and y- components of the instantaneous
structural intensity vector of an elastic plate obeying the Bernoulli-Euler theory can be expressed as
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I,(x,y,t)=— V., 31 +M, 57 +M”‘—5t_
(1)
ow X 26,
e

The first term of eq. (1) is the product of the shear force and the transverse velocity. The
second term is the product of the bending moment and the associated angular velocity. The third
term is the product of the twisting moment and the associated angular velocity. The bending

moments (M ,, M ), the twisting moment M, the transverse shear forces V,,V,) and the
rotational displacements (©,,6,) can be expressed in terms of the spatial derivatives of the
transverse displacement W(x,y,t) . With conventional sign notation, these are given by :
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Here D is the bending rigidity, given by D = Eh*f12(1- v?), where v is Poisson’s ratio, E is

the Young’s modulus of the material, and 4 is the plate thickness. Inserting eq. (2 ) into eq. ( 1),
one can express the structural intensity components for a thin plate in terms of the transverse

displacement W(x,y,r) . If complex quantities are used to represent a field with simple harmonic

time dependence, the time-averaged complex structural intensity f , can be defined as:

Fay=T.(xyé+I(xye, 3)
=(T,(x,y) +j0,(xy) &+ (I, (x,y) +1D,(x,y) €,

where the x- and y-components are expressed by
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Here, the bar (-) denotes the time averaged values, the tilde (~) denotes complex quantities and the

asterisk (*) denotes the complex conjugate. The active and reactive intensity vectors in a thin plate
can now be expressed as follows by taking the real and imaginary parts, respectively:

Ty =Ty e +T,(x
Oy =T, (e, + T,(xY) g,

(3)

Motion of a Simply Supported Plate with a Point Load and a Point Damper.
Consider a thin elastic plate to which a point damper with a damping coefficient C is attached at the
position (x, ,y, ) and a harmonic point force is located at (x,,y,) as shown in Fig.1. The plate is
simply supported with dimensions L, XL, thickness h, and mass density p. For flexural
vibration, in-plane forces, rotary inertia and shear deformation effects are not taken into account,
since the plate thickness is small relative to the bending wavelength. From the dynamic force and
moment equilibria for an elastic thin plate with a point load and a point damper, the governing

equation of motion for the transverse displacement W(x,y,r) is expressed as :
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where o is the angular frequency of the applied force. F, is the amplitude of a simple harmonic

point force applied at location (x,,y, ). D, given by D =D(1+ jn), is the complex dynamic
bending rigidity which includes the structural damping, 7.

Substituting the displacement W(x,y,t) ,expressed as Ref W(x,y)aj““ }, into eq. (6) and
introducing the wave number &, defined from pha? [D = k*, the damping factor 8 , defined

fromC?[phD = B*, and the point force, represented with a complex amplitude E =Fe”,
results in :

DVW —Dk*W + D(Pk WS (x —x,)8 (y—y,)=F,8 (x—x,)8 (y-y,) (7)

The response for a damped system can be expressed in terms of a series of eigenfunctions
of the undamped system. Thus, the complex transverse displacement W (x, y) may be expressed as

Wy 0)=2, 38, (oW, (xy) (8)

m=1 a=l
where W__(x,y) =sink,xsink,y is the modal shape function for the m,n mode of a simply
supported undamped plate. &, = mn/L, and k, = m't/Ly are the modal wave numbers, while m

and n are the modal indices in the x and y directions, respectively. Em(w) is the complex modal
amplitude coefficient to be determined. Substituting the solution in eq. (8) in eq.(7), and using the
orthogonality of the eigenfunctions, one obtains:
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where the complex modal wave number k,, is obtained from l?,:nzk:n(l+ jn) , where

ke = (mr [L)?+(nm[L)* ).
ACTIVE CONTROL OF STRUCTURAL INTENSITY

To control the power flow ( SI ) in the plate, a control point force is assumed to act on the plate at
the position 7, . Then the SI components in the x- and y-directions can be expressed in terms of

£1¢e primary and control point forces. With the primary force F, taken to be real, each component
of the active intensity at the error sensor location r, can be expressed as a quadratic function of the

control force, £, = F,, + jF,, as follows:
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After some rearrangement, the intensity component can be rewritten as :
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The terms A,, , A, ,are functions of the positions of the primary force and the error sensor that
contribute to the x- and y- components of I, respectively, and 4, ,, 4, , are those for the control
force and the error sensor. The terms @, ,, @ ,.and @y, ,, ¢y, , are functions of the positions of

the primary force, the control force, and the error sensor, which appear in the x- and y-
components of L.

Minimization of the Structural Intensity. The magnitude of the active intensity vector to be

minimized is J =l = 1’1_3 +1—y2 , where each of the two components of I is quadratic in the control

force . Then Il is of fourth power in terms of the control force. Thus, differentiation of |1l with
respect to the control force would lead to nonlinear equations of the third degree in the control
force. This is in marked contrast to control of SI, or the vibration levels in beams. Differentiating
the magnitude of the structural intensity in terms of the real and imaginary components of the
control force, and setting both derivatives to zero yields the optimal control force. Thus, the
optimal control force is calculated by solving two nonlinear simultaneous equations of third degree

in the real and the imaginary components of the control force:

2 R 0+ FE, 04 (F)=0
cr ( 1 2)

al
aT-=ﬁ1Pg+ﬁ2Fcf +ﬁ3(Fcr)Ej +ﬁ4(F;‘r) =0

where the a's and 's are functions of the terms in eq.(11). If the following conditions are
satisfied,
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then there exists a set of optimal control forces which make the magnitude of each of the two
components of the active intensity at the error sensor position zero individually. Their trajectories
are expressed as equations of circles as follows:

(F —F )2+(F.-F Y=52

a a,X Cl a,x X (14)
(F —F )2 4+(F.-F. )2=s2 '
a la,y ¢ d,y y

If the two optimum control force solutions, forming two circles that nullify the Ix and Iy
intensities, intersect, then there exist two intersection points for these two circles. This occurs if the
following condition is satisfied :

ls. -,

< J(FM —F, V+(F

cry

2
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In this case, there exist two possible solutions for the optimal control force that make each
component of intensity zero simultaneously such that the intensity magnitude will be zero. They are
obtained by solving eq.(14 ) as follows:

{Fci,yKl +Fci,xK2)_(F' _F::z,x)K3}i-J(F KI+Fa',xK2)2—(Fcr,y—F‘cr,x)2K4
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The degree of coupling between the primary and control forces is different for the ::- and the y-
components of the active intensity. When the following conditions are satisfied,

¢121,x 2 A‘l,x AZ,x
‘plzl,y 2 A,yll,y ( 1 8)
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then one of the numerators of eq. (18) becomes zero. Thus, one of the two possible optimal
control force solutions has only a real part, and the other one has a complex value as follows :

F,,=0
Ae Ay
N Y M (19a)
B Mt
by A,
{((Fa K+ F . K)-(Fi,—F..)K}
Foi2= K +K
v (19b)
(Fd.y—FdJ)Foi.2+K3
Fo'.z w Fa.x - Fcr.x

NUMERICAL RESULTS

Consider a steel plate that has the dimensions 0.60x0.40x0.0032 m., density 7800 Kg/m3, and
Young's modulus of 2.06x10E11 N/sq. m. A 1N point force is located at (0.15, 0.15m), and a
point damper located at (0.50, 0.10m).

To investigate the influence of the structural damping on the SI of an internally damped plate,
the SI is computed before control for resonance and off resonance frequencies. At resonance, the
power flows from the source to the regions of maximum velocity in the uncontrolled plate because
the internal energy absorption depends on the damping coefficient and the local kinetic energy.
This can be seen clearly by examining the displacement field of Fig.2(a) and comparing it to the SI
vector map in Fig.3 for the uncontrolled plate without a point damper at the resonance frequency of
the (2,2) mode,( 280 Hz). In fact, the total injected power from the primary source without
control, 9.54x10” Nmy/sec, is exclusively absorbed by the plate’s internal damping as shown in
Table 1.

To investigate the power flow in an internally damped plate without a point damper controlled
at resonance, the optimal control force, calculated for an error sensor located near the damper
position, was found to be F=-0.783-j0.021 N. With this control force, the SI vector map is shown
in Fig. 4. It can be seen that after control, the displacement field has been changed so that the nodal
lines of the (2,2) uncontrolled mode have shifted and the regions of the maximum velocities or the
kinetic energy has shifted as shown in Fig.2(b). Thus, one can see that power flows from the point
source to the regions of maximum kinetic energy. However, the total input power by the primary
and control forces has dropped significantly from the uncontrolled 9.54x 10 Nmy/sec to the
controlled 1.48x 10° Nmy/sec. Thus, the total injected power is absorbed by the plate exclusively
and hence it also has dropped to 1.48x 10° Nmy/sec (See Table 1).

One can thus conclude that for a plate without an absorbent point attachment ( point damper ),
the control algorithm to minimize the SI at an error sensor in essence changes the displacement
field in order to maximize the kinetic energy at other locations, thereby diverting the SI flow to
those locations away from the error sensor.

To investigate the combined role of the internal damping and the point damper before and after
control, the SI maps were computed for C=200 Nm/sec and 1=0.01. The SI map before control at
the resonance frequency of 280 Hz, the (2,2) mode, is shown in Fig.5 and shows that the power
flows to both the point damper and the regions of maximum kinetic energy (See Fig.2(a)), as
explained before. For this case, the total injected power from the primary source,(1.48x107
Nmy/sec), is split between the plate internal absorption (0.27x10° Nm/sec) and the point damper
(1.2lx10'3 Nmysec) (See Table 1). After control, with the optimal control force
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F=-0.782-j0.012N, the total injected power by the pnmary and control forces has significantly

dropped from the uncontrolled case, i.e. from 1.48x10" 3 Nm/sec to 1.07x10” Nm/sec, see Table 1.
The SI map for the controlled case is shown in Fig. 6. It can be seen that the power , while very
small, ﬂows from the primary and control forces to the regions of maximum kinetic energy

(1.07x10° 5 Nm/sec) and to the point damper (4.17x10 ® Nmy/sec). In essence, the control algorithm
which required the minimization of the SI near the damper has been very effective in that the
control of SI near the damper diverted most of the injected power to the areas of the maximum
internal damping.

Thus, one can conclude that if the control algorithm requires the minimization of the energy
flow to a point damper, the injected power is exclusively absorbed by the plate only, as if the point
damper does not exist. This is accomplished by changing the displacement field in order to
maximize the kinetic energy at other regions away from the point damper.

To investigate the influence of resonance vs. off-resonance excitation on the control of SI, the
SI maps were computed for the frequency of 280 Hz, which is the resonance frequency of the
uncontrolled (2,2) mode and for the off resonance frequency at 180 Hz, which falls between the
(1,2) and (2,1) modes. With an internal damping loss factor 1=0.01 and a point damper C=200
Nsec/m, the SI map for off-resonance at 180 Hz is shown in Fig. 7. First, the overall response of
the plate at the off resonance frequency of 180 Hz is very small and hence the total mjected power

which is absorbed by the plate and the point damper is expected to be low (1.34x 10° Nm/sec)

when compared to the resonance excitation at 280 Hz, with the injected power of 1.48x 10 -3
Nmy/sec (see Table 2). However, the injected power is again split between the plate internal
damping and the point damper in either case.

For optimal control at the off resonance frequency of 180 Hz, the SI map is shown in Fig.8.
For off resonance excitation, an optimal control force of F=-1.212-j0.007 N results in a total

injected power of (0.8x 10'5 Nm/sec), which is about the same as the resonance case. However,
since the error sensor was located near the point damper, most of the energy was diverted again to
the regions with maximum kinetic energy, see Fig.9(b).

CONCLUSIONS

The parametric study on the control of SI at the point damper led to a number of conclusions:

*It was found that control of the components Ix or Iy is not sufficient to control the total SI at
the damper. The control of |11 was essential to nullify or minimize the power flow to the damper.

*Control of the SI at the damper through an actuator located near the primary source altered the
modal characteristics of the uncontrolled mode to achieve the required minimization.

*Control of the power flow in an internally damped plate without a point damper showed that
the energy flows from the primary source to areas of maximum kinetic energy, where internal
absorption is maximum.

*When the primary source excitation is at a resonance frequency and the actuator is in the
nearfield of the source, the SI is minimized over the entire plate, i.e. it has a global control
property. . |

*When the primary source excitation is at an off-resonance frequency, the displacement field is
altered by the control source in order to divert the energy to regions of maximum kinetic energy.

*Control algorithm based on minimizing SI was more effective than that for displacement
control.

*At resonance, the SI or displacement reduction due to the control source increases with
decreasing internal damping coefficient 7] or point damper coefficient C.

*The total input power reduction, which is a measure of the efficiency of the control
mechanism, increases with decreasing C or 7).
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Table 1. Dynamic Response depending on the Damping Loss Factor 7] of the Simply Supported

Plate and the Damping Coefficient C of an attached Point Damper for control at 280 Hz.

damping | C-200Nm/sec C=0 Nmy/sec C=200Nm/sec

factor n=0 1=0.01 7=0.01
variables before after before after before after
control control control L control  control Tcontrol
control force(N) - -0.783 - -0.7832-j0.002 - 0.782-50.012
intensity at ; . - -
damper(N/sec) 587x10° 0 1.25 x 1072 1.96 x10° | 4.43 x 1073 2.60x107°
displacement 6 5 7 6 9
at damper(m) 2.33 x10 0 1.33x 10 "1.32 x10 1.97x10 ™ 3.67x10
pe

injected power
at primary 1.67x1033.36x10710 | 9.54 x 1036.23x10® | 1.48x1073 9.51x107®
source(Nm/sec)
injected power 6
at secondary ) ) - i -6 -6
source(NmJsec) 3.36x10 8.55x10 1.16x10
total input 3 3 5 3 5
power(Nmy/sec) 1.67x10 0 9.54x10 ~ 1.48x10 1.48x10 = 1.07x10
absorbed power at 3 3 9
damper(Nm/sec) 1.67 x 10 0 ) ) 1.21x10 = 4.17x10
energy flow rate 3
through the plate 0 0 - -5 -3 -5
(Nm/sec) 9.54x10 - 1.48x10 0.27x10 1.07x10

(a) (b)

Fig. 2 Displacement Contour (a) before Control (Max. 1.53x10” m, at Damper 1.33x10° m)
(b) after Control(Max. 7.23x107 m, at Damper 1.32x107 m),
Control Force Fc=-0.7832-j0.002N, 280Hz, C=0, n=0.01
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Table 2. Dynamic Response Depending on the Excitation Frequency for Control in the simply
supported plate (77=0.01) with an Attached Point Damper ( C=200 Nmy/sec)

frequenc
equency 280 Hz 180 Hz
resonant frequency non-resonant frequency
variables before after before after
control control control control
control force(N) -0.782-30.012 - 1.212 -j0.007
intensity at 3 6 4 -8
damper(N/sec) 4.43x10 2.60x10 4.32x 10 9.64x10
displacement 6 9 7 9
at damper(m) 1.97x10 3.67x10 ~ | 9.41x10 8.01x10
injected power
i -3 -6 -4 -
P ey | 148x107 95110 | 134x10™ -521x10 6
injected power at
-6 -
zgfl‘;é‘eda‘m-‘/mec) : 1.16x10 : 1.32x107
tOtallnput _3 _5 -4 _5
power(Nny/sec) 1.48x10 1.07x10 1.34x10 0.8x10
absorbed power 3 9 4 9
at damper(Nmysec) | 1.21x10 4.17x10 1.13x10 8.21x10
energy flow rate
-3 -5 -4 -
Emggcghe plate | 027x102  1.07x1070 | 021x10*  8.02x1070
04— - 04
036k 1 4 1 v rrm e T IIIIIIIIIIIIIILILL 038k oL oL oI IIIIIIIlNA
TR AN A A A GV @ R T T PP PPN R SR LA AN A IO 4 PR e s ,
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Fig. 4 Normalized SI Vector Map. after
Control(Max. 1.11x10™* N/sec),
Fc=-0.7832-i0.002N,280Hz, C=0, n=0.01

Fig. 3 Normalized SI Vector Map. before Control
(Max. 7.82x10 N/sec), 280Hz, C=0, n=0.01
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Fig. 9(a) Displacement

Contour. before Control.

(Max. 1.79x10°°m,

at Damper 9.41x10” m),

180Hz, n=0.01,
=200Nsec/m

Fig. 9(b) Displacement
Contour. After Control,
(Max. 1.04x10°m,

at Damper 2.33x10° m),
Fc=-1.294-j0.008N.
180Hz, n=0.01,
C=200Nsec/m




