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The overall sound pressure levels of noise radiated by military jet aircraft along certain 
angles are such that nonlinearity is likely to influence the propagation. Bispectral analysis of 
noise data from the F/A-18E Super Hornet has been carried out in order to provide further 
evidence that nonlinear effects are indeed present. The bicoherence, which is a normalized 
form of the bispectral density, has been previously used in a variety of applications to detect 
quadratic phase coupling (QPC) in a signal. In this case, the results of the bicoherence 
calculations indicate that QPC is indeed present at high-thrust conditions along the peak 
radiation angles, which means that nonlinearity does play a role. However, additional 
investigations are still needed to more fully understand the physical interpretation of the 
bispectral results for a random noise signal, which will also help better quantify the role of 
nonlinearity in jet noise propagation. 

Nomenclature 
b = bicoherence 
f = frequency (Hz) 
fs = sampling frequency (Hz) 
M = number of ensembles 
N =  number of samples in time series 
ns = number of samples in each ensemble 
Sxx = power spectral density (Pa2/Hz) 
Sxxx = bispectral density (Pa3/Hz2) 
t = time (s) 
T = total data record length (s) 
w = windowing function 
W = window equivalent noise bandwidth 
x = time series variable (Pa) 
X = Fourier transform of x (Pa/Hz) 
Z = bifrequency spectral density (Pa4/Hz3) 

t∆  = time between samples or 1/fs (s) 

xµ  = mean (Pa) 
2
xσ  =  variance (Pa2) 

xγ  =  skewness 
[ ]E  = expectation operator 

* = complex conjugation operator 
ˆ = estimated quantity 
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I. Introduction 
N a previous work1, evidence was shown that nonlinear effects were present in F/A-18E Super Hornet noise 
propagation at afterburner (AB) and military thrust (Mil) engine conditions. This paper presents results from a 

bispectral analysis of the data that provides additional confirmation that the propagation is nonlinear. As a finite-
amplitude noise waveform propagates, Fourier spectral components interact in a quadratically nonlinear fashion to 
transfer energy to sum and difference frequencies. Although the bispectrum has proved a useful tool in analyzing 
data for quadratic nonlinearity in a variety of fields (e.g., see Refs. 2-5), it has not been previously applied to the 
identification of nonlinear effects in the propagation of high-amplitude jet noise. 
 This paper first introduces fundamental definitions and issues related to bispectral analysis in Sec. II, followed 
by a summary of the F/A-18E ground engine run-up measurements in Sec. III. Section IV contains comparisons of 
the bispectral results as a function of engine condition and measurement location, as well as relevant discussion, 
which is followed by some conclusions in Sec. V.  

II. Overview of Bispectral Analysis 
In the literature dedicated to the bispectrum and bispectral analysis, widely varying notation is used, some of 

which is inconsistent in terms of units and physical meaning. Therefore, one purpose of this section is to provide a 
physically consistent development of the bispectrum, for both continuous and discrete processes. In addition, one 
particular bispectral normalization known as the bicoherence6 is discussed in some detail with regards to physical 
interpretation and digital estimation issues. 

A. The Bispectrum 
For the sake of clarity, it is first helpful to review the definition and physical significance of the power spectral 

density (PSD) before proceeding to a development of the bispectrum. For a zero-mean acoustic pressure signal, ( )tx , 
expressed in pascals (Pa), the PSD is given as 

 ( ) ( ) ( )[ ]fXfXE
T

fS
T

xx
∗

∞→
= 1

lim . (1) 

In Eq. (1), ( )fX  is the Fourier transform of ( )tx , which may be expressed as 

 ( ) ( ) dtetxfX tfj π2−
∞

∞−
�= , (2) 

 
[ ]E  is the expectation operator, and T  is record length. Because ( )fX  has units of Pa/Hz, the units of ( )fS xx  in 

Eq. (1) are Pa2/Hz. The PSD decomposes the power contained in ( )tx  as a function of frequency, where the signal 

power is equal to the mean-square value or variance, 2
xσ , of the signal. Therefore, ( )fS xx may be integrated as 

 ( )[ ] ( )dffStxE xxx �
∞

∞−

== 22σ  (3)  

to yield 2
xσ , which is both the second-order moment and cumulant7 of ( )tx . In general, the mth-order cumulant and 

moment of a signal are not equal (e.g., see the discussion in Ref. 8). However, the distinction is unimportant in this 
case because they are equal up to and including 3=m , the highest order considered in this paper. Because of its 
relationship to 2

xσ , ( )fS xx  is also known as the second-order cumulant spectrum7,8. Note that in much of the 
literature dedicated to polyspectra, ( )fS xx is simply identified as the power spectrum, rather than the power spectral 
density. However, because of the units associated with ( )fS xx , it is more appropriately labeled as a spectral density. 

The bispectral density (BSD) is the third-order cumulant spectrum, which is defined as 
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 ( ) ( ) ( ) ( )[ ]212121
1

lim, ffXfXfXE
T

ffS
T

xxx += ∗

∞→
, (4) 

and has units of Pa3/Hz2. Just as ( )fS xx  decomposes the variance of the signal, ( )21, ffS xxx  decomposes the third-

order cumulant of the signal, ( )[ ]txE 3 , at a given ( )21, ff  or bifrequency. This relationship is expressed 
mathematically as 

 ( )[ ] ( ) 2121
3 , dffdffStxE xxx� �

∞

∞−

∞

∞−

= . (5) 

Because the skewness, or normalized third-order moment of the signal, is defined as 

 ( )[ ]
( ) 232

3

x

x
txE

σ
γ =

, (6)  

the BSD provides a measure of xγ as a function of frequency. Additionally, due to regions of bispectral symmetry8 

in the bifrequency plane, only the real part of the BSD contributes to ( )[ ]txE 3 .  Finally, note that the term “bispectral 
density” is somewhat uncommon—instead, Eq. (4) is usually referred to simply as the “bispectrum.” However, 
similar to the preceding discussion regarding the PSD, the so-called bispectrum is more appropriately identified as a 
spectral density; therefore, ( )21, ffS xxx  in Eq. (4) is referred to as the BSD in this paper. 
 For a statistically Gaussian signal, the BSD and all higher-order spectra are zero; therefore a non-zero BSD 
calculation is an indicator that a signal is non-Gaussian and possibly nonlinear. Bispectral analysis can be further 
used to detect the presence of quadratic phase coupling (QPC) in a signal. QPC indicates that second-order 
nonlinearity is present in the system, resulting in an interaction of power spectral components at f1 and f2 to transfer 
energy to f1 + f2 and f1 - f2, which are respectively known as the sum and difference frequencies. However, the 
difficulty of using the BSD directly to detect QPC is that, in practice, the variance of the ( )21, ffS xxx  estimate is 
dependent on the PSD shape and amplitude, as well as the strength of QPC6 in the signal. To address this problem, 
normalizations5,7 of the BSD have been proposed. 

B. The Bicoherence 
One normalization for the BSD, developed by Kim and Powers8, is known as the bicoherence. The bicoherence, 

( )21, ffb , has been frequently used to identify QPC between power spectral components in a variety of applications. 
The bicoherence may be defined as  

 ( ) ( )
( ) ( )2121

21
21

,

,
,

ffSffZ

ffS
ffb

xx

xxx

+
= , (7) 

where the bifrequency spectral density, ( )21 , ffZ , is defined as 

 ( ) ( ) ( ) ��

�
��

�= ∗

∞→

2

2121
1

lim, fXfXE
T

ffZ
T

. (8) 

The bicoherence is bounded between 0 and 1, which may be understood by first expressing ( )21, ffb  in a simplified 
form as 
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( ) ( ) ( )[ ]

( ) ( )[ ] ( )[ ]2
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2
21

2121
21,

ffXEfXfXE

ffXfXfXE
ffb

+

+
=

∗

 (9) 

and then applying the Cauchy-Schwarz inequality  

 [ ] [ ] [ ]222 βααβ EEE ≤  (10) 

to ( )21, ffb , where ( ) ( )21 fXfX=α  and ( )21 ffX +=β . The bounds of ( )21, ffb  can be useful in providing an 
interpretation to a given calculation. Discussion of the bicoherence interpretation, however, is delayed until after the 
next subsection, which treats the estimation of the BSD and bicoherence for a discrete process. 

C. Digital Bispectrum Estimation 
The discussion up to this point has been in terms of the continuous representations of ( )tx  and other variables, 

primarily to establish the correct physical units associated with the various quantities. Estimation of the BSD and 
bicoherence for a digitally-sampled signal involves other considerations that are now discussed. First of all, due to 
the regions of symmetry for the continuous bispectrum and the periodic nature of discrete Fourier transforms (DFT), 
the principal domain of the BSD estimate is the triangular region defined by 120 ff ≤≤  and 212 sfff =+ , 
where fs is the sampling frequency of the data 8. There are various means of carrying out the calculation of the BSD 

and bicoherence estimates, which will be denoted as ( )21,ˆ ffS xxx  and ( )21,ˆ ffb , respectively. From several 
bispectral processing techniques reviewed by Nikias and Petropulu8, the method used to calculated the results 
presented subsequently is a simple ensemble-averaging method. First, a time series that is N samples in length, 
where N  is a power of two, is divided into M ensembles each consisting of ns samples.  The length of each ensemble 
is chosen to be 

 ( )� �N
sn 2log2= , (11) 

where � �  is the ceiling operator, which essentially combines the recommendation by Dalle Molle and Hinich9 that 

the ensemble length be N  and the desire that ns be a power of two for efficient processing. For N = 219, 
application of Eq. (11) results in ns = 210; however, note that using ns = 29 and ns = 211 did not change calculated 
results appreciably. 

  Based on the recommendation of Nikias and Petropulu8, a Hamming window is applied to the data, with an 
overlap of 50% between individual ensembles, to reduce spectral leakage. Although a Hanning window is more 
commonly used in the spectral analysis of noise signals, this window is not an appropriate choice for bispectral 
analysis because it has negative side lobes in the frequency domain8.  

After each ensemble has been windowed, ( )fS xx
ˆ  and ( )21,ˆ ffS xxx  may be calculated via an extension of the 

Welch periodogram method (e.g., see Refs. 8 and 10). If the discrete-time Fourier transform (DTFT)10 of the mth 
ensemble is defined as 

 ( )( ) ( )[ ]�
−

=

∆−∆=
1

0

2ˆ
sn

n

tfnjmm enxtfX π , (12) 

where n is the sample index, then ( )fS xx
ˆ  may be calculated on a windowed ensemble, ( )m

wx  , as 

 ( ) ( )( )�
= ∆

=
M

m

m
w

s
xx fX

tWnM
fS

1

2
,ˆ11ˆ  (13) 
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where W is the equivalent noise bandwidth of the windowing function, w, calculated as 

 [ ]�
−

=

=
1

0

21 sn

ns
nw

n
W . (14) 

Likewise, ( )21,ˆ ffS xxx  is calculated as 

 ( ) ( )( )�
=

=
M

m

m
xxxxxx ffS

M
ffS

1
2121 ,ˆ1

,ˆ , (15) 

where 

 ( )( ) ( )( ) ( )( ) ( )( )[ ]21212321
ˆˆˆ1

,ˆ ffXfXfX
tWn

ffS mmm

s

m
xxx +

∆
= . (16) 

 

Once ( )21,ˆ ffZ  has been calculated in similar fashion as the PSD estimate in Eq. (13), ( )21,ˆ ffb  may be computed 
as 

 ( )
( )( )

( ) ( )�
= +

=
M

m xx

m
xxx

ffSffZ

ffS

M
ffb

1 2121

21
21

ˆ,ˆ

,ˆ
1

,ˆ . (17) 

Alternatively, the bicoherence estimate may be calculated directly from Eq. (9) using the DTFT in Eq. (12) or the 
discrete Fourier transform.   

Because ( )21,ˆ ffS xxx  and ( )21,ˆ ffb  will generally be slightly non-zero for even Gaussian series of finite length, 
it is worthwhile to consider threshold levels of statistical significance. Elgar and Guza11 numerically investigated the 

statistical properties of ( )21,ˆ ffb  as a function of number of ensembles, M, for non-overlapping (non-windowed) 
Gaussian time series. They found good agreement between numerical calculations of significance levels and 

theoretical predictions based on an assumed chi-square distribution for ( )21
2 ,ˆ ffb . For the 99% confidence level and 

large M, the threshold of significant bicoherence was found to follow M6.4 , meaning that any ( )21,ˆ ffb value 
below that threshold is not statistically significant. There is some uncertainty as to how to apply their result to the 
present research because Elgar and Guza11 did not window and overlap their data segments, as has been done in this 
analysis.  However, use of the non-overlapped number of ensembles, snNM = , in the Elgar and Guza result 
yields a conservative estimate for the 99% level threshold of significant bicoherence of approximately 0.095 for 

512=snN .   
 

D. Physical Interpretation of the Bicoherence 
As previously discussed, the BSD can be used to identify quadratic nonlinearity in a system. The bicoherence 

provides a measure of the degree to which QPC exists among spectral components in a signal, but currently has a 
strict quantitative interpretation only if that signal is periodic. For a periodic signal with spectral components at f1, f2, 

and f1 + f2, calculation of ( )21,ˆ ffb  yields the fraction of power at f1 + f2 that is present due to QPC6. If the 

component at f1 + f2 exists only because of a nonlinear interaction between f1 and f2, then ( ) 1,ˆ
21 →ffb . 

Unfortunately, for a nonlinear random noise signal, multiple bifrequencies may interact nonlinearly to yield a single 

component of ( )fS xx
ˆ . There is a cascading of sum and difference frequency generation that makes quantitative 
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analysis of a bicoherence spectrum difficult. Greb and Rusbridge12 have investigated broadband spectral interactions 

in the context of nonlinear plasma physics and have found that the maximum value of ( )21,ˆ ffb  may be reduced in 
an ill-defined manner which depends on both spectral shape and resolution. They suggest that although the 
bicoherence is only useful for rather coarse spectral resolution, it is nevertheless helpful because its normalization 
allows the identification of nonlinear coupling that is undetectable with ( )21, ffS xxx . Recently, Hinich and 
Wolinsky13 have criticized the Kim and Powers6 normalization by demonstrating that ( )21 , ffZ  can be shown to 
depend upon both the spectral resolution and upon the next higher-order spectrum, the trispectral density. They 
instead promote the use of a different normalization, originally formulated by Haubrich5 and later termed the 
skewness function14, which is defined as  

 ( )
( ) ( ) ( )[ ]

( )[ ] ( )[ ] ( )[ ]2
21

2
2

2
1

2121
21,ˆ

ffXEfXEfXE

ffXfXfXE
ffs

+

+
=

∗

. (19) 

 Unlike the bicoherence, there is no upper bound on ( )21 ,ˆ ffs ; however, its variance is flat as a function of 
bifrequency, which allows signal linearity to be readily determined via a statistical test based on a chi-square 

distribution assumption. Although only ( )21,ˆ ffb  results are presented in this paper, ( )21 ,ˆ ffs was also calculated 
using Eq. (19), yielding very similar results. Therefore, in this application of bispectral analysis to identify 
nonlinearity in high-amplitude jet noise, the bicoherence normalization is likely sufficient, because conclusions are 
currently based on relative comparisons between measurement locations and engine conditions. 

III. F/A-18E Measurement Summary 
Static engine run-up tests were conducted on the F/A-18E Super Hornet at NAVAIR Lakehurst, NJ during the 

evening of 15 April 2003. Recordings of the noise radiated with both engines at idle, military thrust (Mil) and with 
afterburners (AB) engaged were made with Sony TCD-D8 digital audio tape recorders sampling at 44.1 kHz. From 
each recording, 524,288 (219) samples or approximately 11 s of data were used for these analyses. Data were 
collected at 18, 74, and 150 m from the engine nozzles and at various angles, as shown in Figure 1. The 18 m data 
were acquired with a Bruel & Kjaer 4938 6.35-mm (¼-in) condenser microphone flush-mounted in an aluminum 
plate baffle located horizontally on pavement. The 74 and 150 m data were acquired with handheld Endevco 8510C-
15 piezoresistive pressure transducers located about 1.2 m above grassy ground. Significant multipath effects are 
present in the PSD measurements at 74 m and 150 m, which are likely due, at least partially, to terrain 
inhomogeneity over the measurement range. The power spectral measurements along 135°, which is approximately 
the peak directivity angle at high-thrust conditions and where nonlinearity is most likely to occur, have been 
analyzed and discussed previously1. Although the PSD measurements at the remaining data collection locations are 
not shown in this paper due to its focus on bispectral analysis, the measured overall sound pressure level (OASPL) 
at each of the locations and engine conditions is shown in Table 1. It is perhaps noteworthy that while the OASPL at 
74 m monotonically increases as a function of angle, the same is not true for 150 m, where the overall levels at 120-
135° are approximately equal for both AB and Mil. 

Table 1. Overall sound pressure level (OASPL, dB re 20 µPa) as a function of distance, angle 
and engine condition, shown as AB / Mil / idle. At idle, only the 18 m measurement is shown; all 
other idle measurements are largely or completely below the system noise floor. An asterisk (*) 
is used to indicate cases for which the measured power spectral density reaches the noise floor 
below 10 kHz, but at a frequency (e.g., 5-6 kHz) such that the OASPL is unlikely to be affected 
significantly. 

 
 135° 130° 120° 105° 90° 
18 m 151 / 147 / 99* -- -- -- -- 
74 m 135 / 132 134 / 128 128 / 124 123 / 120 -- 
150 m 127 / 123 128 / 124 127 / 123 116* / 110* 114* / 108* 
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IV. Results and Discussion 
 In this section, a variety of bicoherence results are presented and discussed. First, however, some comments 

regarding the maximum calculated bifrequency are worthwhile. Because the DAT recorders used in the 
measurements sample the radiated pressure waveform at fs = 44.1 kHz, the theoretical principal domain is 
substantially larger than what will be shown. There are two reasons for truncating the domain; first of all, only 

bifrequencies ( )21, ff  for which ( )21
ˆ ffS xx +  is above the system noise floor are shown. This condition affects 

those measurements for which the OASPL in Table 1 is marked with an asterisk. Second, an experimentally-
measured amplitude diffraction correction was applied to the piezoresistive sensor measurements because of the 
sensor housing design. Uncertainty in this diffraction correction above 10 kHz resulted in questionable PSD levels 

above that frequency, even if above the noise floor. In principle, calculation of ( )21,ˆ ffb  results in a cancellation of 
the pressure amplitude diffraction correction, which would allow the range of the bispectral analysis to be extended 
beyond f1 + f2 = 10 kHz.  However, in practice, the diffraction around the housing for the Endevco sensor would 
affect not only the measured amplitude but the phase of the Fourier pressure spectrum components, which would, in 
turn, influence the observed degree of QPC.  Because the sensor diffraction correction for phase is currently 
unknown, f1 + f2 has been limited to below 10 kHz for this analysis. 

A. Engine Condition Comparison at 18 m 
The calculated ( )21,ˆ ffb  at 18 m is shown in Figs. 2-4 for AB, Mil, and idle, respectively. The levels of 

bicoherence in Fig. 2 for AB are well above the threshold of significance of 0.095 above approximately 200 Hz on 
the ordinate, indicating that nonlinear interactions between frequencies are occurring. In other words, waveform 
steepening is resulting in energy transfer from the peak frequency region of the spectrum, which is around 200-300 

Hz, to higher frequencies. Note that because ( )21,ˆ ffb  is essentially zero (i.e., below the threshold) for ordinate 
frequencies below 200 Hz, nonlinear energy transfer to lower frequencies via difference frequency generation is not 
significant at this distance. 

Figure 3 for Mil power at 18 m is qualitatively similar to Fig. 2 for AB; however, the bicoherence levels in Fig. 3 
are generally lower, suggesting that while nonlinear effects are also present at Mil power, they are relatively less 

significant. On the other hand, in Fig. 4 for idle, there is no evidence of QPC; in fact, ( )21,ˆ ffb  is statistically 
insignificant for virtually all bifrequencies. In effect, the idle results in Fig. 4 yield a baseline case for linearity in 
this paper, to which all other results may be compared. 

B. Angular Variation Comparison at 74 m 
Given the results in the previous subsection, it is expected that nonlinearity should be the greatest at AB. The 

bicoherence was calculated for this engine condition for the all the angles at 74 m. As might be expected, the 

( )21,ˆ ffb  levels follow the same trend as the OASPL, which increases as a function of angle. The bicoherence 
results for 135°, 120°, and 105° are shown in Figs. 5-7, respectively. The amount of QPC is minimal at 120° and 
nonexistent at 105°. Before moving on to the results at 150 m, some discussion of the deep nulls that occur in the 

( )21,ˆ ffb in Fig. 5 is needed. These nulls occur because of the multipath interference phenomena that are especially 
present in the 74 m PSD measurements1. Fackrell et al.15 have discussed the behavior of bicoherence for frequency 

regions in which there is very little signal power. Theoretically, in these regions ( )21,ˆ ffb  would equal 0/0; 
however, in practice, the ensemble-averaged bispectral estimate, which is in the numerator, will approach zero, 
while the quantities in the denominator will not, since they are limited by the magnitude of the measurement system 

noise floor. The result is that ( )21,ˆ ffb also approaches zero in these regions. For example, if there is a sharp null in 

a PSD measurement at fnull, then nulls will exist in ( )21,ˆ ffb  along ( )nullff ,1 , ( )2, ffnull , and ( )11, fff null − , which 
comprise lines parallel, perpendicular, and 45º to the abscissa. In the measured PSD at 74 m, there is a broad null 
between 400-800 Hz, and then subsequent nulls appear approximately every 600-700 Hz1. The effects of these nulls 
can be seen in Fig. 5, severely contaminating the bicoherence measurements. 

Despite the issues created by the interference effects, at those frequencies not influenced by the nulls, the 
bicoherence levels in Fig. 5 are still substantially above the significance threshold, indicating that nonlinear coupling 

is still present. In addition, one significant feature of Fig. 5 that differs from ( )21,ˆ ffb  for AB at 18 m is that there 
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appears to be energy transfer downward in the spectrum because there is an indication of QPC at low ordinate 
frequencies. This would indicate that difference frequency generation influences the propagation at 74 m. 

C. Angular Variation Comparison at 150 m 
Although a comparison of the AB bicoherence at 74 m as a function of angle has already been carried out, it 

is worthwhile to do the same at 150 m because of the different trends in OASPL noted previously. In Figs. 8-10, 

( )21,ˆ ffb  for AB at 150 m and 135°, 120°, and 105° are displayed. The multipath interference effects are not as 
substantial at 150 m (i.e., the PSD nulls are not as deep); consequently, there are fewer nulls in the bicoherence. 
Comparison of the Figs. 8 and 9 at 150 m with Figs. 5 and 6 at 74 m show distinctly the presence of QPC at 150 
m and 120° that was not apparent at 74 m. In light of the OASPL results in Table 1, the presence of QPC at 120° 
and 150 m but not at 74 m is perhaps not unexpected; however, the reason for it remains unknown at this point. 
One possible cause (though this is unlikely to be the only contributor) is the finite extent of the jet noise source. 
Because the effective aeroacoustic source is not located at the nozzle, but instead several meters downstream, if 
the Mach wave angle is somewhat less than 120°, the propagation could cross the radials depicted in Fig. 1 and 
result in high levels at 150 m and 120° but not at 74 m. This comment is speculative and other factors such as 
ground and meteorological effects very likely play a role in this case. However, despite this apparent anomaly, a 
comparison of Figs. 8 and 9 with Fig. 2 at 18 m suggests that QPC is diminishing at 150 m, which may indicate 
that the net effect of propagation through turbulence, wind, and over finite-impedance terrain is a reduction of 
the phase-coupled relationship between spectral components. 

V. Conclusion 
This initial investigation of bispectral analysis of jet noise propagation has yielded evidence of quadratic phase 

coupling (QPC) at high-thrust conditions along peak radiation angles where nonlinear effects would be most likely. 
The presence of QPC demonstrates that the propagation is, in fact, inherently nonlinear. However, additional work is 
needed to better understand, from a quantitative standpoint, the physical significance of the bicoherence for a 
propagating finite-amplitude random noise waveform. For that reason, controlled propagation experiments in a one-
dimensional duct are planned that will investigate the effects of waveform amplitude, frequency content, and 
statistics on the evolution of the bispectral density and its normalizations. These experiments will help quantify the 
degree to which nonlinearity influences the propagation of high-amplitude jet noise.  
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Figure 1. Engine run-up measurement layout.  The angles are measured relative 
to the jet axis from the forward direction. 

 

 
Figure 2. Bicoherence at 18 m for AB. 
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Figure 3. Bicoherence at 18 m for Mil. 

 

 
Figure 4. Bicoherence at 18 m for idle. 
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Figure 6. Bicoherence at 74 m, 120° for AB. 
 

 

 
Figure 5. Bicoherence at 74 m, 135° for AB. 
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Figure 8. Bicoherence at 150 m, 135° for AB. 

 

 
Figure 7. Bicoherence at 74 m, 105° for AB. 
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Figure 10. Bicoherence at 150 m, 105° for AB. 

 

 
Figure 9. Bicoherence at 150 m, 120° for AB. 


