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We study the temporal evolution of a coherent state under the action of a parametric oscillator and a nonlinear
Kerr-like medium. We make use of the interaction-picture representation and use an exact time-evolution
operator for the time-independent part of the Hamiltonian. We approximate the interaction-picture
Hamiltonian in such a way as to make it a member of a Lie algebra. The corresponding time-evolution operator
behaves like a squeezing operator due to the temporal dependence of the oscillator’s frequency. We analyze the
probability amplitude, the auto-correlation function, and the Husimi distribution function for different
Hamiltonian parameters. We find very good agreement between our approximate results and converged numeri-
cal calculations. © 2015 Optical Society of America
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1. INTRODUCTION

Coherent states were introduced by Schrödinger in 1926 in the
early stages of quantum mechanics [1]. These quantum states
are characterized by the fact that the trajectory of the center of
the coherent wave packet evolves in time in the same way as a
classical harmonic oscillator and its dispersion takes the mini-
mum value allowed by Heisenberg’s principle. These facts make
them especially useful as a link between the classical and the
quantum theories.

Much later, in 1963, Glauber introduced the field-coherent
states, which are coherent states for the electromagnetic field.
These states play an important role in quantum optics [2,3].
The development of lasers made it possible to prepare light
fields that are very close to the coherent states. Glauber showed
that the field-coherent states can be obtained from any one of
the three mathematical definitions: (i) as the right-hand eigen-
states of the boson annihilation operator âjαi � αjαi with α a
complex number, (ii) as those states obtained by application of
the displacement operator upon the vacuum state of the har-
monic oscillator D�α�j0i � jαi with D�α� � exp�αâ† − α�â�,
and (iii) as the quantum states with a minimum uncertainty
product �Δp��Δq� � ℏ∕2 with Δq � Δp. The coherent states
obtained from any one of these definitions are identical when
one makes use of harmonic oscillator algebra. Subject to a linear
interaction, a coherent state evolves into a new coherent state;
that is, they show temporal stability [4,5]. Nieto and Simmons
[6–8] generalized the notion of coherent states for potentials
different from the harmonic oscillator with unequally spaced

energy levels such as the Morse potential and the Pöschl–
Teller potential. The resulting states are localized, follow the
classical motion, and disperse as little as possible in time.
Gazeau and Klauder [9] proposed a generalization for systems
with one degree of freedom possessing discrete as well as con-
tinuous spectra. These states present continuity of labeling, a
resolution of the identity, and temporal stability. Man’ko et al.
[10] introduced coherent states of an f -deformed algebra as
eigenstates of a deformed annihilation operator Â � âf �n̂�
where f �n̂� is a function of the number operator that specifies
the deformation. These states present nonclassical properties
like squeezing and antibunching. The properties of their even
and odd combinations have also been studied [11,12].

In the presence of a nonlinear interaction, field-coherent
states evolve into nonclassical states. This can be achieved
experimentally by passing a coherent state through a Kerr
medium resulting in the appearance of distinguishable macro-
scopic superpositions of coherent states, which are the so-called
cat states [13,14].

The parametric harmonic oscillator, namely, a harmonic os-
cillator with a time-dependent frequency, has been studied
from several points of view: using the method of adiabatic in-
variants [15–19], super symmetric quantum mechanics [20],
algebraic methods [21,22], and different approximation meth-
ods [23]. A particularly relevant realization of the parametric
oscillator is cavity quantum electrodynamics where the fre-
quency of a given field mode in the cavity can change in time
due to the motion of the cavity walls or to changes in the
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dielectric function of the medium [24]. For instance,
Wineland et al. [25] theoretically and experimentally analyzed
both the loss of coherence caused by fluctuations in the trap
parameters and in the amplitude and frequency of the laser
beams, heating due to collisions with background gas, internal
state decoherence due to radiative decay, and coupling to spec-
tator levels.

In this work we consider a nonlinear system corresponding
to a single mode field propagating in a Kerr-like medium im-
mersed in a cavity with a time-dependent frequency. In
Section 2 we write the Hamiltonian and construct its time-
evolution operator. In Section 3 we follow the evolution of
coherent states under the nonlinear Hamiltonian and analyze
some of their statistical properties like probability distributions,
autocorrelation function, and Husimi function. Finally, in
Section 4 we present our conclusions.

2. THEORY

Consider a parametric harmonic oscillator immersed in a
Kerr-like medium. Its Hamiltonian is given by [26]

Ĥ �t� � 1

2
�p̂2 �Ω2�t�q̂2� � ĤKerr; (1)

where Ω�t� is an explicit time-dependent frequency and ĤKerr

has to do with the Kerr-like medium. We can define the usual
annihilation, creation, and number operators as

â � 1ffiffiffiffiffiffiffiffi
2Ω0

p �Ω0q̂ � ip̂�; â† � 1ffiffiffiffiffiffiffiffi
2Ω0

p �Ω0q̂ − ip̂�;

n̂ � â†â; (2)

where we have set ℏ � 1 and we write the Kerr medium [27] as
ĤKerr � χn̂2, with χ a constant proportional to a third-order
nonlinear susceptibility χ�3�, which is, in general, a small num-
ber [28]. To be specific, in what follows we will choose Ω�t� �
Ω0�1� 2κ cos�2Ω0t�� [29] with κ also a small parameter. The
Hamiltonian can be written in terms of â†, â, and n̂ as

Ĥ �t� � Ω0�n̂� 1∕2� � χn̂2 � g�t��â2 � â†2 � 2n̂� 1�;
(3)

and g�t� � Ω0κ cos�2Ω0t��1� κ cos�2Ω0t��. The time-
evolution operator corresponding to the nonlinear time-
independent part of the Hamiltonian is given by

Û 0 � exp�−iΩ0t�n̂� 1∕2� − itχn̂2�; (4)

and we can write the time-dependent Hamiltonian in the
interaction picture as

Ĥ I �t� � g�t��e−2iΩ�n̂�t â2 � â†2e2iΩ�n̂�t � 2n̂� 1�; (5)

where we have used the fact that f �n̂�â � âf �n̂ − 1�,
f �n̂�â† � â†f �n̂� 1�, and the effective frequency Ω�n̂� �
Ω0 � 2χ�1� n̂� are functions of the number operator.

Notice that the time-evolution operator Û 0 is exact and in-
cludes anharmonicity due to the Kerr medium explicitly. The
interaction-picture Hamiltonian given in Eq. (5) is also exact.
The operators given in the interaction-picture Hamiltonian do
close under commutation, however they have an explicit time
dependence and the Wei–Norman theorem cannot be applied.
Nevertheless, the set fâ†2; n̂� 1∕2; â2g also forms the basis of a

Lie algebra [the su�1; 1� algebra] closed under commutation.
In order to attain a more manageable Hamiltonian that can
be written as a linear combination of time-independent oper-
ators, we approximate the exponentials by their average value
[30]; that is, we make the replacement exp�	2iΩ�n̂�t� by
hα0j exp�	2iΩ�n̂�t �jα0i obtaining the approximate interaction-
picture Hamiltonian:

H̃ I �t� � g�t��e−2i�Ω0�2χ�t â2he−4iχtn̂i
� â†2e2i�Ω0�2χ�the4iχtn̂i � 2n̂� 1�; (6)

where the expectation value is taken with respect to an initial
coherent state. The resulting approximate Hamiltonian is sim-
ilar to that of a degenerate parametric amplifier [27], where a
nonlinear medium is pumped by a strong laser inducing the
emission and absorption of photon pairs [31].

With this simplification, H̃ I �t� is an element of the Lie al-
gebra with time-dependent coefficients, and the corresponding
time-evolution operator may be written exactly in the product
form [32,33]

H̃ I �t� �
X4
n�1

f n�t�X̂ n; Û I �t� �
Y4
n�1

eγn�t�X̂ n ; (7)

with initial conditions γn�t0� � 0. We have chosen the order-
ing X̂ 1 � â†2, X̂ 2 � n̂, X̂ 3 � â2, and X̂ 4 � 1. The average
takes the form hα0je	4iχtn̂jα0i � exp�jα0j2�e	4iχt − 1��. The
complex, time-dependent functions γn�t� needed to construct
Û I �t� are obtained from the following set of coupled, nonlin-
ear, ordinary differential equations obtained after substitution
of Eq. (7) in Schrödinger’s equation,

_γ1 � −i�f 1 � 2γ1f 2 � 4γ21f 3�; (8)

_γ2 � −i�f 2 � 4γ1f 3�;
_γ3 � −if 3e

2γ2 ;

_γ4 � −i�f 4 � 2γ1f 3�;
where the dot means the time derivative. These equations can
be solved either analytically or numerically. The equation for
γ1�t�, being a Riccati equation and the equations for the other
γ 0s�t�, can be obtained by integration.

3. STATISTICAL PROPERTIES

A. Probability Distributions

Once we have the explicit form for the time-evolution operator,
we can evaluate the temporal evolution of a coherent state jαi
by means of

jα; ti � Û 0�t�Û I �t�jαi; (9)

which is given explicitly as

jα; ti � N α

X∞
l ;m

�αeγ2−iΩ0t�l �γ1e−2iΩ0t�m
m!l !��l � 2m�!�−1∕2 e−iχt�l�2m�2 jl � 2mi;

(10)

with N α � exp�−iΩ0t∕2� γ4 � α2γ3 − jαj2∕2�.
The probability of finding the k 0th excited state in the

distribution at time t is given by Pk�α; t� � jhkjα; tij2. We
obtain
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Pk�α; t� �
����N α

ffiffiffiffi
k!

p X�k∕2�
m�0

γm1 �αeγ2�k−2m
m!�k − 2m�!

����
2

; (11)

where �θ� means the integer part of θ.
In Fig. 1 we show the probability distribution as a function

of k for three different values of time for the case when the
Kerr term χ � 0 corresponding to a parametric harmonic os-
cillator. Here the evolution due to the time-independent part
of the Hamiltonian is that of a harmonic oscillator and the
interaction-picture Hamiltonian is a linear combination of the
operators fâ2; â†2; n̂g so that its time-evolution operator is sim-
ilar to a squeezing operator S � exp�12 �ζ�â2 − ζâ†2��. The
Hamiltonian parameters used in this example are κ � 0.05,
α � 3� i3, and times t � 0 (green), t � 2π (blue), and t �
6π (red). At the initial time the probability distribution is a
Poissonian centered at hni � 18 as corresponds to a usual co-
herent state. At t � 2π its width has decreased and is now cen-
tered at k � 10. Finally at t � 6π its maximum is located at
k � 3. Its width is even smaller and it presents noticeable
oscillations after an initial bell shape. These oscillations are
evidence of the nonclassicality of the state and are due to
the quantum interferences in phase space.

B. Auto-Correlation Function

The auto-correlation function is defined as the overlap [34]

F �t� � hΨ�0�jΨ�t�i; (12)

and it takes large values at times whenever the wave packet
resembles the original one. When the overlap is complete,
we have a complete revival. Otherwise, we may have fractional
revivals when the overlap is a fraction �1∕q� of the total prob-
ability. The phenomenon of wave-packet revivals (complete or
fractional) has been observed in many experimental situations
in atomic and molecular systems [35,36].

Using the explicit forms of the time-evolution operators Û 0

and Û I , the time-dependent coherent state jz; ti can be ex-
panded in terms of the number eigenkets jni as given by
Eq. (10). The corresponding auto-correlation function is

F �t� � e−iΩ0t∕2�γ4�z2γ3−jzj2
X∞
k;l ;�0

e−iχt�k�2l�2

× �jzj2eγ2−iΩ0t�k�z�2γ1e−i2Ω0t�l∕�k!l !�: (13)
When the coefficient of the nonlinear term χ vanishes,

we deal with a parametric oscillator (Fig. 2 top) and the

auto-correlation function for the coherent state jz; ti is a
periodic decreasing function of time. Its explicit form can be
written as an exponential:

F �t�χ�0 � exp�−iΩ0t∕2� γ4 � z2γ3 − jzj2
� z�2γ1e−i2Ω0t � jzj2eγ2−iΩ0t�: (14)

As a reference we show in black the temporal evolution for a
field-coherent state jzeiΩ0ti.

When the coefficient corresponding to the temporal
dependence of the frequency κ ≪ 1 and that of the nonlinear
term is non-negligible (and we thus have a nonlinear oscillator),
we show in Fig. 2 (intermediate) the auto-correlation func-
tion for a coherent state jz; ti. We can see that there are
periodic fractional and complete revivals with the revival
time T rev � 4πℏ∕jE 0 0�n0�j � 8π. Notice also that the auto-
correlation function is symmetric with respect to T rev∕2 � 4π.
In Fig. 2 (bottom) we show the case when neither κ nor χ
are negligible. We have a parametric nonlinear oscillator. Here
the auto-correlation function shows only fractional revivals.
The revival near 8π is not complete and appears at a time
slightly earlier than T rev. Notice also that the periodicity with
respect to t � 4π has been lost.

In Fig. 3 we plot the absolute value squared of the auto-
correlation function jF �t�j2 as a function of time for a state
jz; ti with Hamiltonian parameters κ � 0.25, χ � 0.25. In red
we present the result obtained using the time-evolution oper-
ator Û I �t� obtained from the approximate interaction-picture
Hamiltonian H̃ I �t�. In black we present the result obtained
when the evolution of the system is done numerically taking
into account the full Hamiltonian given by Eq. (5). Notice
the almost perfect agreement between the converged numerical
result and our approximate result. This is an indication of
the quality of our approximation when dealing with the
interaction-picture Hamiltonian. We stress the fact that the
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Fig. 1. Probability distribution for the evolved coherent state with
Hamiltonian parameters. χ � 0, κ � 0.05, α � 3� i3, α0 �

ffiffiffiffiffi
18

p
at times t � 0 (green), t � 2π (blue), and t � 6π (red).

Fig. 2. Absolute value squared of the auto-correlation function
jF �t�j2 as a function of time for a state jz; ti. Hamiltonian parameters,
(a) κ � 0.05, χ � 0; (b) κ � 0, χ � 0.25; (c) κ � 0.25, χ � 0.25.
The black dotted line is for a field-coherent state jzeiΩ0ti. In all cases
we have z � 2, α0 � 2, and Ω0 � 1.
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nonlinearity χn̂2 has been taken into account exactly by means
of the time-evolution operator Û 0.

C. Husimi-Q Distribution

The Husimi function is defined as the expectation value of the
density operator with respect to the coherent state, and it plays
the role of a phase-space probability distribution. It is given as

Q�α� � 1

π
hαjρ̂jαi; (15)

and if ρ̂�t� � jz; tihz; tj we get

Q jz;tihz;tj�α� � 1

π
hαjz; tihz; tjαi � 1

π
jhαjz; tij2; (16)

with the normalization conditionZ
Q�α�d2α � 1:

The Q function is always positive. Taking the explicit form
obtained for the time-dependent coherent state jz; ti and pro-
jecting upon a coherent state jαi, we get the overlap

hαjz; ti �
X∞
l ;m;�0

�zα�eγ2−iΩ0t�l
l !

�α�2γ1e−i2Ω0t�m
m!

× Nze−iχt�l�2m�2−jαj2∕2; (17)

and when χ � 0 the Husimi function reduces to an
exponential

Q�α�χ�0 �
1

π

���� exp
�
γ4 � z2γ3 −

jzj2
2

−
jαj2
2

�zα�eγ2−iΩ0t � α�2γ1e−i2Ω0t

�����
2

: (18)

In Fig. 4 we show the Husimi function for z � 4 and
Hamiltonian parameters κ � 0.8 and χ � 0.25 at different
times. At time t � 0 the state is a coherent state and its dis-
tribution is a Gaussian as shown in Fig. 4(a). As time evolves
the distribution is smeared in a sort of ring. At t � π∕4 the
state is no longer localized as shown in Fig. 4(b). Later on
at t � π the distribution has evolved into a superposition of
four well defined peaks with Gaussian shape. At t � 6π the
distribution is now composed of only two peaks, a catlike state.
Notice the presence of squeezing. In Figs. 4(e) and 4(f ) we
show the Husimi function at two nearby times t � 6.5π
and t � 6.55π. Notice that the distribution is localized in a

kind of ring whose radius is ≃
ffiffiffiffiffi
18

p
. At t � 7π the distribution

resembles that of t � π and we can see that the states are
squeezed. Finally at the revival time T rev � 8π the distribution
is composed of a single peak that is not located at the same
phase-space point it had at t � 0. This is due to the temporal
dependence of the frequency. Similar results have been shown
in [26].

Finally, in Fig. 5 we show the Husimi function obtained
from the converged numerical results when the Schrödinger
equation is solved with the Hamiltonian given by Eq. (5).
Here we present results for the same set of parameters and spe-
cific times as those used in Fig. 4. Notice the very close sim-
ilarity between both figures for all times. This is an indication
of the quality of our approximate interaction-picture
Hamiltonian.

4. CONCLUSIONS

In this work we have considered the evolution of coherent states
in a parametric oscillator immersed in a Kerr-like medium.
Transforming the Hamiltonian into the interaction picture
we obtained a time-dependent Hamiltonian that contains
the number operator in an exponential. In order to have a more
manageable Hamiltonian we approximate the exponential by

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Absolute value squared of the auto-correlation function
jF �t�j2 as a function of time for a state jz; ti. Converged numerical
results in black and our approximate results in red. Hamiltonian
parameters κ � 0.25, χ � 0.25. In all cases we have z � 2,
α0 � 2, and Ω0 � 1.

Fig. 4. Husimi Q jz;tihz;tj�α� function with α � x � iy, z � 4,
α0 � 4, and Hamiltonian parameters κ � 0.8, χ � 0.25 at several
times, indicated on top of each figure.

Fig. 5. Husimi Q jz;tihz;tj�α� function with α � x � iy, z � 4,
α0 � 4, and Hamiltonian parameters κ � 0.8, χ � 0.25 at several
times, indicated on top of each figure.
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its average value taken between a time-independent coherent
state. With this simplification we can write the Hamiltonian
in the interaction picture as an element of a finite Lie algebra
whose time-evolution operator can be expressed as a product of
exponentials. To show the quality of our methodology we cal-
culated probability distributions, the auto-correlation function,
and the Husimi distribution function for a case where neither κ
nor χ are negligible, that is, for a nonlinear parametric oscilla-
tor. We found that the approximation made in order to make
the interaction-picture Hamiltonian a member of a finite Lie
algebra is consistent with the converged numerical results.
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