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The skewness of the first time derivative of a pressure waveform, or derivative skewness, has been

used previously to describe the presence of shock-like content in jet and rocket noise. Despite its

use, a quantitative understanding of derivative skewness values has been lacking. In this paper, the

derivative skewness for nonlinearly propagating waves is investigated using analytical, numerical,

and experimental methods. Analytical expressions for the derivative skewness of an initially sinu-

soidal plane wave are developed and, along with numerical data, are used to describe its behavior

in the preshock, sawtooth, and old-age regions. Analyses of common measurement issues show that

the derivative skewness is relatively sensitive to the effects of a smaller sampling rate, but less sen-

sitive to the presence of additive noise. In addition, the derivative skewness of nonlinearly propa-

gating noise is found to reach greater values over a shorter length scale relative to sinusoidal

signals. A minimum sampling rate is recommended for sinusoidal signals to accurately estimate de-

rivative skewness values up to five, which serves as an approximate threshold indicating significant

shock formation. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4944036]

[MDV] Pages: 1390–1403

I. INTRODUCTION

The importance of nonlinearity during propagation has

been a topic of significant debate in the jet noise community

because of its tie to the growth of acoustic shocks. Many

have shown evidence of nonlinear propagation for full-scale

experimental data,1–4 while some have seen evidence of non-

linear effects in model-scale jets,5–7 and others have not.8

Because of the difficulty in quantifying nonlinearity associ-

ated with statistical phenomena, much research has gone

into the development and usage of various measures to quan-

tify the effects and strength of nonlinearity and the presence

of acoustic shocks in different situations. These measures

have been developed in the time domain, using both the

pressure waveform9–11 and its first time derivative,12–15 and

in the frequency domain using higher order spectral analy-

sis.2,16,17 Although these various measures have been used

as qualitative indicators of nonlinearity, a quantitative under-

standing of the values obtained has been lacking. This paper

provides quantitative insight into the meaning of skewness

values of the first time derivative of the pressure waveform,

using analytical, experimental, and numerical methods.

Skewness is a statistical measure of asymmetry present

in a probability density function and has been used in a wide

variety of fields from agriculture18 to economics.19 In fluid

mechanics, the skewness of the streamwise derivative of both

the temperature20 and velocity21,22 has been used to indicate

an increase in vorticity in turbulent flows. The skewness of

the first time derivative of the pressure waveform, i.e., deriva-

tive skewness, is a measure of the asymmetry present in the

derivative values of the waveforms. The derivative skewness

has been shown to be associated with the presence of acoustic

shock waves23 and has been used to investigate nonlinearity

present in the propagation of jet and rocket noise.24–26

However, despite the use of this metric, a physical under-

standing of the connections between derivative skewness val-

ues, nonlinear propagation, and acoustic shock growth has yet

to be fully investigated.

There are some examples of investigations into derivative

skewness values for well-understood cases. One example, by

Shepherd et al.10 used the Blackstock bridging function as a

solution to the Burgers equation to predict values for various

statistics, including derivative skewness, for nonlinearly prop-

agating sine waves and their evolution into sawtooth waves.

They found that derivative skewness values dramatically

increase during the shock formation process, in contrast to the

pressure skewness, which changes only after the formation of

shocks. The derivative skewness in random noise compared

to sinusoidal signals has also been experimentally investi-

gated using a plane-wave tube.27 The preliminary analysis

suggested that, for noise, the derivative skewness increased

more rapidly and reached greater values.

This paper follows a structure similar to that of

Muhlestein et al.,28 who have carried out an analytical and

quantitative investigation of another time-domain metric, the

average steepening factor (ASF). First, an analytical treatment

of derivatives skewness is considered for the Earnshaw,29

Fubini,30 and Fay31 solutions to the Burgers equation for ini-

tially sinusoidal signals. Included is an analysis of the effects

of additive noise and sampling rate. Next, these analytical sol-

utions are compared against those obtained using numerical

propagation. Finally, numerical results are compared against

experimental data from a plane-wave tube for both sinusoidal

and random noise waveforms. All of these analyses combinea)Electronic mail: brent.reichman@gmail.com
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to give a quantitative understanding of derivative skewness

values observed during the formation and eventual decay of

shock waves in continuous waveforms.

II. DERIVATIVE SKEWNESS

A. Definition

The skewness of a random variable, y, denoted by

Sk{y}, is a normalization of the third central moment of the

probability density function (PDF) of y and is a measure of

asymmetry in a distribution. The skewness of the first time

derivative of the pressure waveform is defined in terms of

the expectation values, E[], as

Sk
@p

@t

� �
¼

E
@p

@t

� �3
" #

E
@p

@t

� �2
" #3=2

: (1)

Because of the cubic power in the numerator, large values

of @p=@t are emphasized in the skewness calculation. It has

been suggested by McInerny24 that the skewness of the first

time derivative of the pressure waveform, or derivative skew-

ness, may be used to characterize shocks in rocket noise, and

it has subsequently been used with crackle in jet noise, as

crackle has been associated with acoustic shocks.12,32 These

shocks have high positive derivative values and moderate neg-

ative derivative values, meaning that the pressure waveform’s

derivative skewness increases as shocks form during propaga-

tion. Shepherd et al.10 predicted the evolution of the derivative

skewness for an initially sinusoidal wave propagating without

linear losses in the preshock region. Subsequently, Muhlestein

and Gee27 calculated the derivative skewness for waveforms

measured in a plane-wave tube and found trends that agreed

with those predicted by Shepherd et al. This paper treats the

evolution of the derivative skewness for an initially sinusoidal

signal using analytical methods and compares the results with

those obtained using numerical calculations and plane-wave

tube experiments.

B. Burgers equation

The Burgers equation models the propagation of a pla-

nar wave including thermoviscous losses and nonlinear

effects. Following the notation of Blackstock et al.,33 the

Burgers equation is written as

@p

@x
� d

2c2

@2p

@s2
¼ b

qc3
p
@p

@s
; (2)

where p is the acoustic pressure, x is the distance from the

source, d is a constant associated with acoustic absorption by

the propagation medium, c is small-signal sound speed,

s¼ t� x/c is the retarded time, b is the coefficient of nonli-

nearity, and q is the ambient density. The terms on the left-

hand side in Eq. (2) represent the total change in pressure

with x and the effect of thermoviscous absorption; the right-

hand side corresponds to the changes in pressure due to

quadratic nonlinear phenomena. When nonlinear effects are

sufficiently strong, the absorptive term in Eq. (2) is negligi-

ble in comparison with the nonlinear term, resulting in the

lossless Burgers equation,

@p

@x
¼ b

qc3
p
@p

@s
: (3)

Under certain assumptions, useful analytical approxima-

tions and solutions to the lossy and the lossless Burgers

equation may be found which are valid in different regions.

The three expressions considered in this paper are the

Earnshaw,29 Fubini,30 and Fay31 solutions. These solutions

are useful for our purposes because analytical forms of the

time derivatives and the derivative skewness can be found

for each of these solutions.

C. Earnshaw solution

The method of characteristics may be used to directly

solve the lossless Burgers equation, Eq. (3), implicitly. This

solution, called the Earnshaw solution,29 can be written as a

parametric equation

P ¼ gð/Þ;
/ ¼ tþ rP; (4)

where P is the pressure normalized by some pressure ampli-

tude p0, / is the Earnshaw phase variable, t is time, and r is

a normalized distance away from the source.33 The normal-

ized distance is measured relative to the lossless shock for-

mation distance, �x, which is defined for initially sinusoidal

signals as

�x ¼ qc3

bxp0

: (5)

In Eq. (5), x¼ 2pf, with f being the frequency of the initial

sinusoid, and p0 is its initial amplitude. For the remainder of

this paper, distance is represented by r¼ x/�x. At r¼ 1, x¼ �x,

and a theoretically discontinuous shock has formed. The

Earnshaw solution, which is valid for r< 1, may be inter-

preted as distorting the times of arrival of the initial wave-

form, represented by the Earnshaw phase variable, but not

modifying the pressure values, g¼ g(/).

An analytical form of the derivative skewness may be

found for the Earnshaw solution. For an initially sinusoidal

signal, the time derivative of the Earnshaw solution is writ-

ten in parametric form as

t0;
@P

@t

� �
¼ t� r sin tð Þ; cos tð Þ

1� r cos tð Þ

� �
; (6)

where t0 represents the retarded time of arrival and @P=@t is

the time derivative at the retarded time of arrival. The expec-

tation value of the nth power of the time derivative is

E @P=@tð Þn
� �

¼ 1

2p

ð2p

0

@P

@t0

� �n

dt0; (7)
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where t0 ¼ t� rsin(t) is a retarded time that accounts for the

variation in sound speed with acoustic pressure. It follows

that dt0 ¼ dt(1�r cos(t)). Substituting these values in Eq.

(7) gives

E @P=@tð Þn
� �

¼ 1

2p

ð2p

0

cosn tð Þdt

1� r cos tð Þð Þn�1
: (8)

This integral can be evaluated for n¼ 2 and n¼ 3 to give the

analytical form of the derivative skewness, written as

Sk @P=@tf g ¼ 2 1� r2ð Þ3=2 þ 3r2 � 2

1� r2ð Þ3=4
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p	 
3=2

: (9)

Because the Earnshaw solution assumes lossless propaga-

tion, Eq. (9) depends only on r.
The expression for the Earnshaw solution-based deriva-

tive skewness results in useful approximations. For r � 1,

Eq. (9) may be approximated as

Skf@P=@tg � 3r=
ffiffiffi
2
p

; (10)

indicating that the nonlinear function shown numerically by

Shepherd et al.10 and experimentally by Muhlestein and

Gee27 can be approximated for small r using a linear fit.41

As r! 1, Eq. (9) may be approximated as

Skf@P=@tg � ð1� r2Þ�3=4; (11)

which yields approximate values of 3.47 at r¼ 0.9 and 18.9

at r¼ 0.99 and then continues to increase towards infinity as

r! 1.

D. Fubini solution

While the Earnshaw solution is useful in certain circum-

stances, an explicit function is sometimes more convenient.

This is especially true when constructing waveforms at spe-

cific time intervals, as is the case when discussing the effects

of a finite sampling rate subsequently. One explicit solution

to Eq. (3) is the well-known Fubini solution,33 written as

P ¼
X1
n¼1

2

nr
Jn nrð Þsin ntð Þ: (12)

Similarly to the Earnshaw solution, the Fubini solution is

only valid for r< 1. Using the results developed in

Appendix A for the skewness of an arbitrary Fourier series,

an analytical form of the derivative skewness for r< 1 can

be found using the Fubini solution. The time derivative of

Eq. (12) is an infinite cosine series, written as

@P

@t
¼
X1
n¼1

2

r
Jn nrð Þcos ntð Þ; (13)

which allows the use of Eq. (A28) from Appendix A,

Sk
X

n

An cos ntð Þ
� �

¼ 3ffiffiffi
2
p

X1
n¼1

X1
m¼1

AnAmAnþm

X1
n¼1

A2
n

" #3=2
: (14)

Equation (13) can be substituted into Eq. (14) and the deriva-

tive skewness can be written as

Sk @p=@tf g¼ 3ffiffiffi
2
p

X1
n¼1

X1
m¼1

Jn nrð ÞJm mrð ÞJnþm nþ mð Þrð Þ

X1
n¼1

J2
n nrð Þ

" #3=2
;

(15)

where Jn(x) represents the nth Bessel Function of the first

kind.

Despite its analytical form, one disadvantage of the

Fubini solution is the inability to exactly express the deriva-

tive skewness of a theoretically discontinuous shock due to

the infinite series. Figure 1 shows the derivative skewness of

an initially sinusoidal waveform and the discrepancy between

the values obtained using the Earnshaw and Fubini solutions,

with the solid black line representing the Earnshaw solution

and the remaining lines representing the Fubini solution for a

varying number of terms included in the sum. The Earnshaw

solution approaches infinity as r ! 1, but bandwidth limita-

tions in the Fubini solution limit the values seen. Thus, if a

theoretically discontinuous shock has formed at r¼ 1 but

measurement realities limit the usable bandwidth to 102 � f or

103 � f, the maximum derivative skewness values would be

approximately 10 or 30, respectively.

E. Fay solution

For waveforms with very large amplitudes, the relative

length scales of nonlinear effects are much smaller than ther-

moviscous absorption. For such waveforms traveling in the

sawtooth regime of propagation, typically thought of as

FIG. 1. (Color online) The analytical derivative skewness of an initially si-

nusoidal waveform modeled by the Earnshaw solution as a function of r
along with the estimated derivative skewness of the Fubini solution for N
terms [see Eq. (12)].
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r> 3, another solution may be found. This solution is Fay’s

infinite series,33

P ¼ 2

C

X1
n¼1

sin ntð Þ
sinh nwð Þ ; (16)

where w¼ (rþ 1)/C, and C is the Goldberg 1 number,

defined as 1/(�xa), with a being the thermoviscous absorption

coefficient at f0. The Fay solution in Eq. (16) is valid for C
� 1, signifying nonlinearity initially dominates thermovis-

cous losses. Similar to the Fubini solution, the time deriva-

tive of the Fay solution is a cosine series,

@P

@t
¼ 2

C

X1
n¼1

n cos ntð Þ
sinh nwð Þ : (17)

From Eqs. (14) and (17), the derivative skewness of the Fay

solution may be written as

Sk @p=@tf g

¼ 3ffiffiffi
2
p

X1
n¼1

X1
m¼1

n

sinh nwð Þ
m

sinh mwð Þ
nþ m

sinh nþ mð Þwð Þ
X1
n¼1

n2

sinh2 nwð Þ

" #3=2
;

(18)

which depends, as expected, on w.
Figure 2 shows the derivative skewness of the Fay solu-

tion as a function of r for different values of C. Though

N¼ 1000 terms were used for all three values of C, the effect

of including fewer terms is similar to that seen in Fig. 1 in

that lower derivative skewness values are obtained for steep-

ened or shock-containing waveforms. Because the effect of

fewer terms has already been examined in Fig. 1, Fig. 2

instead includes multiple values of C. As expected, higher

values of C have higher derivative skewness values, and

lower values of C experience a large drop in derivative

skewness values much sooner as they reach their respective

old-age regimes, defined as r>C. In the sawtooth region,

for 3<r<C, the derivative skewness drops as r increases

due to an increase in rise time in the shock, which is inver-

sely proportional to the change in pressure over the shock.33

It is interesting to note that a self-similar behavior is evident

in the old-age regime for all three cases, as all three curves

have derivative skewness values of �1.5 at r¼C and simi-

lar slopes when plotted on a logarithmic scale.

F. Derivative skewness of acoustic shocks

As the waveform steepens and decays it enters and exits

a region in which it is considered an acoustic shock. In most

definitions of a shock, the rise time is used as the defining

factor. Blackstock et al.33 stated that a sinusoid remains in

the sawtooth regime when the rise time, defined as the total

time from the pressure minimum to the pressure maximum,

is less than 20% of the period. This definition is useful but

provides dissimilar results for the pre-shock and post-shock

region, as the waveform shapes are significantly different.

The pre-shock region contains rounded corners, while the

post-shock region still maintains an N-wave shape. In an

effort to accentuate the shortest rise times, Cleveland34 and

Loubeau et al.35 defined rise time for impulsive signals as

the time it takes for the pressure to rise from 10% to 90% of

the maximum amplitude.

Because the impulsive signal definition lessens the dif-

ference between the pre and post-shock regimes, here we

define a shock as occurring when the 10%–90% rise time is

less than 5% of the period. Waveforms for the Fubini and

Fay solutions that satisfy this definition of a shock are shown

in Fig. 3 for a portion of the period T. The derivative skew-

ness values of the solutions are 8.9 at r¼ 0.96 and 3.9 at

r¼ 260, providing a range of values for which acoustic

shocks begin to be significant. Derivative skewness values

below this range likely indicate that the waveform does not

contain shocks as defined, or that shock-like features are

inadequately resolved due to sampling rate and noise limita-

tions, as discussed in Sec. III.

III. MEASUREMENT CONSIDERATIONS

A. Finite sampling rate

Defining a shock based on the duration of the rise time

lends itself to the question of the importance of sampling

rate. If a shock is defined such that the rise time from

10%–90% is 5% of the waveform period, a sampling rate of

20 times the fundamental frequency must be used to guaran-

tee even one point within the 5% window. However, this

sampling rate is insufficient to capture the important differ-

ence in curvature between the waveforms shown in Fig. 3.

The effects of discrete sampling on the estimate of the deriv-

ative skewness can be significant, since an inaccurate mea-

sure of the derivative may be accentuated by the cubic

nature of the skewness.36

To investigate the inaccuracies associated with a finite

sampling rate for the Fubini and Fay solutions, the effect of

discrete sampling on the derivative of a general Fourier sine

series is shown. The general results may then be applied to

FIG. 2. (Color online) The derivative skewness of the Fay solution as a

function of r for three values of Goldberg number.
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the Fubini and Fay infinite series. If f(t) is a Fourier sine se-

ries, written as

f ðtÞ ¼
X1
n¼1

Bn sin ðntÞ; (19)

an estimation of the first time-derivative of f(t) can be

obtained using a finite-difference technique. Here the series

is written with Bn to be consistent with the Fubini and Fay

solutions in Eqs. (12) and (16), respectively. The derivatives

going forward will be approximated, both analytically and

numerically, using a first-order, forward-difference approxi-

mation of the first derivative. Though it is possible that a

higher-order method for approximating the first derivative

could produce more accurate results, it should be noted that

using a central differencing method artificially lowers deriv-

ative values across a coarsely sampled shock.36 Using a con-

stant time step, Dt¼ f/fs, the derivative of Eq. (19) is

approximated by

Df

Dt
¼ f tþ Dtð Þ � f tð Þ

Dt
(20)

¼ 1

Dt

X1
n¼1

Bn sin ntþ nDtð Þ � 1

Dt

X1
n¼1

Bn sin ntð Þ (21)

¼ 1

Dt

X1
n¼1

Bn sin ntþ nDtð Þ � sin ntð Þ
	 


: (22)

Using the trigonometric identity sin(aþ b)¼ sin(a)

cos(b)þ cos(a) sin(b), Eq. (22) becomes

Df

Dt
¼ 1

Dt

X1
n¼1

Bn½sin ntð Þcos nDtð Þ

þ cos ntð Þsin nDtð Þ � sin ntð Þ� (23)

¼
X1
n¼1

Bn
sin nDtð Þ

Dt
cos ntð Þ

þ
X1
n¼1

Bn
cos nDtð Þ � 1

Dt
sin ntð Þ: (24)

If we define

A0n ¼ Bn
sin nDtð Þ

Dt
;

B0n ¼ Bn
cos nDtð Þ � 10

Dt
; (25)

then we may write Eq. (24) as

Df

Dt
¼
X1
n¼1

A0n cos ntð Þ þ
X1
n¼1

B0n sin ntð Þ: (26)

In the limit that Dt! 0, we find that A0n ! nBn and B0n ! 0,

which is the result obtained by assuming continuous sam-

pling from the beginning. Thus, for a finite-sampled Fourier

sine series, the first time derivative contains both sine and

cosine terms. As this infinite sum involves both sine and co-

sine terms, we must use the skewness of a full Fourier series

derived in Appendix A. Equation (26) is then used in con-

junction with Eq. (A27) to estimate the derivative skewness

for the Fubini and Fay solutions while taking into account a

finite sampling rate.

1. Fubini solution

The effects of finite sampling rate for the Fubini solution

are seen in Fig. 4 for various values of fs/f, the sampling rate

relative to the fundamental frequency. In Fig. 4(a) the deriva-

tive skewness of the discretely sampled Fubini solution is

FIG. 3. (Color online) Shock profiles for normalized Fubini (r¼ 0.96) and

Fay (r¼ 260, C¼ 103) solutions with derivative skewness values of 8.9 and

3.9, respectively, shown over a section of the period T. See text for shock

definition.

FIG. 4. (Color online) (a) Derivative skewness estimates of the Fubini solu-

tion for fs/f¼ 101, 102, 103, and 104 along with the analytical Earnshaw cal-

culation. For each curve, fs/2f terms were used to compute the estimates. (b)

Error between the Fubini estimates and the Earnshaw solution.
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plotted, while in Fig. 4(b) the error, relative to the continuously

sampled Earnshaw solution, is shown. A limiting behavior is

seen as a result of the finite sampling rate. Whereas the exact

solution from Eq. (9) continues to increase on the logarithmic

scale, going to infinity as r! 1, the discretely sampled deriv-

ative skewness estimates in Fig. 4 begin to approach respective

maximum values. These values are less than the theoretical

maximum for a given fs/f (see Appendix B) because of the

curved shock profile in the preshock region. For greater fs/f,
shorter rise times can be resolved, resulting in larger derivative

skewness estimates. The divergent nature of the exact deriva-

tive skewness suggests that a derivative skewness estimate

with any reasonable sampling rate ceases to approximate the

actual value for r sufficiently close to one. The point at which

the discretely sampled estimate begins to underestimate the

exact value depends on fs/f. For example, the derivative skew-

ness obtained using fs/f¼ 10 diverges from the continuously

sampled result above Sk{@p=@t}¼ 1. When fs/f¼ 100, an

accurate estimate is obtained until Sk{@p=@t}¼ 5, and for

fs/f¼ 1000 values of Sk{@p=@t} up to 12 can be accurately

estimated.

2. Fay solution

The derivative skewness estimates of the Fay solution,

shown in Fig. 5, show similar results to the derivative skew-

ness estimates based on the Fubini solution. A limiting

behavior is again dependent on the sampling rate relative to

the fundamental frequency. However, as was discussed pre-

viously, the Fay solution has an N-wave shape and a more

consistent slope than the Fubini solution, thus a lower sam-

pling rate is required to achieve the same amount of accu-

racy. For example, for the fs/f¼ 100 curve in Fig. 4, the

derivative skewness begins to diverge at a value of 5,

whereas in Fig. 5 the curve is accurate for derivative skew-

ness values less than 7. As the wave enters the old-age re-

gime, where r>C, the shocks have decayed sufficiently that

the derivative skewness values agree, even for very low rela-

tive sampling rates.

The effects of sampling rate have been identified in sit-

uations other than sinusoidal plane waves. Gee et al.25 down-

sampled measured noise waveforms from an F-22 aircraft

and found that by slightly decreasing sampling rate, deriva-

tive skewness values decreased accordingly. Insufficient

sampling rate possibly explains relatively low derivative

skewness values observed in laboratory-scale jet data despite

the presence of acoustic shocks.12,13

3. Recommended sampling rates

Though a finite sampling rate will always underestimate

a theoretically discontinuous shock, an adequate sampling

rate may accurately calculate derivative skewness values to

up to a certain threshold, so as to indicate shock formation.

The Fubini solution is classified as containing a shock at

r¼ 0.96, with a corresponding derivative skewness values

of 8.9. If this waveform is sampled at fs/f¼ 100, there is a

28% error at this distance [see Fig. 4(b)]. The Fay waveform

for C¼ 1000 decays to the point of no longer being a shock

at r¼ 260 with a derivative skewness of 3.9. At this point,

fs/f¼ 10 underestimates the derivative skewness by nearly

50%, but fs/f¼ 100 has negligible errors [see Fig. 5(b)].

Therefore, a minimum sampling rate of fs/f¼ 100 is recom-

mended to accurately estimate the derivative skewness dur-

ing shock formation and decay. Using this sampling rate,

derivative skewness values up to five will be accurately esti-

mated for the sinusoidal case. Greater values, up to a theoret-

ical maximum of 9.8, may be estimated using this sampling

rate, but they may underestimate the actual shock steepness.

Higher sampling rates provide additional shock detail and

therefore accurate Sk{@p=@t} estimates for steeper shocks,

but a minimum sampling rate of fs/f¼ 100 is sufficient to

obtain Sk{@p=@t} > 5 as an approximate threshold for the

presence of acoustic shocks in the waveform.

B. Signal-to-noise ratio

Additive noise can also impact derivative skewness val-

ues. Though such noise occurs in different ways, each with

its own characteristics and statistics, investigation into the

effects of additive, Gaussian noise on derivative skewness

are illustrative of the robustness of this metric. Two cases

are considered: first, the case of a steepened waveform in the

pre-shock region at r¼ 0.75, and second, a wave in the saw-

tooth region, at r¼ 30 and C¼ 1000.

The waveforms are calculated at each distance using the

Fubini and Fay solutions, respectively, following which band-

passed Gaussian noise is added to the waveform at various

FIG. 5. (Color online) Estimates of the derivative skewness for the Fay solu-

tion as a function of r and fs/f¼ 101, 102, 103, and 104, with a Goldberg

number of 1000. To calculate the estimates, (fs/f)/2 terms were used. The

exact derivative skewness derived from continuous sampling is plotted for

comparison.
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signal-to-noise ratios (SNR), defined as SNR¼ 20log10

(prms=noiserms), where prms is the root-mean-square of the sig-

nal and noiserms is the root mean square of the noise. In order

to avoid artifacts associated with filtering at a high sampling

rate, a fourth-order Butterworth filter is used, with a center fre-

quency of fM and low and high cutoff frequencies of fL¼ fM/

1.41 and fH¼ 1.41 fM. Figure 6(a) displays the effect of addi-

tive noise for the steepened waveform at r¼ 0.75, where the

derivative skewness value of the original waveform is 2.51, for

f< fM< 50f, where f is the fundamental frequency of the sinu-

soid, and 0 < SNR < 50 dB. As would be expected, a higher

SNR results in a derivative skewness calculation closer to the

actual value. Additive noise introduces additional variations

that mask the presence of the steepened waveform resulting in

lower values of Sk{@p=@t}. In addition, higher frequency

noise has a greater effect than low-frequency noise on the ac-

curacy of the derivative skewness. For fM¼ f, a SNR of

approximately 3 dB results in a measured value that is half the

original derivative skewness. In contrast, the same reduction is

seen at fM¼ 10f for SNR ffi 20 dB. Higher frequency noise

introduces larger amplitude derivative values, both positive

and negative, than low-frequency noise of the same amplitude.

These large-amplitude values are more likely to mask the

larger derivative values of shocks in the expectation values

used to calculate skewness. But because these expectation val-

ues are performed on a cubed quantity, the derivative skewness

is likely to be less sensitive to the presence of additive noise

than a metric such as the ASF,28 where the linear average of

@p=@t is taken. In summary, care must be taken to maximize

SNR when inspecting the derivative skewness of a waveform,

as even small noise sources may artificially lower the deriva-

tive skewness values for high-frequency noise.

Figure 6(b) shows results similar to that of Fig. 6(a) but

for a waveform in the sawtooth region at r¼ 30. Because a

shock is present in the waveform, the calculated derivative

skewness is markedly higher, 12.23, and less likely to be

masked in the derivative skewness by the presence of noise.

In contrast with the Fubini solutions, at fM¼ 10f the presence

of noise lowers the derivative skewness to half of the origi-

nal value at SNR ffi 7.5. Despite the resilience of the deriva-

tive skewness when shocks are present in the waveform, it is

of note that high-frequency noise can still have a noticeable

effect on calculated values, even with a high SNR.

IV. APPLICATIONS

A. Numerical case study

Though the above results give an understanding of the

behavior of derivative skewness in the shock formation, saw-

tooth, and old-age regimes, it is useful to have a complete

grasp of the trends observed throughout the entire process.

In order to do this, Sk{@p=@t} for the spatial region between

the preshock and sawtooth regimes must be calculated.

Blackstock37 presented a solution to the Burgers equation

that served as a bridge between the Fubini and Fay solutions.

By comparing amplitudes of the fundamental frequency as a

function of r he showed that for r > 3.6, the difference

between the “Blackstock bridging function” and the Fay so-

lution was less than 2%.

Although an analytical representation of the derivative

skewness of the Blackstock bridging function has not been

found, the derivative skewness throughout the entire formation

and decay of shock waves can be found using a numerical

waveform propagation algorithm. The derivative skewness

from the propagated waveform can be compared with the

Earnshaw and Fay solutions in their regions of validity and

give a complete view of Sk{@p=@t} during shock formation

and decay. For the purposes of this paper, a propagation

scheme based on the generalized Burgers equation4 was used.

Sinusoids with Goldberg numbers ranging from C¼ 0.1 to

C¼ 104 are numerically propagated, and their derivative

skewness is compared with results obtained using the analyti-

cal solutions described earlier. In order to provide a situation

similar to experimental data considered later, a 1500 Hz ini-

tially sinusoidal waveform was sampled at 204 800 Hz, giving

fs/f¼ 136.5. This sampling rate suggests a maximum deriva-

tive skewness estimate of �11.6 (see Appendix B) for the ini-

tially sinusoidal signal. The amplitude of the initial sinusoid

was varied to correspond to values of C ranging from 0.1 to

10 000. Although the waveform has a fundamental frequency

of 1500 Hz, due to the nondimensional nature of the analysis

FIG. 6. (Color online) Derivative skewness error for an initial sinusoid

propagated to a distance of (a) r¼ 0.75 and (b) r¼ 30 for C¼ 1000 with

band-passed noise added to the signal at various SNR. The calculated deriv-

ative skewness with infinite SNR are (a) 2.51 and (b) 12.23.
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and the assumption of thermoviscous absorption, the results

show little variation with changing fundamental frequency for

constant C and relative sampling rates.

The comparison of numerical and analytical derivative

skewness values is shown in Fig. 7, with numerical predic-

tions plotted as dashed lines and the analytical solutions plot-

ted as solid lines. The Earnshaw solution is plotted for r < 1

and the Fay for r > 3. Values of C range from 10�1 to 104,

but the Fay solution is not plotted for C¼ 10�1 and 100

because it is only valid for C � 1. The behavior seen using

the numerical propagation of these waveforms conforms

with expectations. A slight steepening of the waveform

occurs, evidenced by the increase in derivative skewness,

but the low initial waveform amplitude results in only mini-

mal steepening, and absorption results in no shock forma-

tion. Both solutions diverge quickly from the Earnshaw

solution as absorption dominates, but the curve for C¼ 100

reaches a much higher value than the curve for C¼ 10�1.

The curves for C¼ 101 and 102 also show increased deriva-

tive skewness, with derivative skewness continuing to

increase past r¼ 1, peaking near r¼ p/2, the theoretical

location of the shock maximum amplitude. Differences seen

between the numerical and analytical results are in large part

due to two different effects. First, the Fay solution cannot be

treated as exact for small values of r or C. Second, slight

error is introduced in the numerical propagation scheme due

to the limited sampling rate and inability to fully character-

ize the acoustic shock. From past work,34 it is recommended

that 10�12 samples occur within the rise of the shock for

numerical propagation, which is not achieved with the cur-

rent sampling rate. The errors seen are very slight in the

waveform itself, but slight changes in the waveform have a

large impact on derivative values and thus Sk{@p=@t}.

Increasing the sampling rate by a factor of 10 dramatically

improves results for C¼ 102. In Fig. 7, there is an error of

35.1% between the numerical and analytical solutions for

the C¼ 102 curves at r¼ 3. If the sampling rate is increased

by a factor of 10, this error drops to 4.6%. The numerical

absorption due to the limited sampling rate is different than

the maximum derivative skewness value plateau that is seen

for both the C¼ 103 and 104 curves. The numerical and ana-

lytical curves for C¼ 103 both reach the maximum deriva-

tive skewness value defined by the sampling rate, but the

numerical curve begins to decrease slightly before the ana-

lytical curve due to this numerical absorption. Though these

issues are something that must be taken into account when

numerically propagating shock-containing waveforms, the

numerical propagation confirms the analytical results for

both the Earnshaw and Fay solutions and serves as a bridge

between them.

As an example of the sensitivity of the derivative skew-

ness to changes in the waveform, example analytical and nu-

merical waveforms are presented in Fig. 8(a) for C¼ 102

and r¼ 3. The waveforms themselves are very similar, but a

very slight change in amplitude and a rounding of the edges

of the shock is observed. These changes are more evident in

Fig. 8(b), which shows the derivative of the waveforms in

Fig. 8(a). The small changes in the waveforms result in

larger changes in the derivative, which in turn has a large

effect on the derivative skewness. The derivative skewness

of the Fay solution shown is 9.53, while the numerically

propagated signal has a derivative skewness of 6.18, giving

an error of 35.1%. Because a small change in the waveform

can have such a significant effect on derivative skewness, it

is important that sampling rates be considered when numeri-

cally propagating shock-containing signals with the goal of

calculating the derivative skewness.

B. Plane wave tube

1. Initially sinusoidal signal

In addition to numerical confirmation of the analytical

results, the results have been also compared against experi-

mental data. These data were obtained through use of a plane

wave tube, constructed from sections of PVC pipe, each

3.05 m (10.0 ft) long with a 2.54 cm (1.0 in.) radius. A BMS

4590 coaxial compression driver was used to excite the tube

and the tube was terminated anechoically with a wedge of

fiberglass insulation. Five G.R.A.S. 40DD 3.18 mm (1/8 in.)

microphones were mounted without gridcaps in holes drilled

in the tube at distances of 0.4, 2.6, 5.6, 8.6, and 11.7 m from

the driver. The microphones were flush mounted with the

wall so they did not protrude and disturb the sound field. The

driver was excited by a 1500 Hz signal such that the ampli-

tude at the 0.4 m microphone was p0¼ 547 Pa, giving

prms¼ 387 Pa. This gives a lossless shock formation distance

of 7.9 m, meaning that the farthest microphone is located at

approximately r¼ 1.48. The waveforms recorded were

FIG. 7. (Color online) Derivative skewness of numerically propagated initial

sinusoids with varying Goldberg numbers. The Earnshaw and Fay solutions

are shown as solid lines, and the numerical predictions are shown in a

dashed line.
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sampled at 204.8 kHz for approximately 6 s, giving fs/
f¼ 136.5, which puts the maximum derivative skewness for

sawtooth waveforms at approximately 11.6. Derivative

skewness values from the five waveform measurements have

been calculated and compared with those predicted by

numerically propagating the waveform measured at 0.4 m.

The waveforms from this experiment have been shown

already by Muhlestein et al.28 The figures in Ref. 28 show

that the waveform steepens and forms a shock as it pro-

gresses down the tube. However, as shock waves form, a

higher-frequency jitter can be observed in the waveforms,

likely due to scattering of high harmonics by slight disconti-

nuities at tube junctions. Nevertheless, the measured deriva-

tive skewness values agree well with estimates obtained

through numerical propagation, as shown in Fig. 9. In the

context of the SNR analysis above, the jitter is not of a suffi-

ciently high frequency or amplitude to have a noticeable

effect on the derivative skewness.

A similar comparison between the measured and numer-

ical values has been completed in Ref. 28 for the ASF, which

is the ratio of the average positive derivatives to negative

derivatives in the waveform and the inverse of Gallagher

and McLaughlin’s wave steepening factor.38 Since the ASF

averages derivative values, the effect of one large derivative

value is largely negated by the presence of many smaller val-

ues. On the other hand, the cubic nature of derivative skew-

ness suggests that although Sk{@p=@t} can be affected by

the presence of noise, its emphasis of large derivative values

makes it less sensitive to noise than the ASF.

2. Broadband noise

Though the case of an initially sinusoidal wave provides

significant physical insight, of broader interest is the propa-

gation of noise. Although the different natures and PDFs of

broadband noise and sinusoids prevent an immediate quanti-

tative comparison of derivative skewness values, insights

may still be gained by comparing trends. Because of the

presence of larger outliers in noise, we expect noise signals

to form shocks on a smaller length scale and reach greater

derivative skewness values.27 Using the same experimental

setup as in the sinusoidal case, white noise was passed

through a band-pass filter (700–2300 Hz) and propagated

down the tube. Because of the broadband nature of the noise,

the definition of �x used earlier for sinusoids in Eq. (5) is no

longer valid. Instead, we define a nonlinear distortion length

similar to that of Gurbatov and Rudenko,39

�xN ¼
qc3

b 2pfcð Þ
ffiffiffi
2
p

prms

	 
 ; (27)

where fc is the characteristic frequency of the noise. Here,

the
ffiffiffi
2
p

is included so that as the noise bandwidth approaches

zero, the sinusoid shock formation distance in Eq. (5) is

recovered. In order to differentiate between the noise and si-

nusoidal cases, the normalized distance is now referred to as

rN¼ x/�xN .

As an example of broadband noise propagation, noise

waveforms with fc¼ 1500 Hz and prms¼ 286 Pa at x¼ 0.4 m

were measured. For this case, these input conditions yield

�xN ¼ 9.0 m, a slightly greater distance than the shock forma-

tion distance of the sinusoidal signal. Figure 10 shows short

waveform segments measured at 0.4 and 11.7 m, and the pre-

diction made by numerically propagating the measured

waveform at 0.4 to 11.7 m. In Fig. 10(b), a similar waveform

jitter is present in the 11.7 m (r¼ 1.31) waveform. However,

by comparing Figs. 10(b) and 10(c), it can be seen that the

FIG. 8. (Color online) (a) Numerically propagated waveform compared

with the Fay solution. (b) The derivatives of the waveforms in part (a).

Small changes in the waveforms result in large derivative changes, which in

turn result in large changes in the derivative skewness.

FIG. 9. (Color online) Comparison of derivative skewness values from

measured waveforms in a plane wave tube with those of numerically propa-

gated waveforms.
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waveforms match well aside from the previously described

jitter.

To more closely examine the spectral effects, Fig. 11

shows the power spectral densities associated with the three

waveforms in Fig. 10. As the waveform propagates down the

tube, wave steepening results in increases in level above the

original cut-off frequency, and difference-frequency genera-

tion and possible wave coalescence increase the level

below.40 The spectra of the predicted and measured wave-

forms at 11.7 m are very similar, aside from the 10–35 kHz

noise that is 30 dB down from the spectral peak and is the

frequency-domain manifestation of the waveform jitter.

For the noise case, the waveform jitter is of sufficiently

high frequency and amplitude to have a measureable differ-

ence in the derivative skewness. Figure 12 shows the meas-

ured and predicted derivative skewness values for waves of

two initial amplitudes, the first with prms¼ 200 Pa (140 dB re

20 lPa) and prms¼ 286 Pa (143 dB re 20 lPa) for the second.

These two cases in particular, were chosen because for all

amplitudes of 200 Pa and below the ringing noise was pres-

ent, but the SNR was great enough to have a minimal effect

on derivative skewness, and for all amplitudes 286 Pa and

above the ringing had a noticeable effect. There are a few

features of note in Fig. 12. First, Sk{@p=@t} reaches a higher

value for the broadband noise than is possible in the sinusoi-

dal case for the given sampling rate, as seen by comparing

with Fig. 9. This corresponds with the initial experiment-

based findings of Muhlestein et al.28 Second, the derivative

skewness has reached its highest value and is beginning to

decrease by rN¼ 1, suggesting that the decay of shock

waves is already occurring. This is likely because the

definition used for �xN overestimates the actual distortion

length.27 Because broadband noise has a different PDF than

sinusoidal noise, there are more outliers in terms of pressure,

which are then more likely to form shocks earlier in the

propagation than a sinusoid. Third, the ASF is steadily

increasing throughout this range of r, indicating that wave

steepening is an ongoing process, even though the derivative

skewness is decreasing. The largest shocks have already

formed and started to decay, but the wave as a whole is still

becoming more steepened. Fourth, for the higher amplitude

case the measured derivative skewness values are markedly

lower than predicted for higher values of rN, when shocks

are likely well formed. This lower value is due to the pres-

ence of high-frequency jitter, as in the case of the sinusoidal

signal. However, because the jitter is of a sufficiently high

frequency and amplitude for the 286 Pa case, it creates a no-

ticeable difference between the predicted and measured

FIG. 10. (Color online) Measured noise waveforms at (a) 0.4 and (b)

11.7 m, and (c) the numerically predicted waveform at 11.7 m.

FIG. 11. (Color online) Spectra calculated from the three waveforms, seg-

ments of which were shown in Fig. 10. In the 11.7 m measured spectrum,

high-frequency noise is present from 10 to 35 kHz.

FIG. 12. (Color online) Predicted (dashed) and measured (dots) values of

the derivative skewness as a function of rN¼ x/�xN . Values shown are for

prms¼ 286 and 200 Pa. Both cases share similar growth initially, then differ-

ent behavior with increasing r.

J. Acoust. Soc. Am. 139 (3), March 2016 Reichman et al. 1399



values. In contrast, the SNR is 3–5 dB higher in the low-

amplitude case. In Fig. 6(a) there is a region where a 5 dB

decrease in SNR results in a substantially lower SNR, and

we see similar behavior here. While Sk{@p=@t} from both

numerical and measured data agree for the lower case, a

5 dB decrease in SNR results in substantially underestimat-

ing the derivative skewness values for the high-amplitude

case. Ultimately, although Sk{@p=@t} is relatively robust to

the presence of noise in the signal, high-frequency noise

may still significantly alter measured values.

In the earlier discussion of sampling rates, it was sug-

gested that fs/f > 100 in order to calculate accurate derivative

skewness values of at least five for sinusoidal signals. The

shock content of the propagating noise waveforms provides

a test for this recommendation, though this analysis is lim-

ited in scope as the noise considered is not representative of

all types of noise. There are many algorithms to identify

shocks in a waveform (see Ref. 32 for a recent example);

here, a shock is identified as a derivative value exceeding 20

waveform derivative standard deviations to include only the

largest outliers. The number of shocks matching this crite-

rion within a 6 s waveform is displayed for each of the

microphones in Table I. The 0.4 and 2.6 m microphones

have essentially no shock content for both cases. However,

differences are seen at 5.6 m. For the 200 Pa case in Fig. 12,

Sk{@p=@t}¼ 5.05 and is still increasing. There are shocks

present in the waveform, but fewer than at 8.6 and 11.7 m.

This helps illustrate that for Sk{@p=@t}
 5, significant

shocks have formed in this waveform, providing support for

a derivative skewness threshold and associated sampling

requirements. These conclusions also draw support from the

286 Pa case. Minimal shocks seen at 0.4 and 2.6 m results in

derivative skewness values of 0.27 and 1.69, respectively.

However, as the number of shocks greatly increases,

Sk{@p=@t} rises accordingly. While these particular cases

corroborate the threshold used in sinusoidal analysis, the

results are not general and therefore additional research is

needed to understand the evolution of derivative skewness

values in the context of random noise.

V. CONCLUSIONS

In this paper, quantitative and physical insights into the

evolution of the skewness of the first time difference of a

nonlinearly evolving pressure waveform, i.e., the derivative

skewness, have been obtained using analytical, numerical,

and experimental methods. Analytical forms of the changing

derivative skewness have been found for the Earnshaw,

Fubini, and Fay solutions. The solutions reveal a sharp

increase in the derivative skewness near the shock formation

distance, a gradual decrease in the sawtooth region, and a

more rapid decrease in the old-age region as the waveform

unsteepens. Numerical studies confirm these trends and

show that the derivative skewness reaches its maximum

between the preshock and sawtooth regions. The effects of

additive noise and reduced waveform sampling rate have

been investigated; both tend to reduce estimated derivative

skewness values. In comparing derivative skewness values

for random noise with those of sinusoidal signals, noise will

reach greater derivative skewness values over a relatively

shorter distance.

The investigation has included practical considerations

for nonlinear acoustic signal analysis using the derivative

skewness. For sinusoids, in order to observe large derivative

skewness values that occur as shocks forms, a sampling rate

of at least 100 times the fundamental frequency should be

used. Larger sampling rates result in more accurate esti-

mates, provided that the measurement bandwidth is com-

mensurate with the greater sampling rate. The recommended

minimum scaled sampling rate allows derivative skewness

values of at least 5 to be estimated, which is sufficient to

serve as an approximate threshold indicating that a shock is

present. The preliminary experimental investigation with

noise shows that a similar threshold can also indicate shock

formation, though more investigation is needed. These rec-

ommendations may provide guidelines for future experi-

ments and allow prior experiments to be more quantitatively

interpreted.
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APPENDIX A: SKEWNESS OF A FOURIER SERIES

The skewness of a Fourier series can be expressed ana-

lytically in terms of a 2p-periodic function f(t) that may be

written as

f ðtÞ ¼
X1
n¼1

An cos ðntÞ þ
X1
n¼1

Bn sin ðntÞ ¼ aþ n; (A1)

TABLE I. The number of shocks present in two waveforms of different

amplitudes, calculated from the waveforms measured at each of the five

microphones. For this table a shock has been defined as a derivative exceed-

ing 20 standard deviations of the waveform derivative.

Mic locations 0.4 m 2.6 m 5.6 m 8.6 m 11.7 m

200 Pa rN 0.031 0.203 0.437 0.671 0.913

Derivative skewness 0.17 1.01 5.05 13.2 15.7

Number of shocks 0 0 61 305 452

286 Pa rN 0.045 0.290 0.625 0.960 1.31

Derivative skewness 0.27 1.69 14.6 15.4 14.1

Number of shocks 0 3 354 664 605
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where a is the cosine summation and n is the sine summa-

tion. The skewness may be written in terms of E[f3(t)] and

E[f2(t)]. Due to periodicity, E[f3(t)] may be written

E f 3 tð Þ
� �

¼ 1

2p

ð2p

0

aþ nð Þ3dt (A2)

¼ 1

2p

ð2p

0

a3dtþ 3

ð2p

0

a2ndt

"

þ 3

ð2p

0

an2dtþ
ð2p

0

n3dt

�
: (A3)

Since n is an odd function, the second and fourth integrals

are identically zero. The first integral is

ð2p

0

a3dt ¼
ð2p

0

X1
n¼1

An cos ðntÞ
( )3

dt (A4)

¼
ð2p

0

X1
n¼1

X1
m¼1

X1
l¼1

AnAmAl

� cos ðntÞ cos ðmtÞ cos ðltÞdt; (A5)

X1
n¼1

X1
m¼1

X1
l¼1

AnAmAl

ð2p

0

cos ðntÞcos ðmtÞcos ðltÞdt: (A6)

By repeated use of the trigonometric identity

cos uð Þcos �ð Þ ¼ cos uþ vð Þ
2

þ cos u� vð Þ
2

; (A7)

the integrand in Eq. (A6) becomes

cos ntð Þcos mtð Þcos ltð Þ

¼ 1

4

cos mþ lþ n½ �tð Þþ cos mþ l� n½ �tð Þ
þcos m� lþ n½ �tð Þþ cos m� l� n½ �tð Þ

" #
: (A8)

Each term in Eq. (A8) will integrate to zero unless their indi-

vidual triple indices (m, n, l) combine to zero, in which case,

it will integrate to 2p. These conditions include

mþ lþ n ¼ 0;

mþ l� n ¼ 0;

m� lþ n ¼ 0;

m� l� n ¼ 0: (A9)

Since n, m, l> 0, the first condition in Eq. (A9) never occurs.

The remaining three conditions may be written as

mþ l ¼ n;

mþ n ¼ l;

lþ n ¼ m: (A10)

These three conditions may be written in the triple summa-

tion in terms of a Kronecker delta,

dn;m ¼
1 n ¼ m
0 n 6¼ m;

as

�

ðp

�p
a3dt ¼ p

2

"X1
n¼1

X1
m¼1

X1
l¼1

AnAmAldmþl;n

þ
X1
n¼1

X1
m¼1

X1
l¼1

AnAmAldnþm;l

þ
X1
n¼1

X1
m¼1

X1
l¼1

AnAmAldlþn;m

#
: (A11)

By rearranging the arbitrary indices n, m, and l, it can be

shown that each of the triple summations in Eq. (A11) are

equal to each other. Therefore, the first integral of Eq. (A3)

may be written

ðp

�p
a3dt ¼ 3p

2

X1
n¼1

X1
m¼1

X1
l¼1

AnAmAldnþm;l

" #
: (A12)

The third integral of Eq. (A3) may be found using similar

logic. This integral is written

ðp

�p
an2dt ¼

ðp

�p

�X1
n¼1

An cos ðntÞ
��X1

m¼1

Bm sin ðntÞ
�2

dt

(A13)

¼
X1
n¼1

X1
m¼1

X1
l¼1

AnBmBl

ðp

�p
cos ðntÞ

� sin ðmtÞ sin ðltÞdt: (A14)

Noting that

sin að Þsin bð Þ ¼ 1

2
cos a� bð Þ � cos aþ bð Þ
� �

;

the integrand of Eq. (A14) may be written

1

4

cos n� mþ l½ �tð Þ þ cos nþ m� l½ �tð Þ
�cos n� m� l½ �tð Þ � cos nþ mþ l½ �tð Þ

" #
: (A15)

Applying the same reasoning used in obtaining Eq. (A11),

ðp

�p
an2dt ¼ p

2

"X1
n¼1

X1
m¼1

X1
l¼1

AnBmBldlþn;m

þ
X1
n¼1

X1
m¼1

X1
l¼1

AnBmBldnþm;l

�
X1
n¼1

X1
m¼1

X1
l¼1

AnBmBldmþl;n

#
: (A16)

By rearranging the arbitrary indices, it can be shown that the

first and second triple summations are identical. Then, the

third integral in Eq. (A3) may be writtenðp

�p
an2dt ¼ p

2

"
2
X1
n¼1

X1
m¼1

X1
l¼1

AnBmBldnþm;l

�
X1
n¼1

X1
m¼1

X1
l¼1

AnBmBldmþl;n

#
: (A17)

Thus the expectation value of f 3(t) is
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E f 3 tð Þ
� �

¼ 3

4

"X1
n¼1

X1
m¼1

X1
l¼1

AnAmAldnþm;l

þ 2
X1
n¼1

X1
m¼1

X1
l¼1

AnBmBldnþm;l

�
X1
n¼1

X1
m¼1

X1
l¼1

AnBmBldmþl;n

#
: (A18)

In the special case that Bn¼ 0 for all n, Eq. (A18) reduces to

E f 3 tð Þ
� �

¼ 3

4

X1
n¼1

X1
m¼1

X1
l¼1

AnAmAldnþm;l: (A19)

The expectation value of f2(t) may be found as well. Again,

due to periodicity, we may write

E f 2 tð Þ
� �

¼ 1

2p

ðp

�p
aþ nð Þ2dtþ 1

2p

ðp

�p
a2þ n2þ 2an
	 


dt:

(A20)

Since an is an odd function, this term integrates to zero. The

remaining terms yield

E f 2 tð Þ
� �

¼ 1

2p

ðp

�p

X1
n¼1

An cos ntð Þ
( )2
2
4

þ
X1
n¼1

Bn sin ntð Þ
( )2

3
5dt (A21)

¼ 1

2p

ðp

�p

X1
n¼1

X1
m¼1

½AnAm cos ntð Þcos mtð Þ

þ BnBm sin ntð Þsin mtð Þ�dt (A22)

¼ 1

2p

X1
n¼1

X1
m¼1

(
AnAm

ðp

�p
cos ntð Þcos mtð Þdt

þBnBm

ðp

�p
sin ntð Þsin mtð Þdt

)
(A23)

¼ 1

2p

X1
n¼1

X1
m¼1

AnAm þ BnBmð Þdnmp: (A24)

The expectation value may take the form of Eq. (A24) due to

the orthogonality of the integrand of Eq. (A23). The expecta-

tion value of f2(t) may then be simplified to

E f 2 tð Þ
� �

¼ 1

2

X1
n¼1

A2
n þ B2

n

	 

: (A25)

Again, in the special case that Bn¼ 0 for all n, Eq. (A25)

reduces to

E f 2 tð Þ
� �

¼ 1

2

X1
n¼1

A2
n: (A26)

Using Eq. (A18) and Eq. (A25), we find that the skewness of

f(t) is

Sk f tð Þ
� 

¼ 3ffiffiffi
2
p

X1
n¼1

X1
m¼1

X1
l¼1

AnAmAldnþm;l þ 2AnBmBldlþn;m � AnBmBldmþl;nð ÞÞ

X
n

A2
n þ B2

n

	 
� �3=2
: (A27)

In the special case that Bn¼ 0 for all n, the skewness reduces to

Sk f tð Þ
� 

¼ 3ffiffiffi
2
p

X1
n¼1

X1
m¼1

X1
l¼1

AnAmAldnþm;l

X
n

A2
n

� �3=2
: (A28)

In the general case, Eq. (A27) must be used if a sum includes

both sine and cosine terms, as is the case with discrete sam-

pling. However, if the sum involves only cosine terms, such

as the derivative of the Fubini and Fay solutions, the simpler

Eq. (A28) may be used.

APPENDIX B: DERIVATIVE SKEWNESS OF A
DISCRETELY SAMPLED SAWTOOTH

The derivative skewness of a discretely sampled sawtooth

wave can be analytically calculated. If the sawtooth of ampli-

tude p0 is sampled at a rate of fs/f¼N, estimating the deriva-

tive values using a two-point finite-difference method results

in N points within a wavelength. Of these N points, N� 1

points have a derivative estimate of Dp/Dt¼�2p0/N and one

point has an estimate of Dp/Dt¼ 2p0(1� 1/N), which results

in a zero-mean process. The expectation value of (dp/dt)n is

then written as

E
dp

dt

� �n
" #

¼
N � 1ð Þ � 2p0

N

� �n

þ 2p0 1� 1

N

� �� �n

N
:

(B1)

Substitution of Eq. (B1) into the definition of the derivative

skewness in Eq. (1) and simplifying gives

Sk
dp

dt

� �� �
¼ N1=2

N � 1ð Þ � 1

N

� �3

þ 1� 1

N

� �3

N � 1ð Þ 1

N

� �2

þ 1� 1

N

� �2
( )3=2

:

(B2)
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For N � 1, this is approximated as Sk{(dp/dt)} ffi N1/2.

Since a sawtooth gives the lowest possible average negative

derivative values and highest possible positive values for an

initially sinusoidal signal, this estimate of a discretely

sampled sawtooth gives the greatest possible derivative

skewness that can be estimated using a sampling rate of

fs/f¼N.
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