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An exact formulation for the evolution of the probability density function of the time derivative of

a waveform (slope density) propagating according to the one-dimensional inviscid Burgers

equation is given. The formulation relies on the implicit Earnshaw solution and therefore is only

valid prior to shock formation. As explicit examples, the slope density evolution of an initially

sinusoidal plane wave, initially Gaussian-distributed planar noise, and an initially triangular wave

are presented. The triangular wave is used to examine weak-shock limits without violating the

theoretical assumptions. It is also shown that the moments of the slope density function as a

function of distance may be written as an expansion in terms of the moments of the source slope

density function. From this expansion, approximate expressions are presented for the above cases

as well as a specific non-Gaussian noise case intended to mimic features of jet noise. Finally,

analytical predictions of the propagation of initially Gaussian-distributed noise are compared

favorably with plane-wave tube measurements. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4941255]
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I. INTRODUCTION

The noise radiated from the complex source represented

by high-speed jets has motivated various studies describing

its nonlinear propagation. Nonlinearity has been considered

in both the geometric near and far fields on jets of different

scales. However, the complexities of considering a distrib-

uted, stochastic source have prompted study of measures for

quantifying nonlinear propagation effects and additional

investigations into the theory of nonlinear propagation for

arbitrary waveforms. In addition to spectral measures of the

effects of nonlinearity (such as frequency-frequency interac-

tions1–3 and the quadspectral density of the pressure

squared-pressure waveforms4–7), various statistical measures

have been proposed, such as the number of zero crossings

per unit time,8 the average slope at zero crossings,9 and the

average and wave steepening factors.10–12 Other statistical

measures are various moments of the amplitude density

function or the time-derivative amplitude density function

(referred to hereafter as the slope density function) of the

waveform of interest. For example, the growth of the skew-

ness of the pressure time derivative waveform, the third

standardized central moment of the slope density function,

has been shown to be associated with an increase in the pres-

sure waveform shock content.13–17 The fourth standardized

central moment—the kurtosis—of the waveform derivative

has also been calculated in some cases.18–20

While the statistical measures of nonlinearity all depend

on the slope density functions of the waveforms of interest,

characterizing the density functions themselves has not

received as much attention as the measures or the amplitude

density function. Rudenko and Chirkin21 and Webster and

Blackstock22 showed that the amplitude density function

does not vary for plane waves propagating according to

the inviscid Burgers equation in the pre-shock region.

Additionally, Sakagami et al.23 experimentally found that

the density function of initially Gaussian-distributed random

noise propagating in a plane-wave tube did not change sub-

stantially until after shock formation, and then tended toward

a uniform distribution. Those studies that have considered

both the slope and amplitude density functions are more

recent. McInerny et al.24 and Gee et al.19 have shown that

the amplitude and slope density functions for jet noise from

high-power military aircraft do not follow a Gaussian distri-

bution. Muhlestein and Gee25 experimentally obtained

density functions for initially sinusoidal signals and initially

Gaussian-distributed noise propagating in a plane-wave

tube, and found that the slope density undergoes significant

evolution with propagation, while the amplitude density

function undergoes minor evolution with propagation. The

observed evolution of the slope density function suggests an

analytical analysis of the evolution may yield additional

insights into the nature of nonlinear noise propagation.

This paper presents an analytical formulation of the evo-

lution of the slope density function (the density function of

the first time-derivative of a pressure waveform) for a wave-

form propagating according to the inviscid Burgers equation

and draw some conclusions about the general evolution of

moments of the slope density function, in particular, the

skewness of the first time derivatives. As examples, the slope

density function evolution and a quintic approximation of

the evolution of the skewness of the first time derivatives fora)Electronic mail: mimuhle@gmail.com
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initially sinusoidal plane waves and initially Gaussian-

distributed noise are derived. Because the present derivation

does not assume any particular initial distribution, it provides

an analytical comparison for any one-dimensional experi-

mental analysis. This is demonstrated by considering the

case of simulated jet noise. Additionally, information about

slope densities in the weak shock region is obtained without

violating the tenets of the theoretical development by consid-

ering the case of an initially triangular waveform as it

evolves to a sawtooth. Finally, a comparison of the slope

density function for initially Gaussian noise propagated in a

plane-wave tube is compared with analytical expressions to

validate the analytical derivation.

II. EVOLUTION OF THE SLOPE DENSITY FUNCTION

A. Physical interpretation of the slope density
function

We define the slope density function as the probability

density function of the first derivative of a time waveform.

Any process that affects the shape of a waveform will there-

fore also affect the slope density of the waveform. For exam-

ple, thermoviscous attenuation of propagating broadband

noise attenuates the higher frequencies more than the lower

frequencies, effectively smoothing out the time waveform,

decreasing the probability of large-magnitude slopes.

Quadratic nonlinearity in propagation, on the other hand,

tends to increase positive slopes and decrease negative

slopes, which causes the slope density function to distort

asymmetrically. Additionally, smaller percentages of the

waveforms will be associated with the positive slopes while

greater percentages of the waveforms will be associated with

the negative slopes. Thus, quadratic nonlinearity causes the

positive slope densities to become smaller and farther from

zero, while the negative slope densities to become larger and

closer to zero.

An example of the effect of quadratic nonlinearity on a

waveform, its time derivative, and its density functions is

shown in Fig. 1. The pressure waveform of an initially sinu-

soidal plane wave, its time derivative, its amplitude density

function, and its slope density function are shown for r ¼ 0

and r ¼ 0:5, where r is the distance relative to the shock

formation distance. At r ¼ 0, half of the pressure waveform

(top left) is positively sloped and half is negatively sloped.

Notice that the density of the initially sinusoidal pressure

waveform (top right) does not change with propagation. As

proven by Rudenko and Chirkin21 and Webster and

Blackstock,22 the amplitude density function remains undis-

turbed by propagation in the pre-shock region. This insensi-

tivity of the amplitude density to quadratic nonlinearity

relative to the slope density is why the statistics of the pres-

sure waveform do not inform concerning nonlinearity in

propagation, and why attention is instead given to the statis-

tics of the time derivative of the pressure waveform.

As the initially sinusoidal waveform distorts, the pres-

sure derivative waveform (Fig. 1, bottom left) becomes more

“peaked,” as the positive derivatives become larger and have

a shorter duration, while the negative derivatives approach

zero and have a larger duration. By r ¼ 0:5, for instance,

only 34% of the pressure waveform has a positive slope and

66% has a negative slope, and the maximum slope is P0 ¼ 2

while the minimum slope is P0 ¼ �2=3. This difference in

duration and peak magnitude is exhibited in the slope density

(bottom right) as asymmetry about zero. The positive slope

densities are much lower than the negative slope densities,

but the positive slope densities also extend to much higher

magnitudes than the negative slope densities.

B. Derivation of the slope density function evolution

As discussed and shown in the sinusoidal example,

the amplitude density function remains constant in the pre-

shock region, while the slope density function evolves. In

this section, the evolution of the slope density function for

progressive plane waves due to quadratic nonlinearity is

derived using the (implicit) Earnshaw solution to the invis-

cid Burgers equation.26 The Earnshaw solution may be

written as

p ¼ ps /ð Þ;

/ ¼ sþ b

q0c3
0

ps /ð Þx ; (1)

where p is the acoustic pressure, psðtÞ is the pressure func-

tion at the source, / is the Earnshaw phase variable, s is the

retarded time, x is the distance from the source, c0 is the

small-signal sound speed, b is the coefficient of nonlinearity,

and q0 is the ambient density.26 Equation (1) is valid while

the waveform remains continuous, i.e., until the first shock

forms. The shock formation distance, �x, is defined as the

distance x at which the time of arrival first becomes non-

monotonic, which occurs at �x ¼ q0c3
0=b maxfp0sðtÞg, where

the prime denotes differentiation with respect to the argu-

ment. If we define g ¼ b=q0c3
0, Eq. (1) may be written para-

metrically as

FIG. 1. Time waveform of the normalized pressure P (upper left), derivative

of time waveform of the normalized pressure P0 (lower left), amplitude den-

sity function (upper right), and slope density function (lower right) of an ini-

tially sinusoidal plane wave propagating according to the inviscid Burgers

equation are plotted as a function of the normalized time h at the source

(r¼ 0) and at half the shock formation distance (r ¼ 0:5).
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ðs; pÞ ¼ ð/� gxpsð/Þ; psð/ÞÞ; x � �x; (2)

which should be read as (retarded time of arrival, pressure

amplitude) for distances less than the shock formation

distance.

If we let p0 and s0 be a characteristic amplitude and time

scale for the initial waveform, then we may define the dimen-

sionless quantities r ¼ gp0x=s0; h ¼ /=s0, and Ps ¼ ps=p0.

We emphasize that p0 and s0 are only characteristic, and

r ¼ 1 does not necessarily correspond to shock formation.

This choice is made anticipating initially random waveforms,

where the shock formation distance is unique for each wave-

form realization. With the present definitions, the shock for-

mation distance becomes �r ¼ maxf1=P0sðhÞg. Thus we may

write Eq. (2) as

ðH;PÞ ¼ ðh� rPsðhÞ;PsðhÞÞ; r � �r;

where H and P are the normalized retarded time of arrival

and the normalized pressure amplitude, respectively. A sche-

matic interpretation of this parametric solution is shown in

Fig. 2. Now, for a given r, consider the wave amplitude at h
and hþ Dh, for Dh > 0. The difference in normalized arrival

times is

Hðhþ DhÞ �HðhÞ
¼ ðhþ Dh� rPsðhþ DhÞÞ � ðh� rPsðhÞÞ
¼ Dh� rðPsðhþ DhÞ � PsðhÞÞ;

and the difference in the normalized pressure amplitudes is

Pðhþ DhÞ � PðhÞ ¼ Psðhþ DhÞ � PsðhÞ:

If we take the ratio of the pressure and arrival time differen-

ces and let Dh! 0, we find that

H;P0ð Þ ¼ h� rPs hð Þ; P0s hð Þ
1� rP0s hð Þ

 !
; r � �r; (3)

which should be read as (normalized retarded time of arrival,

normalized pressure amplitude slope).

When analyzing Eq. (3), one may notice that a given

time interval varies with distance depending on the function.

For example, the intervals between times of arrival in Fig. 2

are equal at the source but become irregular after

propagation. In fact, an infinitesimal normalized time inter-

val may be written

dH ¼ dh� rP0sdh ¼ dhð1� rP0sÞ; (4)

where the dependence of P0s on h has been suppressed. Then,

any infinitesimal time interval dH expands or contracts by a

factor of 1� rP0s by the distance r. Since the slope over the

infinitesimal time interval dH may be considered constant at

a given location, the probability of measuring the slope P0 at

a distance r is the same as the probability of measuring the

slope P0s at the source multiplied by 1� rP0sðhÞ.
Since it is a probability density function, qðP0ÞdP0 is the

fraction of the waveform having a slope between P0 and

P0 þ dP0. Then, from the arguments made regarding Eq. (3),

we may write

qrðP0ÞdP0 ¼ q0ðP0sÞdP0sð1� rP0sÞ: (5)

Solving Eq. (3) for P0s and substituting into Eq. (5), we

conclude

qr P0ð ÞdP0 ¼ q0

P0

1þ rP0

� �
dP0

1þ rP0ð Þ3
; (6)

which indicates the slope density may be written as

qr P0ð Þ ¼ q0

P0

1þ rP0

� �
1

1þ rP0ð Þ3
: (7)

Because this derivation is based on the Earnshaw solu-

tion without reference to any form of shock theory, the

results are invalid once a slope has become infinite. If the

maximum possible slope in a source waveform is

P0s;max <1, then we find the slope density in Eq. (7) is valid

for r < 1=P0s;max, and the domain of qrðP0Þ can be written as

ð�1=r;P0s;max=½1� rP0s;max�Þ. There is a subtlety in this

restriction that becomes important when considering

Gaussian-distributed noise. Since a Gaussian distribution

never goes exactly to zero, there is no finite slope that may

be considered the “maximum possible slope,” and the shock

formation distance goes to zero. Therefore, when consider-

ing an idealized truly Gaussian distributed waveform, any

results obtained for r > 0 must be only approximate, as

some percentage of the waveform has already been affected

by shocks. In practice, however, this is not a problem

because any finite-sampled, bandlimited source waveform

cannot be truly Gaussian distributed and will have a finite

maximum slope and a non-zero shock formation distance.

Thus, for small r the approximation is very good, though

what “small” means depends on the waveform.

Notice that Eq. (7) depends only on the source slope

density and the dimensionless distance, r. This means the

slope density and its various moments are independent of

frequency content. Therefore, the evolution of sine waves

with different frequencies or of narrow and broadband noise

with the same source slope density can only differ after

shocks form.

Because several measures that quantify nonlinearity rely

on moments of the slope density, it is useful to examine how

FIG. 2. Schematic explanation of the Earnshaw solution: three points of

a pressure waveform Pi with retarded arrival times hi at the source and

retarded arrival times Hi after propagating a distance r.
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these moments evolve according to the present theory. Since

we assume an acoustic process has a zero-mean time deriva-

tive, the nth (central) moment27 may be written as

l nð Þ
r ¼

ðb

a

P0ð Þnqr P0ð ÞdP0

¼
ðP0s;max

�1
q0 P0s
� � P0s

� �n
dP0s

1� rP0sð Þn�1
; (8)

where a ¼ �1=r and b ¼ P0s;max=ð1� rP0s;maxÞ. The change

of the integrand comes from Eq. (6) and the change of limits

comes from moving from integrating over P0 to P0s [see Eq.

(3)]. If the slope density function is properly normalized, we

should find lð0Þr ¼ 1. To check this, we may write

lð0Þr ¼
ðP0s;max

�1
½q0ðP0sÞ � rP0sq0ðP0sÞ�dP0s ¼ lð0Þ0 � rlð1Þ0 :

(9)

Since lð0Þ0 ¼ 1 by definition, the slope density function is

properly normalized if the average slope is zero, which is the

case for acoustic signals.

The last integral in Eq. (8) is similar to the definition of

the nth central moment of the initial distribution except for

the denominator. For small r (such that jrP0sj < 1 for the

entire interval), we may expand the denominator as a power

series in rP0s, which becomes a series of moments of the

source slope density

l nð Þ
r ¼

X1
k¼0

n� 2þ kð Þ!
n� 2ð Þ!k!

l nþkð Þ
0 rk: (10)

As mentioned in Sec. I, the skewness of the time-

derivative of a waveform, or derivative skewness, has been

used in nonlinear noise analysis. From Eq. (10), we may esti-

mate the derivative skewness of a propagating wave very

close to the source (r� 1) to be

Sk P0ð Þ ¼ l 3ð Þ
0

l 2ð Þ
0

� �3=2
þ

4l 2ð Þ
0 l 4ð Þ

0 �3 l 3ð Þ
0

� �2

2 l 2ð Þ
0

� �5=2
r

þ
15 l 3ð Þ

0

� �3

�36l 2ð Þ
0 l 3ð Þ

0 l 4ð Þ
0 þ24 l 2ð Þ

0

� �2

l 5ð Þ
0

8 l 2ð Þ
0

� �7=2
r2

þO r3ð Þ: (11)

The first term in Eq. (11) is just the derivative skewness of

the initial distribution. The linear term depends only on the

second, third, and fourth source moments, and the quadratic

term depends only on the second through fifth moments.

Notice that each term in the constant and the quadratic coef-

ficients includes a source moment with an odd number. This

is general for all coefficients of even powers of r. Thus, in

the special case of an initially symmetric slope density (e.g.,

Gaussian and sinusoidal distributions), the coefficients of all

even powers of r are zero, and we may simplify the expres-

sion of the derivative skewness to

Sk P0ð Þ¼ 2l 4ð Þ
0

l 2ð Þ
0

� �3=2
rþ

4l 2ð Þ
0 l 6ð Þ

0 �3 l 4ð Þ
0

� �2

l 2ð Þ
0

� �5=2
r3

þ
15 l 4ð Þ

0

� �3

�36l 2ð Þ
0 l 4ð Þ

0 l 6ð Þ
0 þ24 l 2ð Þ

0

� �2

l 8ð Þ
0

4 l 2ð Þ
0

� �7=2
r5

þO r7ð Þ: (12)

Because the Burgers equation for cylindrical and spheri-

cal outward-progressive waves may also be reduced to the

planar equation through a change in variables, the same

methodology can be used to produce slope density functions

and moment expansions for these other one-dimensional

systems. For example, the slope density function for a

spherically propagating wave is

qrs
P0ð Þ ¼ q0

P0

e�rs=gs þ rsP0

� �
1

1þ rsP0ers=gsð Þ3
; (13)

where q0ðP0Þ is the slope density function at a reference

radius r0, rs ¼ gslnðr=r0Þ is a non-dimensional distance,

gs ¼ gp0r0=s0, r is the radius, and p0 and s0 are now the

characteristic amplitude and time scale of the waveform at

the reference radius. Similarly, the moments as functions at

a radius of r may be written in the form of a power series as

l nð Þ
rs
¼ e�nrs=gs

X1
k¼0

n� 2þ kð Þ!
n� 2ð Þ!k!

l nþkð Þ
r0

rk
s : (14)

Equation (14) is the same as Eq. (10) except that it is multi-

plied by an exponential term. Since the derivative skewness

is lð3Þrs
=ðlð2Þrs

Þ3=2
, the exponential factors cancel, and Eqs.

(11) and (12) may be used if lðnÞ0 and r are replaced by lðnÞr0

and rs, respectively.

III. EXAMPLES OF SLOPE DENSITY

A. Initial sinusoid

An important benchmark case in nonlinear acoustics is

the propagation of an initially sinusoidal signal. Exact solu-

tions for the evolution of the waveform for all r > 0 are

given by the Fubini solution and the Blackstock bridging

function.28 In addition, exact values of the derivative skew-

ness17 and average or wave steepening factor,10 which are

associated with the moments of the slope density, exist for

all r > 0. However, the slope density of the initially sinusoi-

dal signal itself has not yet been explicitly considered.

Therefore, we present an analysis here.

Consider a sinusoidal source condition with angular

frequency, x, and amplitude, p0. With these conditions,

we choose p0 for our characteristic amplitude and 1=x as

the characteristic time scale, such that �r ¼ 1.26 Then,

since the derivative of a sinusoid is also a sinusoid, the

slope density of the waveform at the source q0;sineðP0Þ may

be written27
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q0;sineðP0sÞ ¼
½p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P02s

p
��1; �1 < P0s < 1;

0; otherwise:

(
(15)

Therefore, the slope density at r is

qr;sine P0ð Þ ¼ q0;sine

P0

1þ rP0

� �
1

1þ rP0ð Þ3
¼ 1þ rP0ð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rP0ð Þ2 � P02

q	 
�1

; � 1

1þ r
< P0 <

1

1� r
;

0; otherwise:

8>><
>>: (16)

The slope density at several values of r are shown in Fig. 3,

which expands the slope density function shown in Fig. 1.

For all r < 1 the distribution consists of two peaks that

rise rapidly to infinity, relatively low values between the

peaks, and is exactly zero beyond the peaks. The slope at

which the negative peak occurs approaches zero and the

slope at which the positive peak occurs moves farther from

zero as r increases. At r¼ 1 the positive peak has moved all

the way to P0 ! 1, which indicates the generation of a

shock. Notice the slopes between the two peaks tend to

decrease in probability with increasing slope amplitude,

indicative of the lower percentage of the waveform with

positive slopes.

The even moments of the source slope density (the odd

moments are all zero) may be written as

l nð Þ
0 ¼

2C nþ 1ð Þ=2
� �
nC n=2ð Þ ¼ 2 n� 1ð Þ!!

2n=2 n=2� 1ð Þ!n
: (17)

Then, using Eq. (12) for r� 1 we may approximate the

derivative skewness as

Sk P0ð Þ ¼ 3rffiffiffi
2
p þ 13r3

32
ffiffiffi
2
p þ 165r5

128
ffiffiffi
2
p þ O r7ð Þ: (18)

This matches to fifth-order an expansion of the exact form of

the derivative skewness found by Muhlestein.17 A plot of the

exact derivative skewness as a function of r is plotted in Fig.

4 with the linear, cubic, and quintic order approximations as

given in Eq. (18). As seen in Fig. 4, all three of the approxi-

mations diverge rather quickly as r! 1. In fact, the linear,

cubic, and quintic approximations have less than a 10% error

relative to the exact solution only up to r ¼ 0:42, 0.47, and

0.52, respectively.

B. Gaussian noise

The second example of slope density evolution is that of

Gaussian-distributed noise. To describe the slope-density

evolution of Gaussian noise analytically, it is convenient to

define the standard deviation of the source slope density,ffiffiffiffiffiffiffiffi
lð2Þ0

q
, as the characteristic slope density s0, the characteris-

tic pressure amplitude as p0. These definitions require the

characteristic time scale to be s0 ¼ p0=s, which in turn

means r ¼ gsx. The Gaussian noise slope density function

may then be written as

q0;Gauss P0s
� �

¼ e� P0sð Þ2=2ffiffiffiffiffiffi
2p
p : (19)

As discussed in Sec. II B, the initial Gaussian slope density

in Eq. (19) is nonzero for every finite slope value at the

source, we find shock content to exist in the noise for all

FIG. 3. Probability density function of the normalized time-derivative

amplitudes of an initially sinusoidal signal at various values of the normal-

ized distance r.

FIG. 4. Exact skewness of first time derivative of an initially sinusoidal sig-

nal. The linear, cubic, and quintic approximations of the analytical expres-

sion are shown for comparison. The shock formation distance is r¼ 1.
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r > 0; in other words, �r ¼ 0. However, in practice finite

waveforms cannot have truly Gaussian distributed slopes,

and shocks are not likely to appear in the source waveform,

and a nonzero value of �r may be found. In this case, the ini-

tial Gaussian distribution is already an approximation,

though it may be a very good one. As an example, if a pres-

sure derivative waveform follows a Gaussian distribution out

to four standard deviations and then abruptly goes to zero,

the shock formation distance would be �r ¼ 0:25, and the

correction to the initial slope distribution would be

Oð1� erf½4=
ffiffiffi
2
p
�Þ � Oð6� 10�5Þ.

The slope density for initially Gaussian noise at a dis-

tance r is approximately

qr;Gauss P0ð Þ � exp � 1

2

P0

1þ rP0

� �2
" #

H P0 þ r�1ð Þffiffiffiffiffiffi
2p
p

1þ rP0ð Þ3
;

(20)

where H(x) is the Heaviside function. The slope density is

plotted for several values of r in Fig. 5. The even moments

of the source distribution (the odd moments are all zero)

may be written as

lðnÞ0 ¼ ðn� 1Þ!!: (21)

Then, using Eq. (12) for r� 1 we may write the derivative

skewness as

Sk P0ð Þ ¼ 6rþ 33r3 þ 2115

4
r5 þ O r7ð Þ: (22)

In order to understand the accuracy of this estimate, the

derivative skewness of a numerically-propagated initially

Gaussian-distributed (finite time and bandlimited) noise

waveform is compared with the analytical formulation in

Fig. 6. The characteristic amplitude of the numerical wave-

form is set to be p0 ¼ 10 Pa and the characteristic slope

amplitude is s0 ¼ 183 kPa/s, leading to a characteristic time

scale of s ¼ 54:5 ls. The source passband is chosen to be

500–2000 Hz, rolling off according to a fourth-order

Butterworth filter. For this particular waveform realization,

the shock formation distance, or the distance at which the

first discontinuity forms in a given noise waveform, is

approximately r ¼ 0:21. The sampling rate, chosen to match

the experimental setup described in Sec. IV, was 4.9 ls/sam-

ple (204 800 Hz) and 218 samples were used. The waveform

was propagated using a mixed time-frequency domain code

developed by Gee et al.6 Linear, cubic, and quintic polyno-

mial truncations of the analytical formulation [see Eq. (22)]

are shown for comparison. Qualitatively, the linear polyno-

mial predicts the derivative skewness of our particular noise

waveform well (relative error <10%) out to r � 0:05, the

cubic polynomial predicts well out to r � 0:07, and the

quintic polynomial predicts well out to r � 0:08.

A brief note on the sampling rate and its effect on the de-

rivative skewness is in order. Once a shock has formed in a

waveform, regardless of where or how many are present,

SkðP0Þ of a continuously sampled waveform goes to infinity.

However, with a finite sampling rate, a single shock in the

waveform will not have nearly as dramatic effect on SkðP0Þ.
For this case, the ratio of the sampling rate to the peak relevant

frequency for the numerical data in Fig. 6 is about 100, which

was shown by Gee et al.,29 to yield reasonable predictions for

an initially sinusoidal waveform up to SkðP0Þ � 5, after which

point the predicted derivative skewness approaches a constant

and underestimates the true derivative skewness. Thus, the de-

rivative skewness of the waveform in the neighborhood of the

shock is “saturated” due to finite sampling rates, and the pre-

dicted derivative skewness of the entire waveform does not

become infinite at the shock formation distance r ¼ 0:21. On

the other hand, the vast majority of the positive slopes in the

waveform have not yet formed shock waves, and so the deriva-

tive skewness overall continues to increase. Therefore, for fi-

nite sampling rates SkðP0Þ may be best described as a

characteristic value rather than an exact value.

C. Non-Gaussian noise

The initial sinusoidal signal and initial Gaussian-distributed

noise are examples of symmetric initial slope densities, but not

all sources of high-amplitude sound are symmetric. An

FIG. 5. Probability density function of the normalized time-derivative

amplitudes of initially Gaussian noise at various values of the normalized

distance r. As discussed, r¼ 1 does not correspond to shock formation.

FIG. 6. Skewness of first time derivative of Gaussian-distributed noise

numerically propagated according to the Earnshaw solution. The linear,

cubic, and quintic approximations of the analytical expression are shown for

comparison. The gray backgrounds denote distances after shock formation.
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important example is supersonic jets, such as those associated

with rockets and military aircraft; near-field measurements

reveal a positively skewed slope density.18,19 Using just the

published values of the derivative skewness and derivative kur-

tosis at an initial measurement distance allows us to make some

comments about the evolution of the derivative skewness for

this non-Gaussian noise example.

The derivative skewness of an arbitrary initial waveform

is given in Eq. (11) in terms of the initial central moments.

We may in turn write Eq. (11) in terms of the standardized

moments as

Sk P0ð Þ ¼ Sk P0s
� �

þ 2 Kt P0s
� �

� 3

2
Sk P0s
� �	 


s0r

þ O s0rð Þ2
� �

;

where KtðP0sÞ is the derivative kurtosis at the source and s0 is

the source slope standard deviation. If we again choose s0 to

be the characteristic slope amplitude and s0 to be the charac-

teristic time scale, we may then write

Sk P0ð Þ ¼ Sk P0s
� �

þ 2 Kt P0s
� �

� 3

2
Sk P0s
� �	 


rþ O r3ð Þ:

(23)

Scale-model measurements suggest the derivative skewness

and kurtosis are about 1 and 4 for jet noise near the shear

layer,20,30 as compared to 0 and 3 for Gaussian-distributed

noise. If we approximate only to linear order, Eq. (23) sug-

gests the derivative skewness may be written as

SkðP0Þ ¼ 1þ 6:5rþ Oðr2Þ: (24)

In addition to starting higher than initially Gaussian

noise, we see the derivative skewness of jet noise grows

more rapidly near the source as well. While further knowl-

edge of the initial slope density is required to extend the

analysis to higher than linear orders of r, this analysis sug-

gests jet noise may steepen more quickly than initially

Gaussian noise.

D. Triangle and sawtooth waves

As discussed above, the description of the slope density

evolution presented in Sec. II B cannot account for the prop-

agation of shock waves. However, far after the shock forma-

tion distance weak shock theory predicts an initially

sinusoidal signal will approach a sawtooth waveform26 and

initially Gaussian noise will approach a similar state, consist-

ing of perfect shocks connected by straight waveform

segments with a uniform slope.9,31,32 We may obtain some

insight into the nature of the slope density function in this

limit by considering the propagation of an initially triangular

function to shock formation, where the continuous waveform

immediately becomes a sawtooth (see Fig. 7).

The slope density of the initial triangle wave may be

written as

q0;D P0s
� �

¼
d P0I þ 1
� �

þ d P0I � 1
� �

2
; (25)

where dðP0Þ is the Dirac d-function and the characteristic

slope is the amplitude of the triangle wave divided by a quar-

ter of a period. Then, the slope density at farther distances is

written as

qr;D P0ð Þ ¼ 1

2 1þ rP0ð Þ3
d

P0

1þ rP0
þ 1

� �	

þd
P0

1þ rP0
� 1

� �

: (26)

Therefore �r ¼ 1. The argument of the d-functions are equal

to zero at P0 ¼ �1=ð1þ rÞ or at P0 ¼ 1=ð1� rÞ. Thus, from

the identity

d g xð Þð Þ ¼
X

i

d x� xið Þ
jg0 xið Þj

; (27)

where xi is the ith zero crossing of g(x), we may write

qr;D P0ð Þ ¼ 1þ r
2

d P0 þ 1

1þ r

� �

þ 1� r
2

d P0 � 1

1� r

� �
: (28)

Thus, in the limit that r! 1 and the triangle wave becomes

a sawtooth, we find that there is a d-function at P0 ¼ �1=2

with amplitude 1, and a d-function at positive infinity

(P0 ¼ limr!1ð1� rÞ�1
) with amplitude zero. Since the slope

density function of an initially triangular wave is written in

terms of Dirac d-functions, we may also calculate the deriva-

tive skewness exactly

Sk P0ð Þ ¼ 2rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p : (29)

As mentioned above, the primary motivation for study-

ing the initially triangular wave is to compare with the

weak-shock propagation regime of other initial waveforms.

For an initially sinusoidal plane wave, the connection may

FIG. 7. Pressure waveform of an initially triangular waveform at various

distances from the source r¼ 0 to the shock formation distance r¼ 1.
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be made explicitly. Initially sinusoidal plane waves propa-

gating without linear losses approach the sawtooth wave of

the form26

P ¼ p� h
1þ r

0 < h < 2p; (30)

where the normalization amplitude and time scale are p0 and

x�1, respectively. This means that the slope density in the

weak-shock propagation regime is

qsaw;r P0ð Þ ¼ d P0 þ 1

1þ r

� �

þ 1

2
lim
r!1

1� rð Þ d P0 � 1� rð Þ�1
� �

: (31)

Thus, in the limit that the distance from the source is much

farther than a shock formation distance, the slope density of

the initial sinusoidal signal may be considered to have two

“peaks,” one at �1=ð1þ rÞ with probability of 1 and one at

infinity with 0 probability. Intuitively, this is expected, since

the slope density of a sine wave has two peaks, and as it

propagates the negative peak moves closer to zero and the

positive peak moves toward infinity. The analysis of the ini-

tial triangular wave simply implies that this general shape

continues for the entire propagation.

Less intuitively, the slope density of initially Gaussian-

distributed noise will also approach the slope density of an ini-

tially triangular wave at shock formation. While the initial

slope density has only a single peak, after a long distance of

propagation, all of the positive slopes will be infinitely thin

and sharp and all of the negative slopes will take the same

value, similar to a sawtooth wave.9,31,32 On the other hand,

even though the initially Gaussian-distributed noise will

approach the same slope density as the initially sinusoidal sig-

nal, the evolution of these two initial cases toward the ultimate

limit are very different. Using the present analysis, however,

we cannot comment on the differences between the two cases.

IV. EXPERIMENTAL VERIFICATION

In order to analyze the validity of the analytical method

derived in Sec. II B, we may compare the predicted slope

densities with the measured slope densities from a plane-

wave tube experiment. The experimental setup is fully

described in Muhlestein et al.10 The tube consisted of several

3.05 m (10 ft) segments of PVC pipe connected end to end

with PVC couplers. The inner diameter of the tube was

5.08 cm (2 in). The tube was driven at one end by a BMS

(Hanover, Germany) 4590 coaxial compression driver and

was terminated anechoically with about a meter long piece

of fiber-glass insulation at the other end. Microphone holes

were drilled in the tube 0.4, 2.6, and 5.6 m from the driver.

The holes were designed such that the diaphragms of the

microphones were flush with the inner tube wall and were fit

snugly. The microphones were 3.18 mm (1/8 in) 40DD

G.R.A.S. (Holte, Denmark) pressure microphones without

grid caps. Measurements were taken at 204 800 Hz for 5 s.

The input waveform was an initially Gaussian-distributed

signal (0.7–2.4 kHz, based on 3 dB-down points) with an

amplitude standard deviation of 620 Pa and a slope standard

deviation of 5.9 MPa/s at the first microphone. Thus, using

the definition of r in Sec. III B, we may write the shock for-

mation distance as about �r ¼ 0:15, and the normalized dis-

tance is given by r ¼ ð0:17 m�1Þx.

Portions of the measured waveforms are shown in Fig. 8.

General waveform steepening is evident by r ¼ 0:43 and

several shocks are apparent by r ¼ 0:96. Since �r ¼ 0:15, at

least one shock would exist somewhere in the waveform

by r ¼ 0:43 (the second measurement location) if the propa-

gation were lossless. Since the analytical predictions are

restricted to the pre-shock propagation regime, we do not

expect the data from the r ¼ 0:96 microphone to agree with

predictions.

The slope densities estimated from the measured wave-

forms are plotted in Fig. 9. The time derivatives of the wave-

forms were estimated using a forward-difference scheme,

and the slope densities were estimated using the “hist”

MATLAB
VR

function and normalizing. The analytical prediction

of the slope densities from Eq. (20) are plotted as well for

comparison.

The measured densities shown in Fig. 9 follow the gen-

eral trend predicted by the analytical solution. In particular,

the measured slope densities and the predicted slope den-

sities at r ¼ 0:06 and 0.43 have very similar shapes—they

both peak in the negative slopes and fall off quickly for large

magnitude negative slopes and fall off more slowly for large

magnitude positive slopes. While the measured slope density

and the analytical prediction differ somewhat in details (for

instance, the predicted peak at r ¼ 0:43 is at P0 ¼ �0:4,

while the measured peak is at P0 ¼ �0:7, and the large mag-

nitude probability fall-offs are slightly different), the overall

agreement at r ¼ 0:06 and 0.43 is quite good. At r ¼ 0:96,

however, the predicted and measured shapes are quite differ-

ent. The most likely reason is the presence of “ringing” in

the measured data (similar ringing was seen by Pestorius and

Blackstock33 and Falco et al.5 in their measurements). As a

verification of this hypothesis, the waveform measured at

FIG. 8. Broadband (0.7–2.3 kHz) noise waveforms measured 0.4, 2.6, and

5.6 m (r ¼ 0:06, 0.43, 0.96) from the source in a plane-wave tube.
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r ¼ 0:06 was numerically propagated to the other two mea-

surement locations. The slope densities of these predicted

waveforms are also shown in Fig. 9 as open circles. As can

be seen, the agreement between the analytically and numeri-

cally predicted slope densities is better, especially at

r ¼ 0:96. This agreement may be unexpected, since the the-

oretical prediction does not account for any form of linear

absorption or dispersion processes while the numerical pre-

diction (and, obviously, the experimental measurement)

does.

V. CONCLUSIONS

The evolution of the probability density function of the

time-derivative of a pressure waveform (slope density) prop-

agating according to the inviscid Burgers equation as a func-

tion of the distance from the source based on the source

slope density has been derived. This formulation may be

used to calculate or estimate the evolution of various metrics

of the importance of nonlinearity in sound propagation, such

as the skewness of the time derivative of the pressure wave-

form or the average steepening factor, for a broad set of

possible source conditions.

As demonstrations of applying the presented analysis,

the slope density of initially sinusoidal, Gaussian-distributed,

and triangular waveforms have been derived. The analysis of

the initially triangular waveform, which evolves to a saw-

tooth at shock formation, gives an asymptotic limit to the

form of the slope density far past shock formation. As an

example of an asymmetric initial slope density, jet noise has

been briefly discussed, and it was found the skewness of the

slope density increases more rapidly for jet noise than for ini-

tially Gaussian-distributed noise. Finally, the analytical pre-

dictions were compared with experimentally obtained slope

densities, and relatively good agreement was found despite

the theory not accounting for the effects of absorption or dis-

persion in a plane-wave tube environment.
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