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The physics of musical scales: Theory and experiment
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The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human

perception and provides an interesting application of the physics of waves and sound. We first

review the history and physics of musical scales, with an emphasis on four historically important

scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just

intonation. We then present an easy way for students and teachers to directly experience the

qualities of different scales using MIDI synthesis. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4926956]

I. INTRODUCTION

As a young musician my (DD) guitars never seemed to be
completely in tune. Making one chord sound better made
others sound worse. No amount of tuning, bridge and neck
adjustments,1 or the purchasing of more expensive guitars
solved the problem. I later learned that what I was looking
for is impossible.2,3 This longstanding issue has been studied
by famous physicists, mathematicians, astronomers, and
musicians, including Pythagoras of Samos (570–495 BC),
Ching Fang (78–37 BC), Claudius Ptolemy (90–168),
Christiaan Huygens (1629–1695), Isaac Newton
(1643–1727), Johann Sebastian Bach (1685–1750), Leonhard
Euler (1707–1783), Jean le Rond d’Alembert (1717–1783),
and Hermann von Helmholtz (1821–1894).1,4–8 Much has
been written on this topic.2–7,9–17

The history and development of musical scales are inti-
mately connected with physics, and the physics of intonation
has affected how music has been written throughout
history.6,9 Musical scales provide a fun and interesting appli-
cation of wave physics, and this led the current authors to
independently develop lectures on musical scales for their in-
troductory physics classes. In addition, specialized courses
in the physics of music are available at many institutions.
Tools such as Temperament Studio,18 the Java MIDI synthe-
sizer we have developed (described below), can make com-
plicated examples accessible to students.

The production of sound from musical instruments relates
to the physics of standing waves and resonators. Introductory
physics students are routinely taught that modes of an ideal
vibrating string and a one-dimensional oscillating air column
occur at integer multiples of a fundamental frequency. When
a musical instrument is played, it oscillates in a superposition
of many modes, with multiple frequency components. The
note or “pitch” we hear is typically based on the lowest, or
fundamental, frequency.19 The higher harmonics affect the
tone, giving instruments their distinctive sounds (their
timbres).

Introductory physics students also learn about beating, a
periodic change in amplitude that occurs when sinusoidal
waves having similar frequencies, f1 and f2, are superim-
posed. The beat frequency fbeat, occurs at

fbeat ¼ jf1 � f2j: (1)

As different notes are played together, their harmonics can
beat against each other. This typically sounds unpleasant in
music and the desire to avoid beating is one of the main

factors that led to the various musical scales discussed in this
article.

II. SCALES AND INTERVALS

A musical scale is a set of pitches (notes) used to make
music. The notes are often labeled using the letters A
through G and the symbols ] (pronounced “sharp”) and [
(pronounced “flat”). We hear pitch logarithmically, meaning
that relationships between notes are defined by frequency
ratios rather than frequency differences. For example, in
most scales doubling the frequency increases the pitch by an
octave, be it from C to a higher C or from D to a higher D.
Musical scales can be defined in terms of the frequency ratio
of each note to a reference pitch, called the root of the scale.
The ratios used in several important tuning schemes are
shown in Table I.

The scale used as an almost universal standard today is
known as twelve-tone equal temperament (also called
“12-TET” or simply “equal temperament”). This scale
divides octaves into twelve equal half steps or semitones,
each changing the frequency by a factor of 21=12. A 12-note
(chromatic) scale is reminiscent of modular arithmetic with
modulus 12; its 12 notes can be represented on a circle, simi-
lar to a clock face, as illustrated in Fig. 1. The pitch increases
as one moves around the circle in a clockwise manner; when
the next higher octave is reached, the labeling restarts.20

Finer changes in pitch are often described in hundredths
of a 12-TET half step, called cents. Because there are 1200
cents in an octave, a frequency change from f1 to f2 changes
the pitch by

dcents ¼ 1200 log2ðf2=f1Þ cents: (2)

An interval is the tonal distance spanned by two notes,
while a chord is a group of notes played together. It is gener-
ally accepted that chords tend to sound more pleasant or con-
sonant if the intervals in the chord have frequency
relationships that can be written as ratios of small inte-
gers.15,21 Such ratios are known as “just.” Four particularly
important intervals are the octave (2/1), a just fifth (3/2), a
just fourth (4/3), and a just major third (5/4). To the extent
that the harmonics are exact integer multiples of the funda-
mental, playing chords containing just intervals results in
many of the higher harmonics of the different notes being at
precisely the same frequencies. For example, in Fig. 2, which
displays the harmonic series of a 100-Hz root note along
with series for three other notes played at just intervals above
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the root, many of the harmonics in the different notes overlap
exactly. But if the frequency ratios of the intervals are
slightly detuned from just intervals, the harmonics will then
be at slightly different frequencies, resulting in beating.

One of the most important intervals is the fifth. It is the
interval between the first and second “Twinkles” in the song
“Twinkle, Twinkle, Little Star.” As mentioned, a just fifth
involves a frequency ratio of 3/2 (�701:955 cents), causing
the second harmonic of the upper note to have the same fre-
quency as the third harmonic of the lower note. However,
there are alternate, and conflicting, definitions of the fifth.
For example, in the 12-TET scale, a fifth is the interval
between two notes that are seven half steps apart (e.g., C and
G), and therefore involves a frequency factor of 27=12 ¼ 700
cents �1:4983. So, while the two notes in a just fifth will not
produce noticeable beating, the notes in an equal tempera-
ment fifth will contain harmonics that beat.

As is discussed below, it is impossible to define a 12-note
scale in which all intervals are just in all keys. Often musi-
cians can adjust pitch dynamically to eliminate beating,22

and some historic instruments were built with extra keys for

some notes, giving different options to optimize conso-
nance.4,5,7,23–25 But instruments with fixed pitches, such as
pianos and organs, are generally afflicted with dissonance
due to the beating of overtones.

III. THE PYTHAGOREAN SCALE

One of the oldest known methods to generate a scale is
Pythagorean tuning,4 invented by the famous geometrist.
The Pythagorean scale is built using only the ratios of the
just fifth (3/2) and the octave (2/1). To see how this can be
done consider Fig. 1 again. Starting at C and going up a fifth
takes us to G on the chromatic circle. Going up another fifth
from G takes us past a full circle to D. Going up additional
fifths, we arrive at the notes A, E, B, and F]. Similarly, start-
ing with C and going down in fifths, one ends up at the notes
F, B[, E[, A[, D[, and G[. By going up and down in fifths in
such a manner—each fifth representing a multiplication or
division by 3/2—and multiplying or dividing by powers of 2
as needed to bring the note frequencies back into the original

Table I. Frequency ratios used to create the notes of the scales used in various tuning schemes. This table lists the factor by which one must multiply the

frequency of the root note to obtain each note in the scale. In the general meantone scheme, x represents the value chosen for the 5th ratio. The values in bold

in the Ptolemaic column represent the Ptolemaic (just) values; the plain text values in that column have been filled in using the five-limit scale discussed in

the text.

Note Interval from Root Equal Temperament Pythagorean General meantone QC meantone Ptolemaic

0 Unison 1 1 1 1 1

1 Minor second 21=12 256/243 23=x5 8=55=4 16/15

2 Major second 22=12 9/8 x2=2 51=2=2 9/8

3 Minor third 23=12 32/27 22=x3 4=53=4 6/5

4 Major third 24=12 81/64 x4=22 5/4 5/4

5 Perfect fourth 25=12 4/3 2=x 2=51=4 4/3

6 Augmented fourth 26=12 729/512 x6=23 53=2=8 45/32

… Diminished fifth … 1024/729 24=x6 16=53=2 …

7 Perfect fifth 27=12 3/2 x 51=4 3/2

8 Minor sixth 28=12 128/81 23=x4 8/5 8/5

9 Major sixth 29=12 27/16 x3=2 53=4=2 5/3

10 Minor seventh 210=12 16/9 22=x2 4=51=2 9/5

11 Major seventh 211=12 243/128 x5=22 55=4=4 15/8

12 Octave 212=12 2 2 2 2

Fig. 1. The chromatic circle, showing the notes of the 12-tone scale.
Fig. 2. Harmonic series (such as in an ideal string or one-dimensional organ

pipe) of various notes, based on a 100-Hz root.
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octave, we generate all of the ratios given in the Pythagorean
column of Table I.

Going up an equal temperament fifth corresponds to a
rotation of exactly 210� around the chromatic circle, whereas
a just fifth corresponds to a rotation of 210.237�. One can
say that the just fifth doesn’t “close” the octave—powers of
3/2 will never exactly equal powers of 2. As a result, as one
goes up by (just) fifths, the pitches start to deviate from the
precise positions of the notes indicated in Fig. 1. And going
up six just fifths (and then down three octaves) from C gives
a different frequency for F] than for the G[ obtained by
going down six just fifths (then up four octaves). These two
notes in the Pythagorean scale—which are the same note in
an equal temperament scale—differ by 23.46 cents, or nearly
a quarter of a half step [calculated via Eq. (2) with
f1 ¼ f0ð3=2Þ6 � 2�3 and f2 ¼ f0ð3=2Þ�6 � 24, f0 being the
frequency of the root of the scale]. This difference is called
the “Pythagorean comma.”4 (A comma is a small interval
resulting from a note tuned two different ways.) The differ-
ence between these two notes necessitates an extra row for
note 6 in Table I: the C–F] interval is called an augmented
fourth, C–G[ is a diminished fifth. (To simplify matters, all
subsequent plots and calculations in this paper exclusively
use the augmented fourth ratio.)

Another consequence of the Pythagorean comma is that
one of the fifths in the Pythagorean scale is very different
from the others, namely, the one whose lower note is F].
This fifth involves a ratio of 262144/177147 instead of 3/2.
If the lower note of this fifth has a fundamental frequency of
370 Hz, the third harmonic of the lower note and the second
harmonic of the upper note will beat at 14.9 Hz. This is
called a wolf interval or wolf fifth, because the horrible
sounding beats are reminiscent of a howling wolf. The �’s
in Fig. 3 depict the differences from a 3/2 ratio for the twelve
types of fifths in four scales; the Pythagorean wolf fifth is
clearly visible as the lone nonzero fifth in Fig. 3(b).

A final problem with Pythagorean tuning is that, although
most fifths involve just ratios, other intervals do not. One of
the most used musical intervals is the major third,13 the inter-
val between two notes which in 12-TET are four half steps
apart (e.g., between C and E). This is the interval between
“Oh” and “when” at the start of the song “When The Saints
Go Marching In.” A just major third has a frequency ratio of

5/4. As shown by the circles in Fig. 3(b), most major thirds
in a Pythagorean scale differ from that by over 20 cents
(more than one fifth of a half step). As with the wolf fifth,
this causes substantial beating. The Pythagorean scale is
therefore one in which some intervals are consonant, but
others are very dissonant.

IV. MEANTONE SCALES

Major thirds became more important during the
Renaissance when the use of chords rather than single-note
melodies became more prominent.4,13 “Meantone” tempera-
ments were developed to address this issue. Meantone scales
can be derived in the same manner as the Pythagorean
scale—by going up and down in fifths to generate the notes
of the scale—but using a fifth that is adjusted, or tempered,
away from the just value of 3/2,26 typically by reducing the
fifth slightly.27 In the “general meantone” column of Table I,
the symbol x represents the specific frequency ratio of the
tempered fifth used in tuning.28

The most common temperament used in organs built in
the early Baroque era was quarter-comma (QC) meantone.15

The comma referred to in this case is the difference between
four just fifths and a just major third—the difference between
going up in ratios of 3/2 from C-G-D-A-E (then dividing by
4 to return to the original octave), and going from C to E
directly in a ratio of 5/4. This is called the “syntonic comma”
and has a value of 21.506 cents. In QC meantone, each fifth
is reduced from a just fifth by one quarter of that comma
(i.e., tempered by 5.377 cents); this results in many of the
thirds in the scale being perfectly just [as seen in Fig. 3(c)].
The tempered fifth ratio defined that way is equal to 51=4

� 1:4953 ¼ 696:578 cents.
To tune a QC meantone instrument, one typically starts

with a C and an E tuned justly in a 5/4 ratio. The pitches for
G, D, and A are obtained by going up in tempered fifths
from C or (equivalently) down in tempered fifths from E.29

The pitches for B, F], C], and G] can be obtained by going
up in successive tempered fifths from the E, or by going up a
just major third from G, D, A, and E. Similarly, the notes F,
B[, E[, and A[ can be obtained by going down in tempered
fifths from the C or by going down a just major third from A,
D, G, and C.30 The notes of a QC meantone scale tuned this
way are exactly the same as starting with a D and using the
Pythagorean tuning method (going up and down by fifths,
six times each) but with the tempered fifth instead of a just
fifth. The ratios obtained this way are given in Table I.

As happens in the Pythagorean scale, the QC meantone
scale ends up with a disagreement between two notes that
are the same in equal temperament—in this case between G]
and A[. The QC meantone scale also results in a wolf fifth,
in fact one that is even more egregious than the Pythagorean
wolf fifth; this can be seen in Fig. 3(c).31 Also, while eight of
the twelve possible major thirds have been made just, the
other four have become very bad wolf thirds.

As with the Pythagorean scale, music played in this tem-
perament sounds different in different keys. This imposed
limitations on Baroque composers,32 but it also gave each
key a unique “color,” allowing them to use the dissonance in
different chords to convey tension.33 So, to hear a Baroque
piece composed in QC meantone the way the composer
intended it to sound, one should listen to it on an instrument
that is tuned to QC meantone.

Fig. 3. Deviation of the twelve possible major thirds (�) and fifths (�) from

just ratios of 5/4 and 3/2 for (a) equal temperament, (b) Pythagorean, (c)

quarter-comma meantone, and (d) five-limit just intonation, all based on C

as the root note for the tuning. The x-axis indicates the lower note of each

interval. Wolf intervals are apparent as large deviations from 0.
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V. JUST INTONATION

Instead of using a fixed fifth for tuning, some scales
explicitly define each note in terms of small integer ratios
from the root. These scales, known as “just intonation”
scales, minimize beats for intervals in which the lower note
is the root of the scale. But intervals based on other notes
can be very dissonant, as illustrated in Fig. 3(d).

The most well-known just intonation scale is “Ptolemy’s
intense diatonic scale,”5 invented by and named for the
famous astronomer. Because this scale only defines seven
notes, the Ptolemaic column of Table I and Figs. 3(d) and
4(d) also include notes from a five-limit scale generated
from intervals present in the Ptolemaic scale.34

VI. CIRCULATING SCALES

“Circulating” scales seek a compromise by giving up just
ratios in certain intervals to reduce dissonance in others13,15

so that the composer and performer may circulate freely
from key to key without wolf intervals cropping up and
without needing to retune the instrument. One such scale is
12-TET in which all keys are equivalent; it has no just
intervals other than the octave—but neither are there any
intervals that are as dissonant as the most dissonant intervals
in other temperaments. Other circulating scales can still
allow different colors for different keys; an example is the
“well tempering” of Bach’s famous composition “The Well-
Tempered Clavier,” that was likely built on a mixture of
pure and tempered fifths.35

From Fig. 3(a), one can see that equal temperament has
the advantage that all fifths are very close to just. The major
thirds, however, are not particularly close to the just ratio of
5/4, differing by 13.7 cents. As the major third is considered
by many to be the most important musical interval,
this, among other things, has caused some to lament the
widespread adoption of equal temperament.36

Figure 4 displays detunings of all intervals for the same
four scales from the nearest “ideal” interval, which we have
somewhat arbitrarily defined to be one involving a ratio of
integers � 16. Each vertical segment represents a musical
interval (major thirds, fifths, etc.), and the points on each
segment represent all 12 possible types of that interval. In
other words, the “5th” column represents all fifths such as
C-G, D[–A[, and D-A. There are fewer than 12 points on
each segment because for a given scale and interval, inter-
vals with different roots can have the same detuning from
the nearest “ideal” ratio. By way of example, consider the
QC meantone fifths plotted in Fig. 3(c). There are two type
of fifths in that figure, one which differs from a just fifth by
�5.377 cents (the tempered fifth, multiplicity eleven), and
the other which differs from a just fifth by þ35.682 cents
(the wolf fifth, multiplicity one). Those two intervals are rep-
resented by the two dots in the “5th” column of Fig. 4(c), but
are at different values than in Fig. 3(c) because the error is
now calculated versus all possible “ideal” ratios as opposed
to versus the specific just ratio of 3/2.

The horizontal lines in Fig. 4 are at detunings of 613
cents, below which most people would not notice detuning,
and 626 cents, above which detuning is obvious to most
people when the two notes in an interval are played succes-
sively.6 (When the notes are played together, however,
beating makes detunings much more apparent.) Equal tem-
perament has become dominant because none of the intervals
sound too horrible—they all come close to falling inside the
“imperceptible” region—whereas in other temperaments
there are at least some intervals that are quite far from ideal.

VII. TUNING MIDI SYNTHESIZERS WITH PITCH

BENDS

Knowing the physical basis and the mathematics behind
different scales is not sufficient for one to internalize how
physics affects the way music is written, performed, and
enjoyed. Only by listening to the musical intervals produced
by different tuning schemes and by (for example) hearing
how baroque and modern compositions sound on organs from
different eras can one really understand tuning and tempera-
ment. However, most physics and music classes do not have
access to instruments tuned using historical temperaments.

Because of the difficulty in obtaining such instruments,
we developed Temperament Studio,18 a piece of free, open-
source software that uses the MIDI (Musical Instrument
Digital Interface) audio standard to make it easy for teachers
to demonstrate, and for students to explore the physical char-
acteristics of different scales and to test the various mathe-
matical predictions. In this section, we explain how we
implemented alternate tuning schemes using MIDI. This in-
formation may be useful to others who wish to implement
this technique; however, understanding the details of the
MIDI synthesis technique is not required to utilize the
Temperament Studio software (see Sec. VIII) or to work the
exercises available as supplementary material.37

MIDI is a standard developed in 1983 to allow electronic
musical instruments to communicate with each other.38 Figure
5 illustrates the fundamental difference between transmitting
sound information in a waveform stream (a) versus a MIDI
stream (b). A waveform stream, such as the data contained on
an audio CD, gives a list of numbers that indicate the displace-
ment of the sound wave to be produced at sequential times. A
MIDI stream, on the other hand, contains digital commands

Fig. 4. Deviation of musical intervals from the “ideal” ratios (defined here as

containing only integers 616) for (a) equal temperament, (b) Pythagorean,

(c) quarter-comma meantone, and (d) five-limit just intonation. The x-axis

contains all intervals (major thirds, fifths, etc.), although due to space con-

straints only certain select ones have been labeled. The y-values plotted for a

given interval include all twelve types of that interval (many overlapping).

The horizontal lines at 613 cents indicate the value below which detuning is

mostly imperceptible; at 626 cents, the value above which detuning in

successive notes is obvious.
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describing notes being turned on and off, volume changes, etc.
Each event is assigned to a channel, and each channel is
assigned to sound like a particular instrument. When MIDI data
are sent to a synthesizer or played on a personal computer, the
synthesizer or computer must interpret these commands. For
example, if the computer reads a “note on” command for a
given note on a given channel, it first selects an appropriate
waveform based on data from instruments stored in its memory,
and then it adjusts the volume and pitch and starts the wave-
form playing. When a MIDI stream is being generated by a
source such as a musical keyboard, the commands can be sent
directly to a synthesizer (perhaps part of the keyboard or per-
haps an external component) that generates the appropriate
sounds in the same manner as the personal computer. A MIDI
stream can also be saved to a file, which stores MIDI events
and the times that they occur for future editing and/or playback.

Nearly all personal computers sold today come pre-
configured to do MIDI musical synthesis and to play MIDI
files. MIDI synthesis on personal computers has been used to

do things such as generate background music and sound
effects in games, to compose music digitally, or to teach
piano performance.39 Advantages of MIDI synthesis over
waveform formats such as MP3 or WAV files include much
smaller files—a MIDI file only contains information about
what notes are on at what time, etc., not the entire waveform
to be played—and the ability to edit individual notes, change
instruments, etc.

The MIDI standard gives guidelines related to tuning
changes, but specifics are left to synthesizer manufacturers
and are frequently not implemented at all. Therefore, to real-
ize the historical scales described above on MIDI synthesiz-
ers, we used a circuitous method. The MIDI standard
provides the ability to bend pitches. We can use these pitch
bends to adjust the tuning of different notes. A difficulty in
this approach is that pitch bends cannot be applied to indi-
vidual notes or groups of notes, but only to an entire channel.
This is an issue, since the different notes in different scales
must be “bent” away from equal temperament by differing
amounts. Our solution was to move all of the C notes in all
octaves from all channels to channel one, all of the C] notes
to channel two, etc., as illustrated in Fig. 6. Then we apply
the appropriate pitch bend to each channel in order to make
all of the C’s, C]’s, etc., have the appropriate pitches for the
desired tuning scheme.40

To calculate the appropriate pitch bend for a non-equal
temperament tuning scheme, let us consider the nth note of
the scale (i.e., n half steps above the root), which has a
frequency of 2n=12f0 in equal temperament but some other
frequency fn in a different tuning scheme. Here, f0 is the fre-
quency of the root note of the scale. The difference in cents
between these two frequencies is found via Eq. (2)

dcents ¼ 1200 log2

f2

f1

� �
cents;

¼ 1200 log2

fn

2n=12f0

� �
cents;

¼ 100 12 log2 rnð Þ � n
� �

cents;

(3)

Fig. 5. Comparing a MIDI stream to a waveform stream. (a) A waveform

stream can be represented by a sequence of numbers indicating the displace-

ment of the wave at successive moments in time. (b) In a MIDI stream, a

sequence of numbers (shown above in hexadecimal format) gives informa-

tion not about the precise waveform to be produced, but about musical

events, such as playing or silencing a note, changing which instrument sound

is to be used on a channel, setting the pitch bend for the channel, etc.

Fig. 6. How notes are moved to individual channels in Temperament Studio. To implement a tuning scheme, different notes must be moved to different chan-

nels, and then appropriate pitch bends applied to each channel. In this example, all of the notes are originally on MIDI channel 1, but are moved to other chan-

nels during playback. (Channel 10 is skipped because in the General MIDI standard it is reserved for percussion.)
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where rn ¼ fn=f0 is the ratio of the desired frequency of the
note (in the new scale) to the root note of the scale (listed for
several scales in Table I).

The MIDI standard uses a 14-bit number to describe pitch
bend, with a mid-range value of 8192 signifying no pitch
bend. Most MIDI players conform to the General MIDI
standard,41 which specifies a pitch bend range of 62 half
steps (6200 cents). Assuming this range, the MIDI pitch
bend one must apply to a channel is then just Eq. (3) scaled
by a factor of 8192/200 and offset by 8192

dMIDI ¼ f4096½12 log2ðrnÞ � n�g þ 8192; (4)

where the braces represent rounding to an integer. Rounding
gives a resolution of 0.024 cents, well below what humans
can perceive, and for typical situations affects beat rates only
by millihertz or fractions of a millihertz.

VIII. TEMPERAMENT STUDIO

One of the authors (DD) applied the method described
above to demonstrate intonation in physics classes about 7
years ago. The early efforts involved writing scripts in a
commercial music editing application. The scripts could not
be adjusted interactively in class and were not available to
students unless they had access to the same commercial edit-
ing application used to create the scripts. To solve these
problems, Temperament Studio was created as a stand-alone
package with a more user-friendly and flexible interface.

The Temperament Studio program, packaged with its
source and several demo MIDI files, can be downloaded
from the internet.18 It is freely available, open source, and
may be distributed and modified as desired. The program is
written in Java and should run on nearly all personal com-
puters. The software has a virtual musical keyboard that
allows users to play and transpose intervals and chords in
different tuning schemes. Users can also load MIDI files of
songs and play them using different tuning schemes, even
changing tuning schemes on the fly. MIDI files can be
resaved in any tuning scheme so that they can be played
back with any MIDI player, i.e., without needing this soft-
ware. (A command line mode is also available, which allows
scripted tuning conversions of MIDI files.) Because the soft-
ware is free, easy to use, and runs on every major platform,
it is suitable both for classroom presentations and for student
use in homework, lab work, or independent exploration.

Temperament Studio comes with several built-in tuning
schemes: equal temperament, Pythagorean, QC meantone,
five-limit just intonation, and a well-temperament scheme
known as Werckmeister III.42 Additional arbitrary tuning
schemes can be added by the user, either by specifying the
notes of the scale (via frequency ratios or detunings from
equal temperament) or (for meantone scales) by providing
the desired frequency ratio of the fifth interval. Since most
world scales consist of five to seven notes per octave,6 non-
Western scales can also be easily emulated using a subset of
the twelve tone scale (though none are included). Also, while
not implemented in Temperament Studio, this pitch-bending
technique could also be used to realize scales with more than
12 notes per octave; the MIDI standard allows for 16 differ-
ent channels, but one is typically reserved for rhythm instru-
ments so scales with up to 15 notes could be synthesized.

For MIDI sound creation from the virtual keyboard or
from playback of a file, the user can select any instrument

tone that is installed on the computer. For most computers,
this would include the 128 standard instruments in the
General MIDI instrument set. The default instrument of
Temperament Studio is an organ tone; organ waveforms tend
to produce clear demonstrations because of their extremely
harmonic overtone series.43 Furthermore, the precisely har-
monic overtone series makes it relatively easy to synthesize
organ sounds, such that they are generally some of the
more realistic instruments on most standard computer
synthesizers.

Advanced features of the software include enabling the
display of different information on the virtual keyboard
(such as the frequency of each note in the selected tuning
scheme or the ratio of each note’s frequency to the root
note), transposing MIDI files into different keys, and allow-
ing the user to set and jump to cue points in the playback of
a MIDI file to quickly compare the same passage of music
with different tuning methods.

Teachers and students can use this software to hear the
physics of intonation. For example, an equal temperament
C-major chord produces some beating, while the same chord,
when the instrument is tuned to the five-limit just intonation
scale with a C root, does not have any beating and therefore
sounds subtly more pure and powerful to most listeners.44

But while equal temperament chords have the same character
in any key, when we use the other scales we find that moving
the chord up by half steps results in some chords that are
very pleasant, some that are less consonant, and some that
are extremely dissonant.

As another example, students can explore the fifths in the
Pythagorean scale. Due to the just ratio of 3/2 for most of the
fifths, one will hear no beating as fifths are played moving
up the scale, until the wolf fifth is reached (which sounds
very strange). The information given above for the various
scales allows one to calculate wolf intervals and beat fre-
quencies, and these predictions can be tested experimentally
(the supplementary material to this article37 contains many
examples). Beating can be explored with MIDI instruments,
such as the default organ setting, or notes can be built from a
harmonic series of sine waves, allowing the user to add or
remove harmonics to verify which ones are the dominant
source of beating for the various intervals.

One can also use Temperament Studio to play modern and
ancient music in different intonations. For example, by load-
ing a MIDI file and setting the tuning scheme to QC mean-
tone with a root of D, it is possible to simulate what an organ
work by Bach or Handel would have sounded like on the
organs that Bach and Handel actually played. (If the user
additionally wants to explore historical pitch standards,
which varied wildly across Europe in the Baroque era,45

there is an Advanced setting that allows users to give an
overall shift up or down in pitch from today’s A440 stand-
ard.) Several example MIDI songs are included in the pack-
age. Moreover, numerous MIDI files can be found online,46

and there are many programs to create or modify MIDI files
including several free, open-source applications.47

This method of implementing alternate tunings via pitch
bends in MIDI channels does have some limitations. Since
the software has to move different notes to specific channels,
the channels cannot be used to realize different instrument
sounds. As such, Temperament Studio can only play MIDI
files with one instrument sound.48 Results using MIDI instru-
ments that employ “stretch tuning” rather than equal
temperament may also be problematic. (In stretch tuning,
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sometimes used for stringed instruments such as pianos or
harps, octaves are tuned to be slightly wider than a pure fac-
tor of two in order to reduce beating caused by dispersion in
the strings.) Also, if a synthesized MIDI instrument employs
vibrato, the vibrato will tend to mask or imitate beating,
making differences between scales less apparent. Finally, a
limitation of MIDI synthesis in general is that many physical
instruments, including most string and wind instruments, can
have their pitch dynamically adjusted by the musician during
a performance. Therefore, no fixed tuning scheme will accu-
rately simulate what one would hear in a live performance.

IX. CONCLUSION

Musical scales involve the physics of resonators, harmon-
ics, and beats, and the mathematics of irrational numbers,
integer ratios, and logarithmic intervals. These issues have
affected the definitions of notes in scales for centuries.
Understanding and experimenting with music can increase
student engagement when studying waves and sound. With
MIDI synthesis via Temperament Studio, students can easily
hear the mathematically predicted differences between scales
and gain intuition and appreciation for the mathematical and
physical nuances of intonation.37
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