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In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is devel-

oped. The indicator is derived from an ensemble-averaged, frequency-domain version of the gen-

eralized Burgers equation, which can be rearranged in order to directly compare the effects of

nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency

and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum.

Further theoretical development has given an expression for the role of the normalized quadspec-

trum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986–992 (1981)], in the spatial rate

of change of the pressure spectrum level. To explore this finding, an investigation of the change

in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous

media has been conducted. The decibel change with distance, calculated through Q/S, captures

the growth and decay of the harmonics and indicates that the most significant changes in level

occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of

change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear

gains are observed but offset by absorption, which leads to a greater overall negative spatial rate

of change for higher harmonics. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4945787]

[JFL] Pages: 2505–2513

I. INTRODUCTION

The use of signal processing metrics as indicators of

nonlinear propagation has been largely motivated by analy-

sis of high-amplitude noise from launch vehicles,1–3 military

jet aircraft,4–7 and laboratory-scale jets.8–14 Some ad hoc
statistical measures have been used, such as scatterplots of

the time rate of increase versus the magnitude of the pressure

rise,1,2 wave or average steepening factors8,13,15 or the skew-

ness of the pressure time derivative,3,5,7,12 for which changes

as a function of source conditions, distance, or angle have

yielded insights regarding nonlinearity. However, more

quantitative interpretations of the average steepening

factor16 and the derivative skewness17 have been provided

by examining how the measures evolve for analytical nonlin-

ear propagation scenarios.

While these ad hoc indicators can be leveraged to obtain

significant physical insight, other nonlinearity indicators

have been motivated directly from the generalized Burgers

equation (GBE): a parabolic approximation to the second-

order wave equation that incorporates the effects of cumula-

tive quadratic nonlinearity, absorption and dispersion, and

geometric spreading. Manipulation and ensemble-averaging

of the frequency-domain GBE has resulted in two related

higher-order spectral quantities that can be leveraged as

nonlinearity indicators. The first is the bispectrum, a two-

dimensional higher-order spectrum18 that has been used in,

e.g., the physical sciences, engineering, and economics to

examine time series for non-Gaussianity and quadratic nonli-

nearity, but which was tied explicitly to the GBE by

Gurbatov et al.19,20 The bispectrum has been used to analyze

one-dimensional noise propagation21 and jet noise.22,23

Gagnon24 has provided additional discussion and insights.

The second measure, which forms the subject of the cur-

rent work, stems from the imaginary part of the cross-

spectral density between the pressure and squared-pressure

waveforms,25,26

Qpp2 xð Þ ¼ Im lim
T!1

1

T
E F� p tð Þ

� �
F p2 tð Þ
� �h i� �

: (1)

Definitions for the Fourier transform and expectation value

may be found in many sources; this paper will follow the

conventions found in Bendat and Piersol.27 Its connection

to the GBE was first shown by Morfey and Howell,28 who

were seeking a model equation for the nonlinearly evolving

power spectral density. They discussed how although

Qpp2ðwÞ was not useful as a long-range predictor of spectral

evolution, a normalized quadspectral density, dubbed Q=S,

could be useful as a nonlinearity indicator. Note that despite

the attention that the Morfey and Howell28 work has

received in the context of aeroacoustic data analysis, it was

actually Nagata29,30 who introduced the pressure-squared-

pressure cross spectrum as the Fourier transform of a third-

order covariance function in the context of non-Gaussian

ocean data analysis. He further showed its explicit mathe-

matical relationship to the bispectrum, a relationship that

was later reinforced by Gurbatov et al.19,20 in the context of

the GBE.a)Electronic mail: brent.reichman@gmail.com
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Since the work of Morfey and Howell,28 the quantity

Q/S has been used in several situations to show the effects of

nonlinearity. McInerny was among the first to apply the indi-

cator, using it to point to the presence of nonlinearity in

rocket noise2 and military jet flyovers.31 Similarly, Gee

et al.6 used Q/S as evidence for nonlinear propagation in

F/A-18E ground run-up data, and the quadspectrum has also

been investigated for model-scale jets.9,32 Other uses range

from combustion noise in rocket engines33 to examining evi-

dence of nonlinearity in legacy commercial aircraft noise.34

Falco,35 Falco et al.,36 and Falco et al.37 investigated differ-

ent forms of the quadspectrum and its meaning for one-

dimensional propagation, including the development of a

spectral Gol’dberg number.

Despite usage of the pressure-squared-pressure quadspec-

trum as reviewed above, a quantitative interpretation of the

analysis measure has been elusive. Because of the limitations

of Q/S in predictive schemes28 and its difficulty in interpreta-

tion,35 some have questioned its usefulness.13 The purpose of

this paper is to show that by further manipulating the

frequency-domain ensemble-average version of the GBE, the

spatial rate of change in pressure spectrum level may be

expressed as a sum of three individual terms, representing geo-

metric spreading, atmospheric absorption, and nonlinearity.

First, the derivation of the ensemble-averaged, frequency do-

main version of the GBE is presented, followed by further deri-

vations to show how the spatial rate of change in pressure

spectrum level may be calculated with Q/S. Changes in the

pressure spectrum level predicted using waveform quadspectral

analysis are then compared with changes calculated directly

from two analytical solutions to the GBE: the Blackstock

Bridging Function and the Mendousse Solution. These compar-

isons show that Q/S can be used as a single-point quantifier of

second-order cumulative nonlinear propagation.

II. DERIVATION

In this section, a derivation of the ensemble-averaged

GBE is presented, similar to Ref. 28, and extended to yield

an expression for the spatial rate of change of the sound level

as a sum of the changes due independently to geometric

spreading, atmospheric absorption, and nonlinearity.

Additionally, the special case of a planar, initially sinusoidal

waveform is considered. These developments lay the foun-

dation for quantifying the rate of change in pressure spec-

trum level with range due to nonlinearity.

A. The spectral GBE

The GBE for an arbitrarily diverging pressure wave-

form, pðtÞ, in thermoviscous media may be written as

@p

@r
þ m

r
p� d

2c3
0

@2p

@s2
¼ bp

q0c3
0

@p

@t
; (2)

where d is the diffusivity of sound; b is the coefficient of

nonlinearity; c0 is the speed of sound; q0 is the equilibrium

density of sound; m ¼ 0, 0.5, or 1 for planar, cylindrical, or

spherical waves, respectively; s is retarded time, and r is the

distance from the source. A Fourier transform of Eq. (2) pro-

duces the frequency domain GBE:

@~p

@r
þ m

r
~p þ x2d

2c3
0

~p ¼ i

2

b

q0c3
0

x~q; (3)

where � denotes a complex Fourier spectrum, and ~q is the

Fourier transform of p2ðsÞ. Multiplication of Eq. (3) by rm

and simplification yields

@

@r
þ x2d

2c3
0

 !
rm~p ¼ i

2

b

q0c3
0

xrm ~q: (4)

Though the GBE in Eq. (2) is developed for thermoviscous

media, it can be modified to include arbitrary absorption and

dispersion.38 This is accomplished by replacing x2d=2 c3
0 in

Eq. (3) with a0, a combination of the linear attenuation and

dispersion coefficients for progressive plane waves, which

results in

@

@r
þ a0

� �
rm ~p ¼ i

2

bx

q0c3
0

rm ~q: (5)

Equation (5) is identical to Eq. (3) in Morfey and Howell28 for

spherical spreading (m ¼ 1) and is valid for a weakly nonlin-

ear (jpj � q0c2
0) deterministic spherical wave in the far field,

with weak attenuation and dispersion present (ja0j � x=c0).

Multiplication of both sides of Eq. (5) by rm ~p� yields

rm ~p�
@

@r
þ a0

� �
rm~p ¼ i

2

bx

q0c3
0

r2m ~p�~q: (6)

The real part of Eq. (6) may be simplified as

1

2

@

@r
r2m ~p�~p
� 	

þ ar2m~p�~p ¼ � 1

2

bx

q0c3
0

r2mIm ~p�~qf g; (7)

where a ¼ Refa0g is the linear absorption coefficient.

Ensemble averaging of Eq. (7) gives

1

2

@

@r
r2mSpp

� 	
þ ar2mSpp ¼ �

1

2

bx

q0c3
0

r2mQpp2 ; (8)

with Spp defined as the autospectral density and Qpp2 defined

as before. Finally, multiplying by e2ar allows the left hand

side to be written in terms of a single differential operator

@

@r
r2me2arSpp

� 	
¼ � bx

q0c3
0

r2me2arQpp2 ; (9)

which is identical to Eq. (5) from Morfey and Howell28 for

spherically spreading waves (m ¼ 1). Equation (9) describes

the spatial rate of change in the autospectral density multi-

plied by a factor of r2me2ar to correct for losses due to geo-

metric spreading and absorption. The change in this lossless

spectrum is due to the nonlinear term on the right of Eq. (9),

involving Qpp2 .

B. The change in level due to Q/S

Equation (9) may be further manipulated to provide a

clearer interpretation of the pressure-squared-pressure quad-

spectrum term that is independent of the geometric spreading
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and absorption. First, the derivative on the left-hand side of

Eq. (9) can be expanded through the product rule, the entire

equation can be divided by r2me2arSpp, and terms can be

moved to give

1

Spp

@Spp

@r
¼ � 2m

r
� 2a� xbprms

q0c3
0

Q

S
: (10)

The right-most term has been multiplied by prms=prms to

express the quadspectrum in a normalized form,

Q

S
¼

Qpp2 r; fð Þ
Spp r; fð Þprms

; (11)

which may be viewed as a shape function, independent of

amplitude. To further modify Eq. (10), a property of loga-

rithms is used to show

1

Spp

@Spp

@r
¼ @

@r
ln Sppð Þ
� �

¼ @

@r

log Sppð Þ
log eð Þ

� �
; (12)

where log(x) denotes log10(x). Equation (12) can be further

manipulated by using the relationship between Spp and

the pressure spectrum level,39 Lp ¼ 10 logðp2=p2
refÞ

¼ 10 logðSpp=p2
refÞ, relative to a reference pressure, pref :

log Sppð Þ
log eð Þ

¼ 1

log eð Þ
Lp

10
þ 2 log prefð Þ

� �
: (13)

This expression can be substituted into Eq. (10) to give

@

@r

Lp

10
þ2log prefð Þ

� �
¼ log eð Þ �

2m

r
�2a�xbprms

q0c3
0

Q

S

 !
:

(14)

Since pref is constant, this becomes

@Lp

@r
¼ �10 log eð Þ

2m

r
þ 2aþ xbprms

q0c3
0

Q

S

 !

v r;xð Þ ¼ vS þ va þ vN : (15)

Equation (15) describes the spatial rate of change in pressure

spectrum level, in terms of decibels per meter, as a sum of

three effects: geometric spreading, atmospheric absorption,

and nonlinearity, which are represented by �S, �a, and �N ,

respectively. However, the rightmost term involving nonli-

nearity can be cast in another form using the relations

x=c0 ¼ k and qc2
0 ¼ cp0, where p0 is the ambient atmos-

pheric pressure

vN ¼�10log eð Þ
xb

q0c3
0

Qpp2

Spp
¼�10log eð Þk

b
c

prms

p0

Q

S
; (16)

where b=c ¼ ðcþ 1Þ=2c for an ideal gas. Thus, Eq. (15)

may also be expressed as

@Lp

@r
¼ �10 log eð Þ

2m

r
þ 2aþ kbMrms

Q

S

� �
; (17)

where Mrms is the root-mean-square acoustic Mach number,

prms=cp0. Though the use of Mrms is unusual, prms has been

used in the treatment of noise. Both Eq. (15) and Eq. (17)

express the spatial rate of change in pressure spectrum level

due to nonlinearity as Q=S multiplied by a coefficient. In Eq.

(17), the coefficient, kbMrms, bears similarity to one defini-

tion of the shock formation distance,40 �x ¼ 1=kbM, where M

is the acoustic Mach number. This similarity to the shock

formation distance is carried further in Sec. II C when dis-

cussing initially sinusoidal waveforms, for which the shock

formation is well-defined.

Equation (15) and the alternate forms presented in Eq.

(16) and Eq. (17) provide quantitative interpretation of the

normalized quadspectrum, Q=S, namely, that the spatial rate

of change in Lp at a certain location due to nonlinearity is

proportional to Q=S. Positive values of Q=S result in a loss

of energy and negative values in an increase. Because Q=S is

normalized, its values are independent of pressure amplitude

and can be thought of as a spectral shape function—two saw-

tooth waves of the same fundamental frequency but different

amplitudes will have the same values of Q/S, but different

prms=p0. For a given value of Q=S, the spatial rate of change

in the pressure spectrum levels scales linearly with fre-

quency and according to the overall gain prms=p0. This con-

cept is revisited later in the context of analytical solutions to

the GBE. Equation (17) enables a direct, local comparison of

the contributions of spreading, absorption, and nonlinearity

on a decibel scale to the rate of change of the pressure spec-

trum level using a single-point measurement.

C. Planar, initially sinusoidal case

The result in Eq. (17) is general and may be applied in

any situation where the generalized Burgers equation is

valid. However, for the special case of a planar, initially si-

nusoidal wave a more elegant formulation exists. For a sinu-

soidal plane wave, the lossless shock formation distance is

defined as �x ¼ q0c3
0=x1bP, where P is the amplitude of the

initial sinusoid, and x1 is its fundamental frequency. The

change due to nonlinearity, vN , from Eq. (16), can be

expressed as

vN ¼ �10 log eð Þ
xb

q0c3
0

Qpp2

Spp
¼ �10 log eð Þ

1

�x

prms

PP
x
x1

Q

S
:

(18)

Since the wave is originally sinusoidal, the only frequencies

of interest are the fundamental and its harmonics. In order to

differentiate between the sinusoidal and the general case, the

following derivations will be presented as @Ln=@r, indicating

the change in the nth harmonic. If we assume planar propa-

gation (m ¼ 0 and r ¼ x), substituting Eq. (18) into Eq. (15)

yields the spatial rate of change in Ln as

@Ln

@x
¼ �10 log eð Þ 2aþ 1

�x

prms

P
xn

x1

Q

S

� �
; (19)

where Ln ¼ 20 logðBnÞ refers to the level, in decibels, of the

nth harmonic with normalized amplitude Bn. For a
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thermoviscous medium, the absorption for higher harmonics

relative to the absorption of the fundamental frequency is

a ¼ a1ðxn=x1Þ2 ¼ a1n2, with a1 equal to the absorption at

the fundamental frequency and n the order of the harmonic.

After this substitution and multiplication of Eq. (19) by �x,

the spatial rate of change of the level of the nth harmonic rel-

ative to the normalized distance r ¼ x=�x is given by

@Ln

@r
¼ �10 log eð Þ

2

C
n2 þ n

prms

P
Q

S

� �
� r; nð Þ ¼ �a þ �N; (20)

where C ¼ 1=�xa1 is the well-known Gol’dberg number,

comparing the strength of nonlinearity with that of atmos-

pheric absorption. Equation (20) is valid for planar propaga-

tion of initially sinusoidal waveforms, such as analytical

solutions to the GBE and within plane wave tubes. This non-

dimensional form of Eq. (17) is useful in developing a quan-

titative understanding of how Q=S is related to the spatial

rate of change in the levels of the harmonic components

analytical examples in Sec. III.

III. COMPARISON WITH SOLUTIONS TO THE GBE

To test the validity of Eq. (20), the evolution of �ðr; nÞ
in terms of �a and �N is compared with what is traditionally

obtained for known solutions of the GBE for an initially

sinusoidal plane wave. The two solutions that are considered

in this paper are the Blackstock Bridging Function41 (BBF)

and the Mendousse42 solution. In contrast with other solu-

tions, such as the Fubini43 and Fay44 solutions, these two

solutions are valid for all values of r, making them ideal

candidates for such a comparison. The following compari-

sons will show the spatial rate of change in the level of the

nth harmonic calculated via two distinct methods. First,

numerical derivatives, with respect to distance, of the ampli-

tude Bn show how the spectrum evolves analytically accord-

ing to the GBE and are referred to as actual changes in Sec.

III A and III B. The second method uses Eq. (20) to predict

the spatial rate of change in level for the same harmonics.

Specifically, the waveforms are calculated according to the

BBF or the Mendousse solution, following which the Fourier

transforms of the pressure and pressure-squared waveforms

are used to calculate Q=S. The results of Eq. (20) are referred

to as predicted changes in Sec. III A and III B. The agree-

ment between the actual and predicted changes shows that

the normalized quadspectrum Q/S calculated for a waveform

may be used as a single-point measurement to accurately

estimate the spatial rate of changes due to nonlinearity on a

decibel scale.

A. BBF

The BBF41 was originally presented to bridge the gap

between the Fubini solution, valid before the shock forma-

tion distance, and the Fay solution, valid in the sawtooth re-

gime. It represents a lossless ðC!1Þ wave propagating

nonlinearly and is dependent only on the initial amplitude p0

and the normalized distance r. The pressure waveform, p, as

a function of retarded time s is expressed in terms of the infi-

nite sum

p

P ¼
X1
n¼1

Bn sin xnsð Þ; (21)

where the amplitude of the nth harmonic is

Bn ¼
2

np
Vb þ

2

npr

ðp

Umin

cosfn U� r sin Uð Þ½ �gdU; (22)

and Vb and Umin are solutions to transcendental equations

given by Blackstock.41 Figure 1(a) shows example wave-

forms at distances of r¼ 0 to 3 in steps of 0.5. The distances

r ¼ 0, 1, and 3 represent the origin, shock formation dis-

tance, and what is the traditionally regarded as the onset of

the sawtooth regime, respectively. Figure 1(b) shows the am-

plitude of the coefficients Bn as a function of r, for n ¼ 1, 2,

5, 10, and 20, the last few being of higher order than those

FIG. 1. (Color online) (a) The pressure waveforms for the Blackstock

Bridging Function plotted at normalized distances of r¼ 0 to 3 in steps of

0.5. (b) The harmonic amplitudes, Bn, plotted on a linear scale vs r
for n¼ 1, 2, 5, 10, and 20. In order to accurately characterize the wave-

forms and reliably capture the higher harmonics, 12 000 terms are needed

in Eq. (21) with a sampling rate of 24 000 samples per period.
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shown originally by Blackstock.41 Figure 1 provides a refer-

ence to better understand the spatial rate of change in the

harmonic amplitudes, which is the foundation for one

method of calculating @Ln=@r.

While Fig. 1(b) presents a traditional view of normal-

ized harmonics amplitudes, the current formulation provides

a link between the spatial rate of change in the normalized

spectral amplitudes, Sn ¼ B2
n, for the evolution of an initial

sinusoid waveform, described in this case by the BBF, and

the normalized quadspectrum, Q=S. The actual changes in Sn

with distance [obtained from the Bn shown in Fig. 1(b)] are

depicted as circles in Fig. 2, and the accompanying lines

show the predicted changes from Eq. (20) using Q=S from

the Fourier transform of the waveforms calculated using Eq.

(21), with an adequate number of terms to accurately

described the sharp discontinuity. For the cases shown here,

12 000 terms in the infinite series in Eq. (21) were used with

a sampling rate of 24 000 samples/period. With the exception

of the decreasing amplitude of the first harmonic, the ampli-

tude of each of the other harmonics initially increases. At

r ¼ p=2, the discontinuity reaches a maximum amplitude.

After this point, all of the harmonics decrease in amplitude,

which corresponds to a negative @Sn=@r.

The spatial rate of change in the normalized levels, Ln,

predicted in Eq. (20) is connected to the changes displayed

in Fig. 2, but as levels are logarithmic quantities, the connec-

tion between the two can be difficult to see. In order to aid in

forming this association, Fig. 3 shows the normalized spec-

trum, Sn ¼ B2
n, plotted on a logarithmic scale in the y axis.

The amplitude of the first harmonic still begins at one and

decreases with r, while all of the other harmonics are origi-

nally at zero amplitude before increasing and then decreas-

ing in amplitude. The slope of the lines plotted on this

logarithmic scale resembles the spatial rate of change in Ln

predicted using �ðr; nÞ in Eq. (20). For r > p=2, the lines of

each of the harmonics appear to approach the same slope

such that the rate of change in level is similar across all

harmonics in the sawtooth region, an important point that is

emphasized in comparing Q=S calculations for various

harmonics.

Figure 4 shows the actual spatial rate of change in Ln

¼ 10 log Sn as circles and the changes found using �ðr; nÞ as

patterned lines. Because the BBF neglects absorption, C
!1 and all of the predicted changes seen in Fig. 4 are due

to nonlinearity: �ðr; nÞ ¼ �N . The actual change in Ln is

obtained by differentiating Ln ¼ 20 logðp=prefÞ with respect

to r

@Ln

@r
¼ 20

@

@r
log Bnð Þ � log prefð Þ
� 	

¼ 20
@

@r
ln Bnð Þ
ln 10ð Þ

¼ 20 log eð Þ
1

Bn

@Bn

@r
: (23)

Because harmonics with n > 1 originally have zero ampli-

tude, the initial spatial rate of change in level is infinite and

FIG. 2. (Color online) The predicted (lines) and actual (circles) rate of

change in the normalized spectral amplitudes, Sn, with respect to the normal-

ized distance r for harmonic numbers (a) n¼ 1, 2, 5 and (b) n¼ 5, 10, 20.

Predicted values are calculated using Eq. (20), while the actual changes are

calculated via a numerical derivative of the calculated BBF coefficients for

each harmonic with respect to r. Waveforms and harmonic amplitudes have

been generated using the same number of terms and sampling frequency as

Fig. 1.

FIG. 3. (Color online) Normalized spectral amplitudes, Sn, for the harmonics

shown in Fig. 1(b) plotted on a logarithmic scale.
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decreases with increasing distance. Excellent agreement can

be seen between the two calculations for @Ln=@r, confirming

the ability of Q=S in Eq. (20) to quantify the changes due to

nonlinearity for the case of no absorption. In addition, the

regions of shock formation and decay are easily distin-

guished. For sinusoidal signals, when the shock is forming

and growing, higher harmonics have positive rate of change

in level due to nonlinearity, corresponding to a negative

value of Q=S. However, as the shock decays, all of the har-

monics have a negative rate of change and Q=S is positive.

As the shock enters the sawtooth region, the decay rate of all

of the harmonics begins to converge.

The converging behavior for the harmonic decay can be

compared with established nonlinear behavior in the saw-

tooth region to help describe the asymptotic behavior of

Q=S. Blackstock et al.45 show that in this region, the ampli-

tudes of all of the harmonics decay as

Bn ¼
2

rþ 1ð Þn : (24)

Using Eq. (23), the corresponding asymptotic change in Ln is

@Ln

@r
¼ 20 log eð Þ �

1

rþ 1

� �
: (25)

A comparison of this expression, which is valid for all

harmonics in the sawtooth region, and the behavior predicted

by Eq. (20) is shown over a longer distance in Fig. 5 for

harmonics n ¼ 1, 2, 10. The comparison shows that Eq. (25)

provides a reasonable estimate to the actual rate of change of

the harmonic levels in the sawtooth region. In this region,

the levels of the harmonics are not only all decaying, but are

all decaying at the same rate.

The limiting behavior in the spatial range of change of

the levels associated with the spectral amplitudes for all

harmonics can be compared with theory for acoustic satura-

tion. The concept of acoustic saturation states that for

r� 1, the amplitude of the pressure waveform depends

only on the distance the wave has traveled, x, and is irrespec-

tive of initial amplitude, p0. For r� 1, an approximation

can be made in Eq. (25) that rþ 1 ffi r, which is plotted as a

solid line in Fig. 5 for comparison. Because acoustic satura-

tion is typically described in terms of x, the substitution

r ¼ x=�x is made into Eq. (25) to give an asymptotic relation-

ship for the spatial rate of change in the harmonic levels for

lossless, planar propagation

@Ln

@x
¼ vN ¼ �20 log eð Þ

1

x
: (26)

This decay proportional to 1=x is in agreement with expected

behavior from Eq. (20). As the wave propagates in the saw-

tooth regime, Q=S remains constant, meaning the only vari-

able changing is prms, which changes proportional to 1=x.

The regime of acoustic saturation was investigated

experimentally by Webster and Blackstock46 who found that

the spatial rate of change in level of the harmonics at large

distances is independent of the source amplitude. In this

way, the principle of acoustic saturation can be seen to agree

with the changes calculate using Q/S values of the BBF.

B. The Mendousse solution

The second analytical solution that provides support for

the quantitative evaluation of Q=S is the Mendouse solution,

which, like the BBF, is an infinite sum describing the propa-

gation of an initially sinusoidal wave.42 However, in contrast

with the BBF, the Mendousse solution takes into account

thermoviscous absorption, such that both �a and �N must be

calculated and summed together to yield the total spatial rate

of change in Ln.

FIG. 4. (Color online) The spatial rate of change in the level Ln for harmon-

ics n¼ 1, 2, 5, 10, and 20 for the BBF as a function of r. The patterned lines

represent the predicted changes due to nonlinearity, based on the normalized

quadspectrum, and the circles represent the actual change in harmonic level.

Waveforms and spectral amplitudes are generated using the same number of

terms and sampling rate as Fig. 1.

FIG. 5. (Color online) The spatial rate of change in Ln as predicted using the

quadspectrum in Eq. (20) for n¼ 1, 2, and 10 is compared with the changes

predicted using Eq. (25) and Eq. (26), where the decay is proportional to

(rþ 1)�1 and r-1, respectively. The decay rates of all harmonics converge as

the wave enters the sawtooth region (r> 3), and for r� 1 the decay of all

harmonics agrees with the approximation of Eq. (26). Waveforms and spectral

amplitudes were generated using the same number of terms as Fig. 1.
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In the infinite sum of the Mendousse solution, the pres-

ence of atmospheric absorption is indicated by the presence

of the Gol’dberg number, C:

p

P¼

4

C

X1
n¼1

�1ð Þnþ1
In

C
2

� �
ne�n2r=Csin xnsð Þ

I0

C
2

� �
þ2
X1
n¼1

�1ð ÞnIn
C
2

� �
e�n2r=Ccos xnsð Þ

: (27)

In the limit that C!1, the Mendousse solution will give

the same results as the BBF. For finite C, the Mendousse so-

lution exhibits behavior similar to the BBF, but the wave

decays at a faster rate due to the presence of absorption. For

lower amplitudes of C, the absorption may prevent the for-

mation of a sawtooth wave. Figure 6(a) shows a comparison

of waveforms generated with the BBF and the Mendousse

solution for C ¼ 30 at r ¼ p=2. The Mendousse waveform

has decayed slightly in amplitude, and the shock is signifi-

cantly less sharp than that calculated using the BBF.

The spatial rate of change in Ln for the harmonics

n ¼ 1, 2, 5, 10, and 20 are displayed in Figs. 6(b)–6(f) as a

function of r. The terms �a, rate of change due to atmos-

pheric absorption, and �N, rate of change due to nonlinearity

via Q=S [see Eq. (20)], are shown as dash and dash-dot lines,

respectively. The total rate of change, @Ln=@r ¼ �
¼ �a þ �N (solid line) is compared with the actual change in

FIG. 6. (Color online) (a) A waveform

of the Mendousse solution is compared

with the BBF at r¼p/2 and C ¼ 30.

(b)–(f) The spatial rate of change in

level for harmonics n¼ 1, 2, 5, 10, and

20. The spatial rate of change due to

absorption, �a, nonlinearity, �N, and

their sum, �, are shown by dashed,

dashed-dot, and solid lines, respec-

tively. The actual changes in harmonic

levels are shown as circles that overlay

the solid lines. For n¼ 10 and 20

[shown in (e) and (f)], �a and �N both

lie outside the plotted range. For the

specified value of C ¼ 30, the absorp-

tion for n¼ 10 is constant at

�28.95 dB/r, and for n¼ 20 it is

�115.8 dB/r. 200 terms were used in

both the numerator and denominator of

the Mendousse solution, at a sampling

rate of 400 samples per period.
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the level of the harmonics with respect to r. To generate the

waveforms in this example using Eq. (27), 200 terms are

needed in both the numerator and the denominator of Eq.

(27) at a sampling rate of 400 samples per wavelength.

Because the Mendousse solution does not produce as steep a

waveform as the BBF, the number of terms required to accu-

rately characterize each waveform is significantly less. The

coefficients Bn do not have a compact analytical form, as is

the case of the BBF, because of the time-dependent infinite

sum in the denominator. Hence, the levels, Ln, and corre-

sponding numerical derivatives of Ln with respect to r are

obtained using Fourier transforms of the waveforms. There

is excellent agreement between these numerical derivatives

(circles) and the rate of change based on Q=S.

Trends can be seen in examining the spatial rate of

change in harmonic levels for the Mendousse solution [Figs.

6(b)–6(f)]. Initially, an infinite rate of change in level is

observed for all of the harmonics except n ¼ 1, for the same

reasons as in the BBF case. The rate of change due to nonli-

nearity, �N , is much larger than that due to absorption, �a,

during shock formation and growth. As the shock propa-

gates, the magnitude of the rate of change due to nonlinearity

approaches the same order of magnitude as from absorption.

However, at greater r, the absorption dominates and

@Ln=@r < 0, indicating the harmonics are decreasing in am-

plitude. Because a true discontinuity does not form for this

value of C, nonlinear losses due to weak shock theory are

absent, the waveform continues to steepen, and �N remains

positive over a larger distance than is seen for the BBF. In

addition, for higher harmonics the distance at which the total

spatial rate of change goes negative is slightly delayed from

the distance of r ¼ p=2 seen in the BBF. This change is due

to a slower wave steepening process in the presence of

absorption. Thus, the distance at which the rate of change

goes negative varies both between the inviscid case and the

thermoviscous case, and with increasing n.

Important trends can be seen when comparing results

from the Mendousse solution with those from the BBF. In

both cases excellent agreement is seen between numerical

derivatives calculated using the spectral amplitudes and the

rate of change found using Q=S via Eq. (20). In addition, the

same general principles apply with regard to the development

of shocks: positive values of � for higher harmonics indicate

the formation of shocks, while negative values of � across all

harmonics indicates shock decay. However, important differ-

ences arise. In the inviscid case, nonlinear losses due to weak

shock theory are present, resulting in negative values of �N . In

contract, when absorption is high enough that a true disconti-

nuity never forms, the absorption is explicitly separated as �a,

and �N remains positive. Another important case is that shock

formation is delayed in the thermoviscous case when com-

pared with the inviscid case due to the presence of absorption.

Despite these differences, similar behavior in the total change

� enables a comparison of trends observed in both cases.

IV. CONCLUSION

The derivation of the power spectrum-based formulation

of the GBE presented by Morfey and Howell28 has been

carried farther to yield the spatial rate of change of pressure

spectrum level of an arbitrary waveform. This further deriva-

tion enables a single-point measurement capable of directly

comparing and differentiating between the effects of nonli-

nearity, absorption, and geometric spreading in a decibel

sense. This formulation of the GBE has been applied to two

analytical solutions to the GBE for initially sinusoidal wave-

forms, an inviscid and thermoviscous. In both cases, the total

spatial rate of change of the harmonic level, �, calculated

using Q/S agrees with the actual changes in the levels calcu-

lated in the waveforms. In addition, certain trends can be

observed in both cases. For both the lossless and the lossy

initially sinusoidal cases, positive values of � across all

higher harmonics indicate waveform steepening. In contrast,

negative values of � across all frequencies indicate that the

maximum shock steepness for that scenario has been reached

and harmonic levels are decaying. Decay at the same rate

indicates the weak-shock regime is maintained; however, if

� is increasingly negative at higher frequencies, the wave-

form shock retains a finite thickness.

This paper has shed significant quantitative insight on

the meaning of Q/S as a nonlinearity indicator, but with the

primary motivation for the investigation being the under-

standing the role of nonlinearity jet and rocket noise spectral

evolution. Important differences exist between geometrically

spreading broadband noise and initial planar sinusoids, such

as different parts of the waveform steepening at different

rates. Prior studies2,6 involving Q/S have indicated that both

positive and negative portions of the nonlinear normalized

spectral shape exist. Future quadspectrum-based analyses

of these noise fields will apply the mathematical theory of

separating the power spectrum spatial rate of change into

geometric, absorptive, and nonlinear components, as well as

incorporate an understanding of the limiting weak-shock

behavior described here as a function of frequency and

range.
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