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Physics and initial data for multiple black hole spacetimes

Erin Bonning, Pedro Marronetti,* David Neilsen,† and Richard Matzner
Center for Relativity, University of Texas at Austin, Austin, Texas 78712-1081, USA

~Received 19 May 2003; published 25 August 2003!

An orbiting black hole binary will generate strong gravitational radiation signatures, making these binaries
important candidates for detection in gravitational wave observatories. The gravitational radiation is charac-
terized by the orbital parameters, including the frequency and separation at the innermost stable circular orbit
~ISCO!. One approach to estimating these parameters relies on a sequence of initial data slices that attempt to
capture the physics of the inspiral. Using calculations of the binding energy, several authors have estimated the
ISCO parameters using initial data constructed with various algorithms. In this paper we examine this problem
using conformally Kerr-Schild initial data. We present convergence results for our initial data solutions, and
give data from numerical solutions of the constraint equations representing a range of physical configurations.
In a first attempt to understand the physical content of the initial data, we find that the Newtonian binding
energy is contained in the superposed Kerr-Schild background before the constraints are solved. We examine
some deficiencies with the initial data approach to orbiting binaries, especially touching on the effects of prior
motion and spin-orbital coupling of the angular momenta. Making rough estimates of these effects, we find that
they are not insignificant compared to the binding energy, leaving some doubt of the utility of using initial data
to predict ISCO parameters. In computations of specific initial-data configurations we find spin-specific effects
that are consistent with analytical estimates.
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I. INTRODUCTION

The computation of gravitational wave production fro
the interaction and merger of compact astrophysical obj
is a challenge which, when solved, will provide a predicti
and analytical resource for the upcoming gravitational wa
detectors. A binary black hole system is expected to be
strongest possible astrophysical gravitational wave sourc
particular, one expects a binary black hole system to prog
through a series of quasi-equilibrium states of narrowing
cular orbits as it emits gravitational radiation. In the fin
moments of stellar mass black hole inspiral, the radiat
will be detectable in the current@Laser Interferometric Gravi-
tational Wave Observatory~LIGO! class# detectors. If the
total binary mass is of the order of 10M ( , the moment of
final plunge to coalescence will emit a signal detectable
the current generation of detectors from very distant~Gpc!
sources.

Detecting gravitational radiation is also a significant tec
nical challenge. Gravitational waves couple very weakly
matter, and the expected signals are much smaller in am
tude than ambient environmental and thermal noise. The
cessful detection of these waves, therefore, requires s
knowledge of what to look for. In this regard, an orbitin
binary black hole system is an ideal candidate for detec
since the orbital motion produces regular gravitational rad
tion patterns. In such an inspiraling black hole system,
strongest waves are emitted during the last several orbit
the holes reach the innermost quasi-stable orbit~here abbre-

*Present address: Department of Physics, University of Illinoi
Urbana-Champaign, Urbana, IL 61801.

†Present address: Department of Physics & Astronomy, Louis
State University, Baton Rouge, LA 70803.
0556-2821/2003/68~4!/044019~17!/$20.00 68 0440
ts

e
e
In
ss
r-
l
n

y

-
o
li-
c-
e

n
-
e
as

viated ISCO!, and as they continue through the final plung
The dynamics of the holes during these final orbits, es
cially the orbital angular velocity,v ISCO, and separation
, ISCO, determine the dominant characteristics of the dete
able waves. Any knowledge of these parameters is adva
geous for detecting radiation from these binary systems.

The proper way to predict gravitational waveforms f
orbiting black holes is to set initial data for two widely sep
rated holes, and then solve the evolution equations to fol
the inspiral through merger and beyond. This problem is w
beyond the capabilities of current evolution codes. The
fore, to obtain some information about orbiting black hol
we, and others@1–8#, turn to the initial value problem. Fo
an introduction to the literature, see the review by Cook@9#.
Given a collection of initial data for black holes in circula
orbits with decreasing radius, one tries to identify a seque
of initial data that corresponds to instantaneous images
time-dependent evolution. Circular orbits are chosen beca
orbits in the early stages of an inspiral are predicted to
come circularized because of the stronger gravitational ra
tion near periapse@10#. When a suitable sequence of initia
data slices has been obtained, they can then be used t
termine various orbital parameters. For example, the cha
in binding energy with respect to the orbital radius allow
one to identify, ISCO, and a similar analysis of the angula
momentum givesv ISCO. The difficulty in this approach
comes in ensuring that the initial data at one radius co
spond to the same physical system as the data for ano
radius. This can be done for some systems by using c
served quantities. For example, in the case of neutron s
constant baryon number is an unambiguous indicator of
sameness of the stars. However, in black hole physics
not available; it is unclear how to determine that two bla
hole initial data sets do, in fact, represent the same phys
system.
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The initial data approach to studying binary black holes
thus not without problems. These difficulties fall in tw
broad areas. First, there is no unambiguous way to set in
data in general relativity. The current algorithms all requ
some arbitrary mathematical choices to find a solution.
instance, the approach we take requires the definition of
topology of a background space and of its metric and
momentum of the metric, followed by solution of fou
coupled elliptic differential equations for variables that a
just the background fields. But the choice of the backgrou
quantities is arbitrary to a large extent. The physical mean
of these mathematical choices is not completely clear, but
effect is unmistakable. Data constructed with various al
rithms can differ substantially, even when attempting to
scribe the same physical system@8#. The data sets can b
demonstrated in many circumstances to contain the expe
Newtonian binding energy, as we show below@i.e., the bind-
ing energy of orderO(m2/,) agrees with the Newtonian
result at this order#. However, the data can differ signifi
cantly at O@m(m/,)2#. These differences are attributed
differences in wave content of the data which may refl
possible prior motion or may simply be spurious. At pres
it is neither possible to build prior motion into the initia
data, nor to specify how radiation is added to the soluti
nor to know how much there is. It is known that the circu
orbits and the ISCO so determined are in fact meth
dependent. Furthermore, the methods need not even a
that a specific dataset represents a circular orbit; their su
quent evolutions may not agree@11#.

A second problem—and the principal physical difficul
with the initial data method for studying black ho
binaries—is the lack of unambiguous conserved quantit
The best candidate for an invariant quantity is the event
rizon area,AH . This area is unchanging for isentropic pr
cesses due to the proportionality ofAH with the black hole
entropy. One can argue that since the quasi-circular orb
quasi-adiabatic,AH is nearly invariant over some phase
the inspiral. But the inspiral cannot be completely adiaba
because it cannot be made arbitrarily slow; the black ho
will absorb an unknown amount of gravitational radiati
while in orbit and will thereby increase in size. Moreove
the event horizon is a global construct of the spacetime,
cannot be determined from a single slice of initial da
Therefore, one must use the apparent horizon area,AAH , as
an ersatzinvariant for initial data studies@12,13#. When the
hole is approximately stationary, these horizon areas ma
nearly equal@14#. In dynamic configurations—as should b
appropriate for orbiting holes—these horizon areas may
fer substantially@15,16#.

We will investigate physical content of initial data, focu
ing on Kerr-Schild spacetimes. We examine binding ene
to leading order, and find that in our method of construct
the superposed Kerr-Schild data, the background fields c
tain the Newtonian binding energy: the subsequent solu
of the elliptic equations yields a only small correction. Usi
numerical solutions we present orbital configurations w
solved initial data. We give a qualitative discussion of phy
cal effects that may confound any attempt to study insp
via a sequence of initial data, and which may affect the
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termination of the location of the ISCO. We give some co
putational examples consistent with these qualitative pre
tions.

II. REVIEW OF INITIAL DATA CONSTRUCTION
IN GENERAL RELATIVITY

In the computational approach we take a Cauchy form
lation ~311! of the ADM type, after Arnowitt, Deser, and
Misner @17#. In such a method the 3-metricgi j is the funda-
mental variable. The 3-metric and its momentum are sp
fied at one initial time on a spacelike hypersurface. T
ADM metric is

ds252~a22b ib
i !dt212b idtdxi1gi j dxidxj ~1!

wherea is the lapse function andb i is the shift 3-vector.
Latin indices run 1, 2, 3 and are lowered and raised bygi j
and its three-dimensional inversegi j . a and b i are gauge
functions that relate the coordinates on each hypersurfac
each other. The extrinsic curvature,Ki j , plays the role of
momentum conjugate to the metric, and describes the
bedding of at5constant hypersurface into the 4-geometr

The Einstein field equations contain both hyperbolic ev
lution equations and elliptic constraint equations. The c
straint equations for vacuum in the ADM decomposition a

R2Ki j K
i j 1K250, ~2!

¹j~Ki j 2gi j K !50. ~3!

HereR is the three-dimensional Ricci scalar, and¹j is the
three-dimensional covariant derivative compatible withgi j .
Initial data must satisfy these constraint equations; one m
not freely specify all components ofgi j andKi j . The initial
value problem in general relativity thus requires one to c
sistently identify and separate constrained and freely spe
able parts of the initial data. Methods for making this sep
ration, and solving the constraints as an elliptic syste
include: the conformal transverse-traceless decompositi
@18#; the physical transverse-traceless decomposition@19#:
and theconformal thin sandwich decompositionwhich as-
sumes a helical killing vector@4,20,21#. These methods al
involve arbitrary choices and do not produce equivalent d
Our solution method uses the conformal transverse-trace
decomposition@18#.

Solutions of the initial value problem have been addres
in the past by several groups@1–4,18#. It is the case that until
recently, most data have been constructed assuming tha
initial 3-space is conformally flat. The method most com
monly used is the approach of Bowen and York@22#, which
chooses maximal spatial hypersurfaces and takes the sp
3-metric to be conformally flat. This method has been us
to find candidate quasi-circular orbits by Cook@1#, Baum-
garte@3#, and most recently, Pfeifferet al. @2#.

The chief advantage of the maximal spatial hypersurf
approach is numerical simplicity, as the choiceK50 de-
couples the Hamiltonian constraint from the momentum c
straint equations. If, besidesK50, the conformal back-
9-2
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ground is flat Euclidean 3-space, there are knownKi j that
analytically solve the momentum constraint@22#. The con-
straints then reduce to one elliptic equation for the conform
factor f. However, it has been pointed out by Garat a
Price @23# that there are no conformally flatK50 slices of
the Kerr spacetime. Since we expect astrophysical source
be rotating, the choice of a conformally flatK50 back-
ground will yield data that necessarily contains some qu
tity of ‘‘junk’’ gravitational radiation. Jansenet al. @24# have
recently shown by comparison with known solutions th
conformally flat data do indeed contain a significant amo
of unphysical gravitational field. Another conformally fla
K50 method recently used by Gourgoulhon, Grandclem
and Bonazzola@4,5# is a thin sandwich approximation base
on the approach of Wilson and Mathews@21# which assumes
the presence of an instantaneous rotation Killing vector
define the initial extrinsic curvature. They impose a spec
gauge defined by demanding thatK and the conformal facto
remain constant in the rotating frame. Sincef and K are a
conjugate pair in the ADM approach, this method solves
four initial value equations and one second-order evolut
equation. The assumption of a Killing vector suppresses
diation or, perhaps more accurately, imposes a condition
equal ingoing and outgoing radiation.

In this paper we use Kerr-Schild data@25# to outline some
of the difficulties in finding the ISCO using the initial da
technique. We discuss the extent to which initial data set
means of superposed Kerr-Schild black holes limits the
traneous radiation in the data sets, and we estimate the a
racy of the extant published ISCO determinations. Rec
works by Pfeiffer, Cook, and Teukolsky also investigat
binary black hole systems using Kerr-Schild initial data@8#.

III. INITIAL DATA VIA SUPERPOSED KERR-SCHILD
BLACK HOLES

The superposed Kerr-Schild method for setting black h
initial data, developed by Matzner, Huq, and Shoema
@25#, produces data for black holes of arbitrary mass
boosts, and spins without relying on any underlying symm
tries of any particular configuration. The method proceed
two parts. First, a background metric and background ext
sic curvature are constructed by superposing individual K
Schild black hole solutions. Then the physical data are g
erated by solving the four coupled constraint equations
corrections to the background. Intuitively, the backgrou
solution should be very close to the genuine solution wh
the black holes are widely separated, and only small adj
ments to the gravitational fields are required to solve
constraints. We show that this is true for large and also
small separations. This section briefly reviews the sup
posed Kerr-Schild method for initial data, then gives so
analytic results to justify this contention.

A. Kerr-Schild data for isolated black holes

The Kerr-Schild@26# form of a black hole solution de
scribes the spacetime of a single black hole with massm,
and specific angular momentum,a5 j /m, in a coordinate
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system that is well behaved at the horizon.~We use upper-
caseM for calculated masses, e.g., the ADM mass, and lo
ercasem for mass parameters, or when the distinction is n
important.! The Kerr-Schild metric is

ds25hmndxmdxn12H~xa!l ml ndxmdxn, ~4!

wherehmn is the metric of flat space,H is a scalar function
of xm, andl m is an~ingoing! null vector, null with respect to
both the background and the full metric,

hmnl ml n5gmnl ml n50. ~5!

This last condition givesl 0l 052 l i l i .
The general nonmoving black hole metric in Kerr-Sch

form ~written in Kerr’s original rectangular coordinates! has

H5
mr

r 21a2cos2u
, ~6!

and

l m5S 1,
rx1ay

r 21a2
,
ry2ax

r 21a2
,
z

r D , ~7!

where r ,u ~and f) are auxiliary spheroidal coordinates,z
5r (x,y,z)cosu, and f is the axial angle.r (x,y,z) is ob-
tained from the relation,

x21y2

r 21a2
1

z2

r 2
51, ~8!

giving

r 25
1

2
~r22a2!1A1

4
~r22a2!21a2z2, ~9!

with

r5Ax21y21z2. ~10!

Comparing the Kerr-Schild metric with the ADM decom
position Eq.~1!, we find that thet5constant 3-space metri
is

gi j 5d i j 12Hl i l j . ~11!

Further, the ADM gauge variables are

b i52Hl 0l i , ~12!

and

a5
1

A112Hl 0
2

. ~13!

The extrinsic curvature can be computed from the me
using the ADM evolution equation@27#
9-3
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Ki j 5
1

2a
@¹jb i1¹ib j2ġi j #, ~14!

where a dot (̇) denotes a partial derivative with respect
time. Each term on the right-hand side of this equation
known analytically.

B. Boosted Kerr-Schild black holes

The Kerr-Schild metric is form-invariant under a boo
making it an ideal metric to describe moving black holes
constant Lorentz transformation~the boost velocity,v, is
specified with respect to the background Minkowski spa
time! La

b leaves the 4-metric in Kerr-Schild form, withH
and l m transformed in the usual manner:

x8b5Lb
axa, ~15!

H8~x8a!5H~~L21!a
bx8b!, ~16!

l d8~x8a!5Lg
dl g~~L21!a

bx8b!. ~17!

Note that l 08 is no longer unity. As the initial solution is
stationary, the only time dependence comes in the motio
the center, and the full metric is stationary with a Killin
vector reflecting the boost velocity. The solution, therefo
contains no junk radiation, as no radiation escapes to infi
during a subsequent evolution. Thus, Kerr-Schild data
actly represent a spinning and/or moving single black ho
This is not possible in some other approaches, e.g., the
formally flat approach@24#.

C. Background data for multiple black holes

The structure of the Kerr-Schild metric suggests a natu
extension for multiple black hole spacetimes using
straightforward superposition of flat space and black h
functions

gi j 'h i j 12 1H1l i1l j12 2H2l i2l j1•••, ~18!

where the preceding subscript numbers the black holes. N
that a simple superposition is typicallynot a genuine solution
of the Einstein equations, as it does not satisfy the c
straints, but it should be ‘‘close’’ to the real solution whe
the holes are widely separated.

To generate the background data, we first choose m
and angular momentum parameters for each hole, and c
pute the respectiveH and l a in the appropriate rest frame
These quantities are then boosted in the desired direction
offset to the chosen position in the computational frame. T
computational grid is the center of momentum frame for
two holes, making the velocity of the second hole a funct
of the two masses and the velocity of the first hole. Fina
we compute the individual metrics and extrinsic curvatu
in the coordinate system of the computational domain:

Agi j 5h i j 12 AH Al i Al j , ~19!
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2a Agm j~¹j Ab i1¹i Ab j2 Aġi j !.

~20!

Again, the indexA labels the black holes. Data forN holes
are then constructed in superposition

g̃i j 5h i j 1(
A

N

2 AB AH Al i Al j , ~21!

K̃5(
A

N

AB AKi
i , ~22!

Ãi j 5g̃n( i (
A

N

ABS AK j )
n2

1

3
d j )

n
AKi

i D .

~23!

A tilde (˜) indicates a background field tensor. The simp
superposition of the metric from Eq.~18! ~part of the original
specification@25#! has been modified here with the introdu
tion of attenuation functions, AB @28,29#. The extrinsic cur-
vature is separated into its trace,K, and trace-free parts,Ai j ,
and the indices ofÃi j are explicitly symmeterized.

The attenuation functions represent the physical idea
in the immediate vicinity of one hole, the effect of a seco
hole becomes negligible. Near a black hole the conform
background superposition (˜) metrics approach the analyti
values for the single black hole. The attenuation function2B
( 1B) eliminates the influence of the second~first! black hole
in the vicinity of the first~second!. 1B equals unity every-
where except in the vicinity of the second black hole, and
first and second derivatives are zero at the singularity of
second hole.

The attenuation function used is

1B512exp~2,1
4/2s2!, ~24!

where,1 is the coordinate distance from the center of hole

,1
25

1

2
~r22a2!1A1

4
~r22a2!21a2z2, ~25!

r5A 2g2~x2 2x!21~y2 2y!21~z2 2z!2, ~26!

ands is a parameter. In all examples given in this paper,
masses are equal ands5m2. Figure 1 shows a typical at
tenuation function used in calculating our initial data sets

A small volume containing the singularity is masked fro
the computational domain. This volume is specified
choosing a threshold value for the Ricci scalar, typically
uRu>2/m2. For a single Schwarzschild black hole, this giv
a spherical mask with a radiusr .0.73m. In all cases the
masked region lies well within apparent horizons in t
solved data. In practice we find that a small attenuation
gion ~also inside the apparent horizon! is necessary to
achieve a smooth solution of the elliptic initial data equatio
near the mask; see Sec. II D below. Figures 2 and 3 show
Hamiltonian and momentum constraints for the backgrou
9-4
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space with and without attenuation. We have not varied
masking condition to determine what effect the size of
mask has on the global solution. As mentioned below, P
iffer et al. have investigated this point@8#.

D. Generating the physical spacetime

The superposition of Kerr-Schild data described in
previous section does not satisfy the constraints, Eqs.~2!,

FIG. 1. The attenuation function,1B512exp(2,1
4/2s2), used

to calculate our initial data solutions. To indicate the effect of
attenuation function in a binary black hole system, we also plot

background metric functiong̃yy in the vicinity of one hole with and
without attenuation. The Schwarzschild black holes are pla
along they-axis at64m. Here,1 is the coordinate distance from
the center of the second black hole, and the attenuation func
width is s5m2.

FIG. 2. The Hamiltonian constraint~units m22) calculated for
the background space for two identical Schwarzschild black ho
The black holes are located on they-axis aty564 m, and have
zero initial velocity. The solid curve is the background behavior
the constraint without using attenuation functions, and the das
curve is the constraint with attenuation ands5m2. The masked

region is within the radiusr ,̃0.73m. It can be seen that attenuatio
does not necessarily reduce the constraint, but does smooth it
04401
e
e
-

e

~3!, and hence are not physical. A physical spacetime can
constructed by modifying the background fields with ne
functions such that the constraints are satisfied. We adop
conformal transverse-traceless method of York and colla
rators@18# which consists of a conformal decomposition a
a vector potential that adjusts the longitudinal component
the extrinsic curvature. The constraint equations are t
solved for these new quantities such that the complete s
tion fully satisfies the constraints.

The physical metric,gi j , and the trace-free part of th
extrinsic curvature,Ai j , are related to the background field
through a conformal factor

gi j 5f4g̃i j , ~27!

Ai j 5f210@Ãi j 1~ l̃ w! i j #, ~28!

wheref is the conformal factor, and (l̃ w) i j will be used to
cancel any possible longitudinal contribution to the sup
posed background extrinsic curvature.wi is a vector poten-
tial, and

~ l̃ w! i j [¹̃ iwj1¹̃ jwi2
2

3
g̃i j ¹̃kw

k. ~29!

The traceK is taken to be a given function

K5K̃. ~30!

Writing the Hamiltonian and momentum constraint equatio
in terms of the quantities in Eqs.~27!–~30!, we obtain four
coupled elliptic equations for the fieldsf andwi @18#:

e

d

on

s.

f
ed

FIG. 3. They-component of the momentum constraint~units
m22) calculated for the background space of two identic
Schwarzschild black holes. The black holes are located on
y-axis aty564m, and have zero initial velocity. The solid curve
the background behavior of the constraint without using attenua
functions, and the dashed curve is the constraint with attenua
ands5m2.
9-5
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¹̃2f5~1/8!S R̃f1
2

3
K̃2f52f27

3@Ãi j 1~ l̃ w! i j #@Ãi j 1~ l̃ w! i j # D , ~31!

¹̃j~ l̃ w! i j 5
2

3
g̃i j f6¹̃jK2¹̃j Ã

i j . ~32!

E. Boundary conditions

A solution of the elliptic constraint equations requires th
boundary data be specified on both the outer boundaryand
the surfaces of the masked regions. This contrasts with
hyperbolic evolution equations for which excision can
principle be carried out without setting inner boundary d
since no information can propagate out of the holes. Bou
aries in an elliptic system, on the other hand, have an im
diate influence on the entire solution domain. Using the
tenuation functions, we can choose simple conditionsf
51 andwi50, on the masked regions surrounding the s
gularities. In practice this inner boundary condition is n
completely satisfactory because it generates small disco
nuities in the solution at this boundary. These discontinui
are small relative to the scales in the problem, and are c
tained within the horizon. We have made no attempt to
termine their global effect on the solution. Pfeifferet al. @8#
report a similar observation, and note that the location of
boundary does affect some aspects of the solution, thou
has little effect on the fractional binding energy or the loc
tion of the ISCO.

The outer boundary conditions are more interesting. S
eral physical quantities of interest, e.g., the ADM mass a
momenta, are global properties of the spacetime, and
calculated on surfaces near the outer boundary of the c
putational grid. Hence the outer boundary conditions mus
chosen carefully to obtain the proper physics. We base
outer boundary conditions on an asymptotic expansion of
Kerr-Schild metric, which relies on the ADM mass and m
mentum formulas to identify the physically relevant terms
the boundaries. We first review these expansions and for
las.

An asymptotic expansion of the Kerr-Schild metric (r
@m) gives

r 5r~11O~r22!!, ~33!

H5m/r~11O~r22!!, ~34!

l i5ni1
ace i jcnj

r
1O~r22!, ~35!

whereni5ni5xi /r. ~This is the only place where we donot
use the 3-metric to raise and lower indices, andnin

i51). ac

is the Kerr spin parameter with a general direction:ac

5aâc. The shift@Eq. ~12!# is asymptotically

b i5
2m

r S ni1ac
e i jcnj

r D1O~r23!. ~36!
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The asymptotic expansion of the extrinsic curvature in
stationary Kerr-Schild form@cf. Eq. ~14!# is

aKab5
2m

r2
~22nanb1dab!2

3m

r3
ac~ea jcnb1eb jcna!nj

1
6m2

r3 S nanb2
2

3
dabD1O~r24!. ~37!

The terms proportional toac/r3 in this expression arise from
the transverse components ofba (bana50); the terms of
O(r23) independent ofac arise from the affine connection
Note thata511O(r21), and will not affect the ADM es-
timates below.

The ADM formulas are evaluated in an asymptotically fl
region surrounding the system of interest, and in Cartes
coordinates they are

MADM5
1

16p R S ]gji

]xj
2

]gj j

]xi D dSi , ~38!

Pk
ADM5

1

8p R ~Kki2Kb
bdki!dSi , ~39!

Jab
ADM5

1

8p R ~xaKbi2xbKai!dSi , ~40!

for the mass, linear momentum, and angular momentum
the system, respectively@30,31#. ~All repeated indices are
summed.! The mass and linear momentum together con
tute a 4-vector under Lorentz transformations in t
asymptotic Minkowski space, and the angular moment
depends only on the trace-free components of the extri
curvature.

To compute the ADM mass and momenta for a sing
stationary Kerr-Schild black hole, we evaluate the integr
on the surface of a distant sphere. The surface element
becomesdSi5nir2dV, whereni is the outward normal and
dV is the differential solid angle. We need to evaluate t
metric only to orderO(r21); the differentiation in Eq.~38!
guarantees that terms falling off faster thanr21 do not con-
tribute to the integration. The integrand is the
4m/r2 nir

2nidV and the integration yields the expecte
ADM massMADM5m. The ADM linear momentum require
only the leading order ofKab , O(r22); terms falling off
faster than this do not contribute. The integrand of Eq.~39!
then becomes2(4m/r2) nanbnbr2dV, yielding zero for the
3-momentum, as expected for a nonmoving black hole.

At first blush, the integral for the ADM angular momen
tum Eq. ~40! appears to warrant some concern: To lead
orderKab is O(r22), and the explicit appearance ofxa in the
integrand suggests that it grows at infinity asO(r), leading
to a divergent result. However, inserting the leading or
term of Kab for a single, stationary Kerr-Schild black hol
into the integrand of Eq.~40!, we find that the integrand is
identically zero. TheO(r22) terms ofKab contain the quan-
tities nanb anddab , which separately cancel because of t
antisymmetric form of Eq.~40!, and a divergent angular mo
9-6



fo
l t

n
en

r

le
n
c

n
or
d

at

is

ta
d

he
fo
on
e

d-

s

s

ll

-
os-

ry
-

-
.
-

er

the

m

as

s

PHYSICS AND INITIAL DATA FOR MULTIPLE BLACK . . . PHYSICAL REVIEW D 68, 044019 ~2003!
mentum is avoided. Including theO(r23) terms ofKab , we
find Jab

ADM5eabca
cm; the symmetry of the otherO(m2r23)

terms again means they do not contribute. This result
Jab

ADM thus depends on terms in the integrand proportiona
a that arise from corresponding terms inb i proportional toqi

whereqa is a unit vector transverse to the radial directio
qana50. Only these terms contribute to the angular mom
tum integral; in particular those terms inb i proportional to
ni /r do not contribute.

The ADM mass and momenta are Lorentz invariant. Fo
single, boosted black hole, we naturally obtainMADM5gm
and PADM5gmv. The background spacetime for multip
black holes is constructed with a superposition principle, a
the ADM quantities are linear in deviations about flat spa
at infinity. Thus the ADM formulas, evaluated at infinity i
the superposition,do yield the expected superposition. F
example, given two widely separated black holes booste
the x-y plane with spins aligned along thez-axis, we have

M̃ADM51g1m12g 2m, ~41!

P̃i
ADM50, ~42!

J̃12
ADM51g~1m1v1b11m1a!

12g~2m2v2b12m2a!, ~43!

where 1b and 2b are impact parameters@34#, and the tilde
(˜) superscript indicates that these quantities are calcul
with the background tensorsg̃ab andK̃ab . This superposition
principle for the ADM quantities in the background data
one advantage of conformal Kerr-Schild initial data.~Note,
in choosing the center of momentum frame for the compu
tion, Pi

ADM50 is a condition for setting the backgroun
data.!

Consider now the ADM integrals for the solved data. T
Hamiltonian constraint becomes an equation for the con
mal factor,f. As this equation is a nonlinear generalizati
of Poisson’s equation, asymptotic flatness in the full, solv
metric requires that

f→11
C

2r
1O~r22!, ~44!

whereC is a ~finite! constant. This leads to our outer boun
ary condition forf, namely

]r@r~f21!#ur→`50. ~45!

Furthermore, the linearity of the ADM mass integral give

MADM~solved!5 1g 1m12g 2m1C. ~46!

@Here the absence of a tilde (˜) indicates that this mass i
calculated using the solvedgab.] At this point we cannot
predict even the sign ofC, thoughuCu is expected to be sma
for widely separated holes. IfuCu→`, then the boundary
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condition Eq.~45! would fail. The existence of solutions us
ing this condition, however, provides evidence that this p
sibility does not occur.

The boundary condition forwi is more subtle.A priori,
we expectwi→0 at infinity, but a physically correct solution
on a finite domain requires that we understand howwi ap-
proaches this limit at infinity. We construct our bounda
conditions onwk by demanding that the ADM angular mo
mentum of the full~solved! system be only finitely different
from that of the background~superposed! data. That is, given
that $g̃ab ,K̃ab% and $gab ,Kab% have finite differences at in
finity, we demand thatJab2 J̃ab also be finite. Using Eqs
~28! and ~40!, we find for the difference in angular momen
tum

Jab2 J̃ab5
1

8p R ~xa¹(bwi )2xb¹(awi )!dSi . ~47!

(f→1 at infinity, and there is no difference at this ord
between conformal and physical versions ofwi and gab at
infinity.!

We have already evaluated an integral of this form, in
discussion of the Kerr angular momentum@see Eqs.~40! and
~37!#, where we expressedKab in terms of the Kerr-Schild
shift vector. In that analysis, we noted that falloff of the for

wi→
C1

r
ni1

C2

r2
qi1O~r23!, ~48!

with C1 and C2 constant, andqin
i50, will give a finite

contribution to the angular momentum. We therefore take
boundary conditions:

]r~rwini !50 ~49!

]r~r2wi~d i j 2ninj !!50. ~50!

Figures 4–6 displayf andwi for a simple configuration.

FIG. 4. f along they-axis connecting two nonspinning hole
with orbital angular momentum. The holes are boosted in the6x
direction withv50.196 and are separated by 10 M. Note thatf is
very close to unity everywhere.
9-7
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BONNING et al. PHYSICAL REVIEW D 68, 044019 ~2003!
In this case the elliptic equations were solved on a domai
610 m along each axis with resolutionDx5m/8. As can be
seen in these figures, the functionsf andwi actually result
in little adjustment to the background configurations. Al
note that the radial component ofwi , wini , is the dominant
function. In the graphs plotted here, which give the functio
along they-axis, we find uuwyuu`'0.03, while uuwxuu`'3
31023, anduuf21uu`'0.013. Because of the symmetry
the configuration,uuwzuu` is much smaller. Analytically,wz

50 on the y-axis; computationally we finduuwzuu`'5
31027. In fact we find in general that the radial compone
of wi is the dominant function in all directions, consiste
with our boundary conditions, and consistent with the find
that the solution of the constraints has small effect on
computed angular momentum. Of course the correctionf
and wi would be expected to be larger for data describ
holes closer together. We show below that this data set
method leads to generically smaller corrections than foun
other methods, thus allowing closer control of the physi
content of the data.

FIG. 5. wx for the same configuration as in Fig. 4.

FIG. 6. wy for the same configuration as in Fig. 4.wz is numeri-
cally zero as expected by symmetry.
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IV. BINDING ENERGY IN INITIAL DATA

As a first step towards understanding the physical con
of initial data sets, we examine in this section the effect
the presence of a second hole on the horizon areas of a
hole and on global features such as the ADM integrals
the binding energy of the pair. This analysis is carried out
nonspinning holes to first order in the binding energy.
comparison to the Newtonian result indicates that the Ke
Schildbackgroundsuperposition data contain the appropria
physical information at this level. We then consider possi
spin-related phenomena, estimate their magnitude, and
cuss their possible effect near the ISCO.

A. Binding energy in Brill-Lindquist data

Before discussing the conformal Kerr-Schild data, we fi
consider Brill-Lindquist data for two nonmoving Schwarz
child black holes@35#. These data are conformally flat, an
Kab50. The momentum constraints are trivially satisfie
and the Hamiltonian constraint is solved for a conform
factor: f511m/(2r )1m8/(2r 8). Here the two mass pa
rameters arem andm8, andr andr 8 are the distances in th
flat background from the holesm andm8.

We find that the apparent horizon areas in the solved d
correspond to

MAH1MAH8 5m1m81
mm8

,
1O~,22!. ~51!

The subscript ‘‘AH’’ indicates masses computed from app
ent horizon areas, and the separation in the flat backgro
space is, @36#. We assume that this mass~computed from
apparenthorizons! is close to the total intrinsic mass of th
black holes~which is given by a knowledge of the spin—
here zero—and the area of theeventhorizon!. The binding
energy,Eb , can be computed as the difference of the AD
mass observed at infinity and the sum of the horizon mas

Eb5MADM2MAH2MAH8 . ~52!

For Brill-Lindquist dataMADM5m1m8, so that

Eb52
Gmm8

,
1O~,22!, ~53!

which is the Newtonian result.

B. Binding energy in superposed Kerr-Schild data

We now calculate the binding energy in superposed Ke
Schild data ~set according to our conformal transvers
traceless approach! for a nonmoving Schwarzschild blac
hole at the origin, and a second such hole at coordinate
tance, away. (, is measured in the flat space associa
with the data construction.! We compute the area of the ho
at the origin to first order and find that the Newtonian bin
ing energy already appears in the background data prio
solving the constraints. Thus, we have an argument justify
9-8
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PHYSICS AND INITIAL DATA FOR MULTIPLE BLACK . . . PHYSICAL REVIEW D 68, 044019 ~2003!
the result noted at the end of Sec. III E: solving the ellip
constraint equations leads to small corrections to the K
Schild background data.

Let both holes be placed on thez-axis; the first hole with
mass parameterm at the origin, and a second hole with ma
parameterm8 at z5,. The holes are well separated, and w
expand all quantities about the origin in powers ofe
[m8/, with e!1. Using Schwarzschild coordinates label
(r ,u,f) @cf. Eqs.~4!–~9! for a50], the background metric
tensor is

g̃rr 511
2m

r
12e cos2u, ~54!

g̃ru522er sinu cosu, ~55!

g̃uu5r 212er 2sin2u, ~56!

g̃ff5r 2sin2u, ~57!

with all other components zero. The extrinsic curvature
the second hole,2Kab , is of O(e2) at the origin, and we
have simplyK̃ab51Kab . Similarly, the trace of the extrinsic
curvature isK̃51K. Finally, the nonzero components ofÃab
are

Ãrr 52
2c2

r 2 S 112
m

r
12e cos2u D , ~58!

Ãru5e
c2

r
sinu cosu, ~59!

Ãuu5c2~112e sin2u!, ~60!

Ãff5c2sin2u, ~61!

where

c2[
2M

3
A r

r12M

~2r 13m!

~r 12m!
. ~62!

While K̃ab is not a function ofe, and hence contains n
information about the second hole, perturbative quantities
appear inÃab . This perturbation inÃab arises because w
sum the mixed-index components ofAAb

c , and because the
full background metric, involving terms from each hole,
involved in the symmetrization in Eq.~23!.

To calculate the binding energy we first find the appar
horizon area of the local hole. For a single Schwarzsch
hole, the horizon is spherical and located atrH52m; the
area of the horizon is 16pm2. The effect of the second hol
is to distort the horizon along thez-axis connecting them
and we define a trial apparent horizon surface asf 50, where

f 5r22m2(
l

al Pl~cosu!. ~63!
04401
r-

f

o

t
d

The expansion off in Legendre polynomials,Pl , expresses
the distortion of the local horizon away from the zero-ord
spherical result. This expansion includes a term describin
constant ‘‘radial’’ offset in the position of the apparent ho
zon, a0P0. This and the other terms defining the surfa
have the expected magnitude,al5O(me). We solve for the
horizon by placing this expression for the surface into
apparent horizon equation

¹is
i1Aabs

asb2
2

3
K50, ~64!

wheresi is the unit normal to the trial surface

si5
f ,i

Agabf ,af ,b

. ~65!

The apparent horizon equation is solved to first order,O(e).
One must evaluate the equation at the new~perturbed! hori-
zon location. LetF represent the left-hand side of the appa
ent horizon equation@Eq. ~64!#, r052m is the horizon sur-
face of the single, unperturbed hole, andrH(u) is the new
perturbed horizon. We expandF to first order as

F@rH~u!#5F0~r0!1
]F

]r U
r0

( al Pl50. ~66!

Solving Eq.~64!, the only nonzero coefficients in Eq.~63!
area05mm8/(3,), a252mm8/(2,). Integrating the deter-
minant of the perturbed metric over the horizon surfacer
52m1( lal Pl(cosu), we find the area of the apparent hor
zon to be

AH516pS m1
mm8

2, D 2

1O~m2~m8/, !2!, ~67!

corresponding to a horizon mass ofMH5m1mm8/(2,) to
Newtonian order, i.e. to orderO(e)5O(,21).

In this nonmoving case the total ADM mass is ju
MADM5m1m8. This leads to the Newtonian binding energ
at this order

Eb52
mm8

,
. ~68!

Because we work only to lowest order ine, Eq. ~68! had
to result in an expression ofO(me), but it did not have to
have a coefficient of unity. Both the conformally flat an
conformally Kerr-Schild data contain the Newtonian bindi
energy. However, this result is obtained in the superpo
backgroundKerr-Schild metric, while the Brill-Lindquist
and Čadeždata give the correct binding energy only aft
solving the elliptic constraints. This is consistent with t
small corrections introduced byf andwi (f;1, uwi u!1) in
the solved Kerr-Schild data~see Sec. III E!. This fact—that
for a superposed Kerr-Schild background the solution of
full elliptic problem modifies the data~and the mass/angula
momentum computations! only slightly—demonstrates how
powerful this choice of data can be.
9-9
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BONNING et al. PHYSICAL REVIEW D 68, 044019 ~2003!
Furthermore, the Newtonian form of the binding ener
(e!1) means the correct classical total energy is found
orbiting situations. If the holes have nonrelativistic motio
their individual masses are changed by orderg'11O(v2)
511O(e). The binding energy, which is alreadyO(e) and
is proportional to the product of the masses, is changed o
at orderO(e2). The ADM mass, on the other hand, measu
gm, and MADM will be increased bymv2/2 @an O(e) in-
crease# for each hole, leading to the correct Newtonian en
getics for the orbit.

The apparent horizon is the only structure available
measure the intrinsic mass of a black hole. Complicating
issue is the intrinsic spin of the black hole; the relation
between horizon area andirreducible mass:

AH516pmirr
2 58pm~m1A~m22a2!!. ~69!

As Eq.~69! shows, the irreducible mass is a function of bo
the mass and the spin, and in general we cannot specify
spin of the black holes. For axisymmetric cases Ashtek
isolated horizon paradigm@14# gives a way to measure th
spin locally. We do not pursue the point here since we inv
tigate generic and typically nonaxisymmetric situations.

C. Spin effects in approximating inspiral with initial
data sequences

We have seen that the initial data contain the bind
energy in a multiple black hole spacetime. This informati
can be used to deduce some characteristics of the or
dynamics, particularly the radius of the circular orbit,,, and
the orbital frequency,v. Given a sequence of initial dat
slices with decreasing separations, we determineEb for each
slice. The circular orbit is found where

]Eb

], U
J

50. ~70!

The separation at the ISCO orbit,, ISCO, lies at the boundary
between binding energy curves which have a minimum,
those that do not. The curve for the ISCO has an inflect
point:

]2Eb

],2 U
J

50. ~71!

The angular frequency is given by

v ISCO5
]Eb

]J
. ~72!

The attempt to model dynamical inspiral seems secure
large separation (,.15m), though surprises appear eve
when the holes are very well separated. For instance,
~67! above shows that compared to the bare parameter
ues, the mass increase is equal for the two holes in a dat
Thus the smaller hole is proportionately more strongly
fected than the larger one.
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The physically measurable quantity in question is the f
quency ~at infinity! Eq. ~72! associated with the last orb
prior to the plunge, the ISCO. This may be impossible
determine by the initial data set method.

To begin with, isolated black holes form a 2-parameter
~depending on the mass parameterm, and the angular mo-
mentum parameter,j 5ma). For isolated black holes withou
charge the parameters$m, j % uniquely specify the hole. They
are equal, respectively, to the physical mass and angular
mentum. Every method of constructing multiple black ho
data assigns parameter valuesBm and Bj to each constituen
B~hole! in the data set.

There is substantial ambiguity involving spin and mass
setting the black hole data. One must consider the evolut
ary development of the black hole area and spin. This i
real physical phenomenon which contradicts at some le
the usual assumption of invariant mass and spin. A rela
concern arises because it is only thetotal ADM angular mo-
mentum that is accessible in the data, whereas one conn
to particle motion via theorbital angular momentum.

Consider the behavior of the individual black hole sp
and mass in an inspiral. For widely separated holes, bec
the spin effects fall off faster with distance than the domin
mass effects do, we expect the spin to be approximately c
served in an inspiral. Therefore it should also be const
across the initial data sets representing a given sequenc
orbits. But when the holes approach closely, the corr
choice of spin parameter becomes problematic also.

Newtonian arguments demonstrate some of the poss
spin effects. In every case they area priori small until the
orbits approach very closely. However, at estimates for
ISCO, the effects begin to be large and result in ambigui
in setting the data~see Price and Whelan@38#!. We will
consider these effects in decreasing order of their magnitu

For two holes, each of massm in Newtonian orbit with a
total separation of,, the orbital frequency is

mv5A2~m/, !(3/2). ~73!

From recent work by Pfeifferet al. @2#, the estimated ISCO
frequency is of ordermV50.085, corresponding to,
'6.5m in this Newtonian approach.

To compare this frequency, Eq.~73!, to an intrinsic fre-
quency in the problem, we take the lowest~quadrupole!
quasi-normal mode of the final merged black hole~of mass
2m) which has frequency 2mv0'0.37; the quadrupole dis
tortion is excited at twice the orbital frequency.~We are us-
ing the values for a Schwarzschild black hole in this qua
tative analysis.! The driving frequency equals the quas
normal mode frequency when,'4m, as might be expected

To consider effects linked to the orbital motion on th
initial configurations, we can first treat the effect of imposi
corotation. While we show below that corotation is n
physically enforced except for very close orbits, it is a fa
that certain formulations, for instance versions of the ‘‘th
sandwich’’ with a helical Killing vector, require corotation i
their treatment. For any particular initial orbit, corotation
certainly a possible situation.

In corotation, then, with Eq.~73!, for each hole:
9-10
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PHYSICS AND INITIAL DATA FOR MULTIPLE BLACK . . . PHYSICAL REVIEW D 68, 044019 ~2003!
J5ma5Iv54m2~mv!. ~74!

The result for the moment of inertiaI 54m3 is the Schwarzs-
child value@27,39#. Thus

a54mA2~m/, !(3/2). ~75!

Assumea/m!1, and compute the area of this black ho
@27#:

A58pm~m1Am22a2!'16pm2@12~a/m!2/4#.
~76!

The horizon mass computed from this area is

AA/~16p!'m@124~m/, !3#. ~77!

At our estimate of the ISCO orbit,, ISCO'6m, this effect
is of order of 10% of the Newtonian binding energy, d
tinctly enough to affect the location of the ISCO.~At , ISCO
'6m, a/m'0.3 for corotation.!

Two more physical effects are not typically considered
setting data. They areframe draggingand tidal torquing.
Within our Newtonian approximations, we will find tha
these effects are small, but not zero as the orbits approac
ISCO. In full nonlinear gravity these effects could be su
stantial precisely at the estimated ISCO.

The frame dragging is the largest dynamical effect. T
orbiting binary possesses a net angular momentum. F
rotating mass~here the complete binary system! the frame
dragging angular rate is estimated as the rotation rate ti
the gravitational potential at the measurement point@27#.
Hence

mVdrag5mvS 2m

, D'S m

, D 5/2

'
a

4m
. ~78!

This is a/m of order 1% at,510m; of order 4% at,
56m.

The tidal torquing and dissipative heating of the bla
holes can be similarly estimated. As the two holes sp
together, the tidal distortion from each hole on the other w
have a frequency which is below, but approaching, the qu
normal frequency. Just as for tidal effects in the solar syst
there will be lag in the phase angle of the distortion, wh
we can determine because the lowest quasi-normal mode
dissipative oscillator, driven through the tidal effects at tw
the orbital frequency:

q̈12gq̇1v0
2q5F~v!. ~79!

Here m2q is the quadrupole moment of the distorted bla
hole. The parameterg is ~for a Schwarzschild hole of mas
2m) about 2mg50.089. In Eq.~79! the driving acceleration
F(v) is identified with the tidal distortion acceleration. W
evaluate it at zero frequency:
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q5F~v50!/v0
2 ~80!

'
m

,3
. ~81!

The lagging phase, for driving frequency 2v!v0, is easily
computed to be

f'4g
v

v0
2

~82!

54S g

v0
D S v

v0
D . ~83!

This lagging tidal distortion will produce a tidal torque o
the black hole, which we can approximate using a combi
tion of Newtonian and black hole ideas. The most substan
approximation is that the torque arises from a redistribut
of the mass in the ‘‘target’’ black hole, of amountDm
5mm2q5m(m/,)3. This mass has separation'4m. Thus
the torque on the hole is

t5sinf3~ lever arm!3DF

5sinf3~4m!3~Dm2m2/,3!

58 sinfm~m/, !6

'32~g/v0!~v/v0!m~m/, !6

'60m~m/, !15/2. ~84!

What is most important is the effect of this torque on t
angular momentum of the hole over the period of time
takes the orbit to shrink from a very large radius. To acco
plish this, we use the inspiral rate~calculated under the as
sumption of weak gravitational radiation from the orbit; s
@27#!:

d,

dt
52

128

5 S m

, D 3

. ~85!

Thus

dJ

d,
5t

dt

d,
~86!

52
5t

128S m

, D 23

~87!

'22mS m

, D 9/2

, ~88!

and

J~, !'m2S m

, D 7/2

; ~89!
9-11
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BONNING et al. PHYSICAL REVIEW D 68, 044019 ~2003!
assuming that there is minimal mass increase from the a
ciated heating~which we discuss just below!, this identifies
the induced spin parametera5m(m/,)7/2 for an inspiral
from infinity.

The estimatea5m(m/,)7/2 for an inspiral from infinity
assumes the mass of the hole has not changed significan
the inspiral. By considering the detailed behavior of t
shear induced in the horizon by the tidal perturbation,
growth in the black hole mass can be estimated@39# as

dm

dt
5v

dJ

dt
, ~90!

leading to a behavior

Dm~, !'5mS m

, D 5

. ~91!

Consequently, the change in mass can be ignored until
holes are quite close. However, the point is that these N
tonian estimates lead to possible strong effects just wh
they become unreliable, and just where they would affect
ISCO.

These results are consistent with similar ones of Price
Whelan@38#, who estimated tidal torquing using a derivatio
due to Teukolsky@40#. That derivation assumes the quadr
pole moment in the holes arises from their Kerr charac
which predicts specific values for the quadrupole moment
a function of angular momentum parametera.

Finally we consider an effect on binding energy shown
Wald and also by Dain. Wald directly computes the force
stationary sources with arbitrarily oriented spins. He cons
ered a small black hole as a perturbation in the field o
large hole. The result found@41# was

Eb52
mm8

,
2S SW •SW 823~SW •n̂!~SW 8•n̂!

,3 D . ~92!

Here,SW , SW 8 are the spin vectors of the sources andn̂ is the
unit vector connecting the two sources. Dain@42#, using a
definition of intrinsic mass that differs from ours, finds bin
ing energy which agrees with Wald’s Eq.~92! at O(,23).
This is discussed further in Sec. V B.

V. NUMERICAL RESULTS

We now turn to computational solutions of the constra
equations to generate physical data using the superp
Kerr-Schild data. We first discuss the computational co
and tests, as well as some of the limitations of the co
Finally, we consider physical conclusions that can be dra
from the results.

A. Code performance

The constraint equations are solved@Eq. ~32!# with an
accelerated successive over relaxation solver@43#. The solu-
tion is iterated until theL2 norms of the residuals of th
fields are less than 10210, far below truncation error. Dis
crete derivatives are approximated with second order, c
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tered derivatives. We are limited to fairly small domain
e.g., xiP@212m,12m# for a typical m/8 resolution using
1933 points.

To verify the solution of the discrete equations, we ha
examined the code’s convergence in some detail. The c
straints have known analytical solutions—they should
zero—which allow us to determine the code’s converge
using a solution calculated at two different resolutions. L
S1 be a solution calculated with resolutionh1, andS2 be a
solution calculated withh2, then the convergence factorc12
is

c125

logS uuS1uu
uuS2uu D

logS h1

h2
D . ~93!

We constructed a conformal background spacetime w
two m51 nonspinning black holes separated by 6m on the
y-axis. The elliptic equations were then solved on grids w
resolutions ofm/6, m/8, m/10 andm/12. Tables I and II
show the convergence factors as a function of resolution
the Hamiltonian constraint and thex-component of the mo-

TABLE I. Convergence data for the Hamiltonian constraint,C 0,
for a solution with two m51, nonspinning holes atxi5(0,
63m,0) in the conformal background, and outer boundaries axi

566m. The solution was calculated at resolutionsm/6, m/8,
m/10, andm/12. The L2 norms of C 0 were calculated over the
entire volume of the domain using a mask of radius 1m around each
hole, while the computational mask has a radius of approxima
0.75m. This larger mask was used to compensate for the sl
difference of physical location of the mask at different resolutio
The norms are as follows: uuC 0(m/6)uu250.00389054,
uuC 0(m/8)uu250.00238321, uuC 0(m/10)uu250.00157387 and
uuC 0(m/12)uu250.00112328.

Convergence (cab)
a5m/6 a5m/8 a5m/10

b5m/8 1.70
b5m/10 1.77 1.86
b5m/12 1.79 1.86 1.85

TABLE II. Convergence data for thex-component of the mo-
mentum constraint, for the same configuration as Table I. T
norms of C x are as follows: uuC x(m/6)uu250.00541231,
uuC x(m/8)uu250.00310937, uuC x(m/10)uu250.00196156 and
uuC x(m/12)uu250.00136514. Convergence factors were also cal
lated forC y andC z, and found to be essentially identical to the da
shown here, and thus are not given separately.

Convergence (cab)
a5m/6 a5m/8 a5m/10

b5m/8 1.93
b5m/10 1.99 2.06
b5m/12 1.99 2.03 1.99
9-12
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PHYSICS AND INITIAL DATA FOR MULTIPLE BLACK . . . PHYSICAL REVIEW D 68, 044019 ~2003!
mentum constraint,C x. The convergence forC y is nearly
identical toC x, and as they-axis is an axis of symmetry,C z

is identical toC x. Figures 7–9 show the convergence beh
ior of the constraints along coordinate lines. The constra
calculated at lower resolutions are rescaled to the hig
resolution by the ratio of resolutions squared. We see sec
order for all components with the exception of the poin
nearest to the inner boundary.

Solutions of elliptic equations are well-known to be d
pendent on all boundary data. The outer boundary is an
ficial boundary, as the physical spacetime is unbound

FIG. 7. ~Color online! The Hamiltonian constraint~units m22)
along they-axis after solving the elliptic equations for 4 differe
levels of resolution. The constraints are rescaled by the ratio of
resolutions squared, showing second order convergence. The
nonspinning, instantaneously stationary holes ofm51 are posi-
tioned at63 on they-axis.

FIG. 8. ~Color online! y-component of momentum constrain
~units m22) along they-axis after solving the elliptic equations fo
4 different levels of resolution, showing second order converge
The background physical situation is the same as in Fig. 7.
other momentum constraint components evaluated on this axis
zero by symmetry, both analytically, and computationa
@O(10212)#.
04401
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Boundary data for this outer boundary are derived from
asymptotic behavior of a single Kerr black hole. On ve
large domains these conditions should closely approxim
the expected field behavior, but on small domains th
boundary data may only crudely approximate the real so
tion. This error in the boundary data then contaminates
entire solution, as expected for elliptic solutions. Addition
error arises in the calculation of the ADM quantities,
spacetime near the outer boundary does not appro
asymptotic flatness. As an indication of the error associa
with the artificial outer boundaries, we calculated solutio
with the same physical parameters on grids of differing siz
The boundary effects in theMADM are given in Table III, and
Fig. 10 shows a contour plot off for equal mass, nonspin
ning, instantaneously stationary black holes with the ou
boundaries atxi5612m. As a further demonstration o
boundary effects in our solutions, Fig. 11 showsf for a
configuration examined by Pfeifferet al. @8#. Their solution,
shown in Fig. 8 of@8#, was computed on a much large
domain via a spectral method@44#. Thus, while we achieve
reasonable results, it is important to remember that
boundary effects may be significant. Moreover, we have o
considered the effect of outer boundaries, while errors a

e
wo

e.
e
re

FIG. 9. ~Color online! z-component of momentum constrain
~units m22) along thez-axis after solving the elliptic equations fo
4 different levels of resolution, showing second order convergen
Other components of the momentum constraint evaluated along
line are zero by symmetry, both analytically and computationa
@O(10212)#. The background physical situation is the same
in Fig. 7. The behavior of thex-momentum constraint along th
x-axis is identical to this figure, as required by the symmetry of
problem.

TABLE III. Total ADM mass for two instantaneously stationar
nonspinning holes separated by 6m on a grid of discretizationDx
5m/8 for four different domain sizes.

Domain MADM

68 m 1.942 m
610 m 1.964 m
611 m 1.974 m
612 m 1.980 m
9-13
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BONNING et al. PHYSICAL REVIEW D 68, 044019 ~2003!
ing from the approximate inner boundary condition have
been examined.

Other derived quantities also show convergence: Fig
12 shows the ADM massMADM for two nonspinning black
holes at 6m separation, and different resolutions. The fit i

MADM5S 1.94110.067S Dx

m D20.422S Dx

m D 2Dm, ~94!

FIG. 10. Contour plot off for two instantaneously stationary
nonspinning holes of mass parameterm51. The holes are sepa
rated by 6m along they-axis. The bold circles indicate the appare
horizons.

FIG. 11. Contour plot representing the same configuration
Fig. 10 but with the holes separated by 10 m along they-axis.
Compare to Fig. 8 in Ref.@8#.
04401
t

re

showing good second order convergence. The angular
mentum calculation is less robust, but exhibits approximat
first order convergence. The fit to Fig. 13, which showsJADM

for two nonspinning holes with orbital angular momentu
gives:

J12
ADM5S 1.83720.121S Dx

m D10.237S Dx

m D 2D e12m
2.

~95!

Compare this to the angular momentum computed for
background:J̃12

ADM52.0m2.

B. Physics results

The small computational domain does not negate the u
ity of these solutions as initial data for the time-depend
Einstein equations. For instance, Figs. 14 and 15 show
for grazing and elliptical orbits. They are currently bein
incorporated into the Texas binary black hole evolution co

s

FIG. 12. The total ADM energy for two momentarily stationa
nonspinning black holes separated by 6m at various resolutions.
The results exhibit second order convergence.

FIG. 13. The total ADM angular momentum for two nonspi
ning holes boosted in the6x direction with v50.3162 and sepa-
rated by 6m at various resolutions~background angular momentum

J̃12
ADM52.0m2).
9-14



ep
th
a

10

r
e
es
ss,
he
of

g
-

s,

rly

en

a

y

lso
999.

.
at

PHYSICS AND INITIAL DATA FOR MULTIPLE BLACK . . . PHYSICAL REVIEW D 68, 044019 ~2003!
While the small domains do mean that our data do not r
resent the best asymptotically flat results available from
method, we can still verify some of the qualitative analytic
predictions of the previous section. In particular, Figs.
16, and 17 show the conformal factorf for holes instanta-
neously at rest at a separation of 6m. In Fig. 10 they are

FIG. 14. f for a grazing collision between two equal mas
nonspinning holes. The holes are centered aty561m and boosted
toward each other withvx570.5c, respectively.

FIG. 15. f for two nonspinning holes boosted perpendicula
to their separation. The holes are separated by 10m and boosted
with vx560.196, giving the system a background angular mom

tum of J̃12
ADM52.0m2. The calculatedJ12

ADM51.91m2 and MADM

51.970m2. The Newtonian data correspond to an elliptic orbit
apastron.
04401
-
is
l
,

nonspinning; in Figs. 16 and 17, each has Kerr parametea
50.5m. In one case~Fig. 16! the spins are aligned; in th
other~Fig. 17! they are antialigned. Table IV gives the valu
of the apparent horizon area of each hole, the ADM ma
and the binding energy fraction for these configurations. T
binding energy is consistent with the analytic estimates
Wald @41# in Sec. IV C.

Wald’s computation of the binding energy for spinnin
holes, Eq.~92!, gives for parallel or antiparallel spins or

-

t

FIG. 16. Conformal factorf for two instantaneously stationar
holes separated by 6m with spin parametera50.5. The spins are
parallel and pointed out of the page. Compare to Fig. 10. A
notice the boundary effect on the outermost contour, labeled 0.

FIG. 17. Conformal factorf for the same configuration as Fig
16 except the spins are antiparallel: the spin of the hole
(0,23,0) points into the page.
9-15
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TABLE IV. MADM , AAH and associated quantities calculated for two holes withm51.0 on a grid (24m)3

with resolutionDx5m/8.

AAH
a MADM MAH

a Binding energy

Parallel spin 53.20 1.973 1.065 20.157520.1473MAH

Antiparallel spin 53.17 1.974 1.065 20.156520.1463MAH

Zero spin 57.10 1.980 1.066 20.151520.1423MAH

aQuantity for a single hole.
f
le
bi
h
e
in
rg

th
rg
in
di

ss
he
pa
r
ne
-
il
ta
e
ia
at
r t
ex

ore
s is
tant
n-
be
uent
ny
sig-

gu-
ew
rate
rid

ns
es.

e
ed
ing
ed
ay

his
the
for

ing

is
Y
ed

sity
thogonal to the separation~as in our computational models!:

Eb52S mm8

,
1

SW •SW 8

,3 D ~96!

with oppositely directed spins showinglessbinding energy.
For ourS50.5 m2, ,56m configuration, this is a change o
order O(231023) between the parallel and the antiparal
cases. For the spinning cases we compute a change in
ing energy between parallel and antiparallel spins of roug
half that, with the correct sign. This rough correspondenc
the analytic result is suggestive. However, the nonspinn
case deviates from the expectation that its binding ene
should be between that of the spinning cases. Based on
scatter in the binding energies shown here, we estimate
we have achieved about 3% accuracy in the binding ene
With the accuracy of our solution and the size of our doma
we are unable to present a clearer dependence of bin
energy on spin.

VI. OUTLOOK

To an extent, the difficulty in setting data will become le
relevant, as good evolutions are eventually achieved. T
data can be set for initial configurations with very large se
ration, and the subsequent evolution will tell us the futu
dynamics. In the shorter term, the iBBH program of Thor
and collaborators@45# will give us an indication of the evo
lution of the black hole parameters in the inspiral, and w
allow a closer identification of the corresponding initial da
sequence. To point out a couple of additional physical
fects, note that, besides the historical component assoc
with a lagging tidal distortion, there is the familiar fact th
most data setting methods are incapable of accounting fo
previously emitted gravitational radiation. One can then
hy

hy

t.

04401
l
nd-
ly
to
g
y

the
at
y.
,
ng

n
-

e

l

f-
ted

he
-

pect that data describing hyperbolic encounters will be m
accurate than data sets describing circular motion. Thi
because, in hyperbolic encounters, which are set as dis
initial configurations, the radiation is more planar, and co
fined to near each hole. The radiation should then both
better defined, and should have less effect on the subseq
evolution than in the more distorted orbiting data set. In a
case, the understanding of these problems is extremely
nificant in understanding the physical content of the confi
rations we must solve to provide waveforms for the n
generation of gravitational wave detectors. For more accu
computational results, we are undertaking both a multig
approach@46# and a spectral approach@4,8# and expect to
have extended results soon comparable to those of@8,44#. A
fast elliptic solver capable of solving the constraint equatio
on large domains can be incorporated into evolution cod
In addition to providing the initial conditions for the tim
evolution, the elliptic solver in such an application is call
at each integration time step. This has the effect of forc
the constraints to be satisfied for all time, which is requir
by the Einstein equations. Fully constrained evolutions m
show improvements in stability@47#. Evolutions are cur-
rently being carried out using the initial data described in t
paper, and a GMRES solver based on PETSc, to solve
constraint equations at each time step; preliminary results
constrained evolution of binary black holes are promis
@48#.
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A. Čadež, Ann. Phys.~N.Y.! 83, 449~1974!. Čadežconsidered
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