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Physics and initial data for multiple black hole spacetimes
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An orbiting black hole binary will generate strong gravitational radiation signatures, making these binaries
important candidates for detection in gravitational wave observatories. The gravitational radiation is charac-
terized by the orbital parameters, including the frequency and separation at the innermost stable circular orbit
(ISCO). One approach to estimating these parameters relies on a sequence of initial data slices that attempt to
capture the physics of the inspiral. Using calculations of the binding energy, several authors have estimated the
ISCO parameters using initial data constructed with various algorithms. In this paper we examine this problem
using conformally Kerr-Schild initial data. We present convergence results for our initial data solutions, and
give data from numerical solutions of the constraint equations representing a range of physical configurations.
In a first attempt to understand the physical content of the initial data, we find that the Newtonian binding
energy is contained in the superposed Kerr-Schild background before the constraints are solved. We examine
some deficiencies with the initial data approach to orbiting binaries, especially touching on the effects of prior
motion and spin-orbital coupling of the angular momenta. Making rough estimates of these effects, we find that
they are not insignificant compared to the binding energy, leaving some doubt of the utility of using initial data
to predict ISCO parameters. In computations of specific initial-data configurations we find spin-specific effects
that are consistent with analytical estimates.
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[. INTRODUCTION viated ISCQ, and as they continue through the final plunge.
The dynamics of the holes during these final orbits, espe-
The computation of gravitational wave production from cially the orbital angular velocityw,sco, and separation,
the interaction and merger of compact astrophysical objecté,sco, determine the dominant characteristics of the detect-
is a challenge which, when solved, will provide a predictiveable waves. Any knowledge of these parameters is advanta-
and analytical resource for the upcoming gravitational wavegeous for detecting radiation from these binary systems.
detectors. A binary black hole system is expected to be the The proper way to predict gravitational waveforms for
strongest possible astrophysical gravitational wave source. larbiting black holes is to set initial data for two widely sepa-
particular, one expects a binary black hole system to progresated holes, and then solve the evolution equations to follow
through a series of quasi-equilibrium states of narrowing cirthe inspiral through merger and beyond. This problem is well
cular orbits as it emits gravitational radiation. In the final beyond the capabilities of current evolution codes. There-
moments of stellar mass black hole inspiral, the radiatiorfore, to obtain some information about orbiting black holes
will be detectable in the currefitaser Interferometric Gravi- we, and other$1—§|, turn to the initial value problem. For
tational Wave Observatorfl IGO) clasg detectors. If the an introduction to the literature, see the review by Cpak
total binary mass is of the order of ¥Q,, the moment of Given a collection of initial data for black holes in circular
final plunge to coalescence will emit a signal detectable byorbits with decreasing radius, one tries to identify a sequence
the current generation of detectors from very dist@®pc) of initial data that corresponds to instantaneous images of a
sources. time-dependent evolution. Circular orbits are chosen because
Detecting gravitational radiation is also a significant tech-orbits in the early stages of an inspiral are predicted to be-
nical challenge. Gravitational waves couple very weakly tocome circularized because of the stronger gravitational radia-
matter, and the expected signals are much smaller in ampltion near periapsgl0]. When a suitable sequence of initial
tude than ambient environmental and thermal noise. The sudata slices has been obtained, they can then be used to de-
cessful detection of these waves, therefore, requires sontermine various orbital parameters. For example, the change
knowledge of what to look for. In this regard, an orbiting in binding energy with respect to the orbital radius allows
binary black hole system is an ideal candidate for detectiomne to identify¢ ;sco, and a similar analysis of the angular
since the orbital motion produces regular gravitational radiamomentum givesw,sco. The difficulty in this approach
tion patterns. In such an inspiraling black hole system, theomes in ensuring that the initial data at one radius corre-
strongest waves are emitted during the last several orbits, apond to the same physical system as the data for another
the holes reach the innermost quasi-stable dh#te abbre- radius. This can be done for some systems by using con-
served quantities. For example, in the case of neutron stars,
constant baryon number is an unambiguous indicator of the
*Present address: Department of Physics, University of lllinois asameness of the stars. However, in black hole physics it is

Urbana-Champaign, Urbana, IL 61801. not available; it is unclear how to determine that two black
"Present address: Department of Physics & Astronomy, Louisian&iole initial data sets do, in fact, represent the same physical
State University, Baton Rouge, LA 70803. system.
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The initial data approach to studying binary black holes istermination of the location of the ISCO. We give some com-
thus not without problems. These difficulties fall in two putational examples consistent with these qualitative predic-
broad areas. First, there is no unambiguous way to set initidlons.
data in general relativity. The current algorithms all require
some arbitrary mathematical choices to find a solution. For II. REVIEW OF INITIAL DATA CONSTRUCTION
instance, the approach we take requires the definition of the IN GENERAL RELATIVITY

topology of a background space and of its metric and the i
momentum of the metric, followed by solution of four !N the computational approach we take a Cauchy formu-

coupled elliptic differential equations for variables that ad-'ation (3+1) of the ADM type, after Amowitt, Deser, and

just the background fields. But the choice of the background/isner[17]. In such a method the 3-metrt; is the funda-
quantities is arbitrary to a large extent. The physical meaning€ntal variable. The 3-metric and its momentum are speci-
of these mathematical choices is not completely clear, but thi€d at one initial time on a spacelike hypersurface. The
effect is unmistakable. Data constructed with various algo#PM metric is
rithms can differ substantially, even when attempting to de-
scribe the same physical systd®)]. The data sets can be
demonstrated in many circumstances to contain the expected ) ) . )
Newtonian binding energy, as we show belpwe., the bind- wh_ere_a is the lapse function ang' is the shift 3_—vector.

ing energy of orderO(m?/¢) agrees with the Newtonian Latin indices run 1, 2, 3 and are lowered and raisedypy
result at this orddr However, the data can differ signifi- and its three-dimensional invergg!. « and 8' are gauge
cantly atO[m(m/¢)?]. These differences are attributed to functions that relate the .coordlnates on each hypersurface to
differences in wave content of the data which may reflec@ch other. The extrinsic curvatur;;, plays the role of
possible prior motion or may simply be spurious. At presenfomentum conjugate to the metric, and describes the em-
it is neither possible to build prior motion into the initial P€dding of at=constant hypersurface into the 4-geometry.
data, nor to specify how radiation is added to the solution .The Emstgm field equations contain both hyperbolic evo-
nor to know how much there is. It is known that the circularIUt'on equations and elliptic constraint equations. The con-
orbits and the ISCO so determined are in fact methogdStraint equations for vacuum in the ADM decomposition are:

dependent. Furthermore, the methods need not even agree

ds?= — (a?— BB dt?+2Bdtdx' +g;;dx'dx! (1)

that a specific dataset represents a circular orbit; their subse- R=Kj K'+K?=0, @
quent evolutions may not agré1]. o
A second problem—and the principal physical difficulty Vi(K"—g"K)=0. 3

with the initial data method for studying black hole

binaries—is the lack of unambiguous conserved quantities. HereR s the three-dimensional Ricci scalar, a¥jds the

The best candidate for an invariant quantity is the event hothree-dimensional covariant derivative compatible vgth.

rizon area,Ay. This area is unchanging for isentropic pro- Initial data must satisfy these constraint equations; one may

cesses due to the proportionality Af; with the black hole not freely specify all components gf; andK;; . The initial

entropy. One can argue that since the quasi-circular orbit igalue problem in general relativity thus requires one to con-

quasi-adiabaticAy is nearly invariant over some phase of sistently identify and separate constrained and freely specifi-

the inspiral. But the inspiral cannot be completely adiabaticable parts of the initial data. Methods for making this sepa-

because it cannot be made arbitrarily slow; the black holegation, and solving the constraints as an elliptic system,

will absorb an unknown amount of gravitational radiationinclude: the conformal transverse-traceless decomposition

while in orbit and will thereby increase in size. Moreover, [18]; the physical transverse-traceless decompositia]:

the event horizon is a global construct of the spacetime, andnd theconformal thin sandwich decompositiavhich as-

cannot be determined from a single slice of initial data.sumes a helical killing vectdr4,20,2]. These methods all

Therefore, one must use the apparent horizon a&gga, as  involve arbitrary choices and do not produce equivalent data.

an ersatzinvariant for initial data studiegl2,13. When the  Our solution method uses the conformal transverse-traceless

hole is approximately stationary, these horizon areas may b@decompositior] 18].

nearly equal14]. In dynamic configurations—as should be  Solutions of the initial value problem have been addressed

appropriate for orbiting holes—these horizon areas may difin the past by several groups—4,18. It is the case that until

fer substantially{15,16]. recently, most data have been constructed assuming that the
We will investigate physical content of initial data, focus- initial 3-space is conformally flat. The method most com-

ing on Kerr-Schild spacetimes. We examine binding energynonly used is the approach of Bowen and YP2®], which

to leading order, and find that in our method of constructingchooses maximal spatial hypersurfaces and takes the spatial

the superposed Kerr-Schild data, the background fields cor3-metric to be conformally flat. This method has been used

tain the Newtonian binding energy: the subsequent solutioto find candidate quasi-circular orbits by Cofk|, Baum-

of the elliptic equations yields a only small correction. Usinggarte[3], and most recently, Pfeiffest al. [2].

numerical solutions we present orbital configurations with The chief advantage of the maximal spatial hypersurface

solved initial data. We give a qualitative discussion of physi-approach is numerical simplicity, as the choike=0 de-

cal effects that may confound any attempt to study inspiratouples the Hamiltonian constraint from the momentum con-

via a sequence of initial data, and which may affect the destraint equations. If, besideK=0, the conformal back-
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ground is flat Euclidean 3-space, there are kndynthat  system that is well behaved at the horizéwe use upper-
analytically solve the momentum constra[22]. The con- caseM for calculated masses, e.g., the ADM mass, and low-
straints then reduce to one elliptic equation for the conformakrcasem for mass parameters, or when the distinction is not
factor ¢. However, it has been pointed out by Garat andimportant) The Kerr-Schild metric is

Price[23] that there are no conformally fl&=0 slices of 5

the Kerr spacetime. Since we expect astrophysical sources to ds®= 7, dx*dx"+ 2H(x")1 I, dx*dx”, (4)

be rotating, the choice of a conformally fl&t=0 back- . _ . .
ground will yield data that necessarily contains some quan?/€ré,., is the metric of flat spacet is a scalar function
tity of “junk” gravitational radiation. Jansemt al.[24] have ~ ©f X, andl, is an(ingoing null vector, null with respect to
recently shown by comparison with known solutions thatPoth the background and the full metric,

conformally flat data do indeed contain a significant amount w | —ghv | =0 )
of unphysical gravitational field. Another conformally flat 7= 9 =

K =0 method recently used by Gourgoulhon, Grandclemen
and Bonazzol§4,5] is a thin sandwich approximation based
on the approach of Wilson and Mathe{&l] which assumes for
the presence of an instantaneous rotation Killing vector to
define the initial extrinsic curvature. They impose a specific

Yhis last condition givet®l = —1; .
The general nonmoving black hole metric in Kerr-Schild
m (written in Kerr’s original rectangular coordinajdsas

gauge defined by demanding th&gand the conformal factor H= L, (6)
remain constant in the rotating frame. SingeandK are a r’+a2cosé

conjugate pair in the ADM approach, this method solves the

four initial value equations and one second-order evolutiordnd

equation. The assumption of a Killing vector suppresses ra-

diation or, perhaps more accurately, imposes a condition of rx+ay ry—ax z

equal ingoing and outgoing radiation. L= "2+a2'r?+a? rl @)

In this paper we use Kerr-Schild d4&b] to outline some
of the difficulties in finding the ISCO using the initial data wherer,# (and ¢) are auxiliary spheroidal coordinates,
technique. We discuss the extent to which initial data set er(x,y,z)cosa, and ¢ is the axial angler(x,y,z) is ob-
means of superposed Kerr-Schild black holes limits the e€Xizined from the relation,
traneous radiation in the data sets, and we estimate the accu-

racy of the extant published ISCO determinations. Recent x2+y? 22
works by Pfeiffer, Cook, and Teukolsky also investigated +—==1, (8
binary black hole systems using Kerr-Schild initial dgg& r’+a® r?
giving
11l INITIAL DATA VIA SUPERPOSED KERR-SCHILD
BLACK HOLES 1 1
re=>(p*~a%)+ \/Z(pz—a2)2+a222, ©)

The superposed Kerr-Schild method for setting black hole
initial data, developed by Matzner, Hug, and Shoemaker .
[25], produces data for black holes of arbitrary massesIt
boosts, and spins without relying on any underlying symme-
tries of any particular configuration. The method proceeds in p=X+yi+7%, (10
two parts. First, a background metric and background extrin- i ) o
sic curvature are constructed by superposing individual Kerr- €0mparing the Kerr-Schild metric with the ADM decom-
Schild black hole solutions. Then the physical data are gerP0Sition Eq.(1), we find that thet=constant 3-space metric
erated by solving the four coupled constraint equations fotS
corrections to the background. Intuitively, the background
solution should be very close to the genuine solution when
the black holes are widely separated, and only small adjust-
ments to the gravitational fields are required to solve the
constraints. We show that this is true for large and also for

Further, the ADM gauge variables are

small separations. This section briefly reviews the super- Bi=2Hloli, (12
posed Kerr-Schild method for initial data, then gives some, g
analytic results to justify this contention.
S - (13
A. Kerr-Schild data for isolated black holes a= '
_ _ Vi+2HI12
The Kerr-Schild[26] form of a black hole solution de-
scribes the spacetime of a single black hole with mass, The extrinsic curvature can be computed from the metric

and specific angular momentura=j/m, in a coordinate using the ADM evolution equatiof27]
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1 . 1 . .
Kij:Z[VjBi+ViBj_gij]- (14) AKM= ZAng(VjAIBi+ViAIBj_Agij)-
(20)

where a dot '() denotes a partial derivative with respect to Again, the indexA labels the black holes. Data fo¢ holes
time. Each term on the right-hand side of this equation isyre then constructed in superposition

known analytically.
N

B. Boosted Kerr-Schild black holes 9 =7+ ; 2B aH alialj, 21)
The Kerr-Schild metric is form-invariant under a boost, N
making it an ideal metric to describe moving black holes. A K= .BAK (22
constant Lorentz transformatiofthe boost velocityy, is T ADAR
specified with respect to the background Minkowski space-
time) A“; leaves the 4-metric in Kerr-Schild form, witH . _ N 1 _
andl , transformed in the usual manner: Aij=0ni > B AKj)"— 551)”AKi' .
A
x'B=AP x (15) (23
_ A tilde (7) indicates a background field tensor. The simple
T (y! @) — o !B /. ’ 7S
HI(X ) =H{(A79)%x"5), (16) superposition of the metric from E(L8) (part of the original

specification 25]) has been modified here with the introduc-
I5(X" )= A5l (A1) px' B). (17)  tion of attenuation functions,B [28,29. The extrinsic cur-
vature is separated into its trad€, and trace-free partgy;; ,
Note thatly is no longer unity. As the initial solution is and the indices o]ﬂij are explicitly symmeterized.
stationary, the only time dependence comes in the motion of The attenuation functions represent the physical idea that
the center, and the full metric is stationary with a Killing in the immediate vicinity of one hole, the effect of a second
vector reflecting the boost velocity. The solution, therefore hole becomes negligible. Near a black hole the conformal

contains no junk radiation, as no radiation escapes to i“ﬁ”i%ackground superpositioﬁ)( metrics approach the analytic
during a subsequent evolution. Thus, Kerr-Schild data exyajues for the single black hole. The attenuation functin
actly represent a spinning and/or moving single black hole( , g) eliminates the influence of the secoffiist) black hole
This is not possible in some other approaches, e.g., the cofy the vicinity of the first(second.,B equals unity every-

formally flat approacti24]. where except in the vicinity of the second black hole, and its
first and second derivatives are zero at the singularity of the
C. Background data for multiple black holes second hole.

. . The attenuation function [
The structure of the Kerr-Schild metric suggests a natural e attenuation function used is

extension for multiple black hole spacetimes using the 1B=1—exp(— (420?), (24)
straightforward superposition of flat space and black hole
functions where( is the coordinate distance from the center of hole 2,
ij=~ mij + 2 1Halialj+25Hol ol + - -, (18) 1 1
ti=5(p?—ad)+ \7(p*—a*)?+a’Z, (25

where the preceding subscript numbers the black holes. Note
that a simple superposition is typicalipta genuine solution _ 2w w2 Y — 2
of the Einstein equations, as it does not satisfy the con- =27 (X~ X0TH (Y= 2¥)*F (2= 22)°, (26
straints, but it should be “close” to the real solution when and ¢ is a parameter. In all examples given in this paper, the
the holes are widely separated. masses are equal amd=m?. Figure 1 shows a typical at-
To generate the background data, we first choose maggnuation function used in calculating our initial data sets.
and angular momentum parameters for each hole, and com- A small volume containing the singularity is masked from
pute the respectivel and|“ in the appropriate rest frame. the computational domain. This volume is specified by
These quantities are then boosted in the desired direction arghoosing a threshold value for the Ricci scalar, typically for
offset to the chosen position in the computational frame. Ther|=2/m?. For a single Schwarzschild black hole, this gives
computational grid is the center of momentum frame for they spherical mask with a radius=0.73n. In all cases the
two holes, making the velocity of the second hole a functionmasked region lies well within apparent horizons in the
of the two masses and the velocity of the first hole. Finally,solved data. In practice we find that a small attenuation re-
we compute the individual metrics and extrinsic curvatureggion (also inside the apparent horiZofs necessary to

in the coordinate system of the computational domain:  achieve a smooth solution of the elliptic initial data equations
near the mask; see Sec. Il D below. Figures 2 and 3 show the
AGij=7ij+2aHalial;, (19 Hamiltonian and momentum constraints for the background
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FIG. 1. The attenuation functiquzl—exp(—f‘ll/Zoz) used m~2) calculated for the background space of two identical
to calculate our initial data solutions. To indicate the effect of theSChwarZSCh'ld black holes. The black holes are located on the

attenuation function in a binary black hole system, we also plot the/-axis aty= +4m, and _have zero initial \_/EIOC_'ty' The s_0|'d curve Is
. L~ - . the background behavior of the constraint without using attenuation
background metric functiog,, in the vicinity of one hole with and

;i . . functions, and the dashed curve is the constraint with attenuation
without attenuation. The Schwarzschild black holes are place%ndgz m2

along they-axis at=4m. Here ¢, is the coordinate distance from

the center of the second black hole, and the attenuation function . . .
width is o= m2. (3), and hence are not physical. A physical spacetime can be

constructed by modifying the background fields with new
space with and without attenuation. We have not varied théunctions such that the constraints are satisfied. We adopt the
masking condition to determine what effect the size of theconformal transverse-traceless method of York and collabo-
mask has on the global solution. As mentioned below, Pferators[18] which consists of a conformal decomposition and

iffer et al. have investigated this poif8]. a vector potential that adjusts the longitudinal components of
the extrinsic curvature. The constraint equations are then
D. Generating the physical spacetime solved for these new quantities such that the complete solu-

" . . . tion fully satisfies the constraints.
The superposition of Kerr-Schild data described in the The physical metricg;;, and the trace-free part of the

previous section does not satisfy the constraints, E2s. extrinsic curvature;; , are related to the background fields
0.4 through a conformal factor

—— Without Attenuation

- - - With Attenuation gij = ¢4aij , (27)
Al = ¢ 1A+ (Tw)17, (28)

where ¢ is the conformal factor, and )/ will be used to
cancel any possible longitudinal contribution to the super-
posed background extrinsic curvatuve. is a vector poten-
tial, and

e e 2~
(Tw)1=Viw +Viw' — §g”Vka. (29

0.4 . . . . . . .

FIG. 2. The Hamiltonian constrairinits m~2) calculated for ~ The traceK is taken to be a given function
the background space for two identical Schwarzschild black holes.
The black holes are located on tleaxis aty=*4 m, and have
zero initial velocity. The solid curve is the background behavior of
the constraint without using attenuation functions, and the dashed
curve is the constraint with attenuation ang=m?2. The masked Writing the Hamiltonian and momentum constraint equations
region is within the radius<0.73n. It can be seen that attenuation in terms of the quantities in Eq§27)—(30), we obtain four
does not necessarily reduce the constraint, but does smooth it. coupled elliptic equations for the fields andw' [18]:

K=K. (30)
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~ - 2. The asymptotic expansion of the extrinsic curvature in the
V2p=(1/8)| Rp+ §K2¢5—¢_7 stationary Kerr-Schild fornficf. Eq. (14)] is
~ e ~ 2m 3m
XA+ (W) JLA; + (Tw); 11, (31 aKab:?(_znanb_}' Oab) — ?a (€ajcNp €pjcNa) ]
S 2~ o 6m? 2 -
Vi (Tw)! = 29" ¢°V,K — /AL, (32 + 5| Ny = 3 8an| +O(p ™. (37)
p

The terms proportional ta/ p2 in this expression arise from
) o i _ ) the transverse components gf (8,n?=0); the terms of

A solution of the elliptic constraint equations requires thato(p—s) independent o&° arise from the affine connection.
boundary data be specified on both the outer boundad/  ngte thata=1+0(p~1), and will not affect the ADM es-
the surfaces of the masked regions. This contrasts with thgnates below.
hyperbolic evolution equations for which excision can in The ADM formulas are evaluated in an asymptotically flat

principle be carried out without setting inner boundary dat&egion surrounding the system of interest, and in Cartesian
since no information can propagate out of the holes. Boundzgordinates they are

aries in an elliptic system, on the other hand, have an imme-

E. Boundary conditions

diate influence on the entire solution domain. Using the at- 1 ag; 99y

tenuation functions, we can choose simple conditiogs, M apm = 6n § T ds, (38
=1 andw'=0, on the masked regions surrounding the sin- m oxt X

gularities. In practice this inner boundary condition is not

completely satisfactory because it generates small disconti- PADM _ i fﬁ (Kyi—KP,5)dS (39)
nuities in the solution at this boundary. These discontinuities k 8m K bk ’

are small relative to the scales in the problem, and are con- .

tained within the horizon. We have made no attempt to de- ADM __ i

termine their global effect on the solution. Pfeifieral. [8] Jab =g fﬁ (XaKpi = XpK4))dS, (40

report a similar observation, and note that the location of the
boundary does affect some aspects of the solution, though fier the mass, linear momentum, and angular momentum of
has little effect on the fractional binding energy or the loca-the system, respectivelj80,31. (All repeated indices are
tion of the 1ISCO. summed. The mass and linear momentum together consti-
The outer boundary conditions are more interesting. Sevtute a 4-vector under Lorentz transformations in the
eral physical quantities of interest, e.g., the ADM mass and@symptotic Minkowski space, and the angular momentum
momenta, are global properties of the spacetime, and a@epends only on the trace-free components of the extrinsic
calculated on surfaces near the outer boundary of the congurvature.
putational grid. Hence the outer boundary conditions must be To compute the ADM mass and momenta for a single,
chosen carefully to obtain the proper physics. We base ougtationary Kerr-Schild black hole, we evaluate the integrals
outer boundary conditions on an asymptotic expansion of then the surface of a distant sphere. The surface element then
Kerr-Schild metric, which relies on the ADM mass and mo-becomesdS =n'p?d(), wheren' is the outward normal and
mentum formulas to identify the physically relevant terms atd(2 is the differential solid angle. We need to evaluate the
the boundaries. We first review these expansions and formumetric only to ordetO(p~1); the differentiation in Eq(38)
las. guarantees that terms falling off faster than' do not con-
An asymptotic expansion of the Kerr-Schild metrip ( tribute to the integration. The integrand is then
>m) gives 4m/p?nip?n'dQ and the integration yields the expected
ADM massM ppy =m. The ADM linear momentum requires
r=p(1+0(p~?)), (33)  only the leading order oK,,, O(p~2); terms falling off
_2 faster than this do not contribute. The integrand of E89)
H=m/p(1+0(p" 7)), (34 then becomes- (4m/p?) nynyn°p2dQY, vielding zero for the
c J. 3-momentum, as expected for a nonmoving black hole.
| = 4 2 Ciich +0(p2) (35) At first blush, the integral for the ADM angular momen-
b ' tum Eq. (40) appears to warrant some concern: To leading
o o orderK,, is O(p~?), and the explicit appearancexfin the
wheren; =n'=x'/p. (This is the only place where we d®t  jntegrand suggests that it grows at infinity@ép), leading
use the 3-metric to raise and lower indices, ami=1).a°  {o a divergent result. However, inserting the leading order
is the Kerr spin parameter with a general directi@®: term of K, for a single, stationary Kerr-Schild black hole
=aa’. The shift[Eq. (12)] is asymptotically into the integrand of Eq(40), we find that the integrand is
identically zero. TheD(p~?) terms ofK ,;, contain the quan-
tities nyn, and &,;,, which separately cancel because of the
antisymmetric form of Eq(40), and a divergent angular mo-

2m

ﬁi:7

-+ ac S +0(p~3 36
i p P (36)
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mentum is avoided. Including th@(p~3) terms ofK,;,, we 1.010
find J5PM= €,,.a°m; the symmetry of the othe®(m?p %)

terms again means they do not contribute. This result for 1.00s |
JAPM thus depends on terms in the integrand proportional to
athat arise from corresponding termsghproportional tog'
whereq? is a unit vector transverse to the radial direction,
g*n,=0. Only these terms contribute to the angular momen-
tum integral; in particular those terms i proportional to
n'/p do not contribute.

The ADM mass and momenta are Lorentz invariant. For a 0.9
single, boosted black hole, we naturally obtdinpy =ym
and P,py=ymu. The background spacetime for multiple oges |
black holes is constructed with a superposition principle, and
the ADM quantities are linear in deviations about flat space . . ‘
at infinity. Thus the ADM formulas, evaluated at infinity in *%2100 5.0 0.0 50 10.0
the superpositiongo yield the expected superposition. For Y axis (m)
example, given two widely separated black holes boosted in G, 4. ¢ along they-axis connecting two nonspinning holes
the x-y plane with spins aligned along theaxis, we have  ith orbital angular momentum. The holes are boosted in-the

direction withv =0.196 and are separated by 10 M. Note tias
I\~/IAD,\,I =1y1M+5yom, (41 very close to unity everywhere.

1.000

0.995 -

condition Eq.(45) would fail. The existence of solutions us-
ing this condition, however, provides evidence that this pos-
_ sibility does not occur.
IS = 1y(zmyv b+ m;a) The boundary condition fow' is more subtleA priori,
we expectw' — 0 at infinity, but a physically correct solution
on a finite domain requires that we understand howap-
roaches this limit at infinity. We construct our boundar
where ;b and ;b are impact parametef$4], and the filde Eonditions onwX by demandi)rllg that the ADM angular mo—y
() superscript indicates that these quantities are calculategientum of the full(solved system be only finitely different
with the background tensogg,, andK ,,. This superposition from that of the backgrounguperposeddata. That is, given
principle for the ADM quantities in the background data isthat {g,,,K.p} and{ga,.Kap} have finite differences at in-
one advantage of conformal Kerr-Schild initial datblote, finity, we demand thaﬂab_jab also be finite. Using Egs.

in choosing the center of momentum frame for the computa(28) and (40), we find for the difference in angular momen-
tion, Pf°"=0 is a condition for setting the background

PAPM=, (42)

+2y7(oMyv b+ ,mya), (43

data)
Consider now the ADM integrals for the solved data. The ~ 1 i
Hamiltonian constraint becomes an equation for the confor- Jab=Jap=g - § (XaVipWiy —XpViaW;))dS'.  (47)

mal factor,¢. As this equation is a nonlinear generalization
of Poisson’s equation, asymptotic flatness in the full, solveq ¢—1 at infinity, and there is no difference at this order

metric requires that between conformal and physical versionswdfand g,,, at
infinity.)
C 72 We have already evaluated an integral of this form, in the
¢—1+ Z +0(p ™), (44) discussion of the Kerr angular moment{isee Eqs(40) and

(37)], where we expresseld,, in terms of the Kerr-Schild
whereC is a(f|n|te) constant. This leads to our outer bound- shift vector. In that analySiS, we noted that falloff of the form
ary condition for¢, namely

Wi—>&ni+%qi+o(l)_3) (48)
dplp(p—1)]|,—==0. (45) p p?

Furthermore, the linearity of the ADM mass integral gives Wwith C; and C, constant, ancyn'=0, will give a finite
contribution to the angular momentum. We therefore take as

M apm(solved= ;y1m+,y,m+C. (46) boundary conditions:

NPT . . d,(pw'n;)=0 (49
[Here the absence of a tilde)(indicates that this mass is

calculated using the solvegl,,.] At this point we cannot 9 (pzwi(éij—nin,—))=0. (50)
predict even the sign df, though|C| is expected to be small g _

for widely separated holes. [IC|—«, then the boundary Figures 4—6 displays andw' for a simple configuration.
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0.004 IV. BINDING ENERGY IN INITIAL DATA

As a first step towards understanding the physical content
of initial data sets, we examine in this section the effect of
0.002 the presence of a second hole on the horizon areas of a first
hole and on global features such as the ADM integrals and
the binding energy of the pair. This analysis is carried out for
0.000 - nonspinning holes to first order in the binding energy. A
comparison to the Newtonian result indicates that the Kerr-
Schild backgroundsuperposition data contain the appropriate
physical information at this level. We then consider possible
spin-related phenomena, estimate their magnitude, and dis-
cuss their possible effect near the ISCO.

-0.002 -

0004, 0 50 00 50 0.0 A. Binding energy in Brill-Lindquist data
y axis (m)

Before discussing the conformal Kerr-Schild data, we first
FIG. 5. w* for the same configuration as in Fig. 4. consider Brill-Lindquist data for two nonmoving Schwarzs-
child black holeq35]. These data are conformally flat, and
: — . . K,p=0. The momentum constraints are trivially satisfied,
In this case the elliptic equations were solved on a domain of Lo o
+10 m along each axis with resolutiaix=m/8. As can be and the Hamiltonian constraint is solved for a conformal
o X : P factor: ¢=21+m/(2r)+m’/(2r'). Here the two mass pa-
seen in these figures, the functiodsandw' actually result

R . ) d rameters aren andm’, andr andr’ are the distances in the
in little adjustment to the background configurations. Alsoflat background from the holes andm’

note that the radial component wf, w'n; , is the dominant We find that the apparent horizon areas in the solved data
function. In the graphs plotted here, which give the fU“Ct'OnScorrespond to

along they-axis, we find||wY||..~0.03, while ||w*||..~3

x 1073, and||¢—1||.~0.013. Because of the symmetry of
the configuration)|w?|.. is much smaller. Analyticallyw?
=0 on the y-axis; computationally we find|w?|..~5

X 1077 In fact we find in general that the radial componentThe subscript “AH” indicates masses Computed from appar-
of w' is the dominant function in all directions, consistentent horizon areas, and the separation in the flat background
with our boundary conditions, and consistent with the findingspace is¢ [36]. We assume that this magsomputed from
that the solution of the constraints has small effect on theypparenthorizong is close to the total intrinsic mass of the
computed angular momentum. Of course the correctidns plack holes(which is given by a knowledge of the spin—
andw' would be expected to be larger for data describinghere zero—and the area of tegenthorizon. The binding
holes closer together. We show below that this data settingnergy,E,, can be computed as the difference of the ADM

method leads to generically smaller corrections than found imass observed at infinity and the sum of the horizon masses:
other methods, thus allowing closer control of the physical

content of the data.

/

mm
MAH+M;\H=m+m'+T+O(€‘2). (51)

Epb=Maom—Man—Mpy. (52
0040 For Brill-Lindquist dataM apy =m+m’, so that
m -2
0.020 ¢ Ep=— 0 +0O(€79), (53

which is the Newtonian result.
0.000 -

B. Binding energy in superposed Kerr-Schild data

We now calculate the binding energy in superposed Kerr-
-0.020 - Schild data (set according to our conformal transverse-
traceless approagHor a nonmoving Schwarzschild black
hole at the origin, and a second such hole at coordinate dis-
tancet¢ away. (¢ is measured in the flat space associated

**100 -50 , afi-s"(m) 50 100 with the data constructionWe compute the area of the hole
at the origin to first order and find that the Newtonian bind-
FIG. 6. wY for the same configuration as in Fig.w? is numeri-  ing energy already appears in the background data prior to
cally zero as expected by symmetry. solving the constraints. Thus, we have an argument justifying
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the result noted at the end of Sec. Il E: solving the ellipticThe expansion of in Legendre polynomialsP;, expresses
constraint equations leads to small corrections to the Kerrthe distortion of the local horizon away from the zero-order
Schild background data. spherical result. This expansion includes a term describing a
Let both holes be placed on tlzeaxis; the first hole with  constant “radial” offset in the position of the apparent hori-
mass parameten at the origin, and a second hole with masszon, ayP,. This and the other terms defining the surface
parametem’ atz=¢. The holes are well separated, and wehave the expected magnitudg=0O(me). We solve for the
expand all quantities about the origin in powers of horizon by placing this expression for the surface into the
=m’/€ with e<1. Using Schwarzschild coordinates labeledapparent horizon equation
(r,6,¢) [cf. Egs.(4)—(9) for a=0], the background metric

. . 2
tensor is Vis'+ A,ps3s? — 3K=0, (64)
~ 2m 2 )
9 =1+ ——+2ecos, (54 wheres' is the unit normal to the trial surface
9,9= —2er sind cos, (55 Si =—f£|— (65)
ga f,af,b
Qpo="r2+2er?sir?o, (56)

The apparent horizon equation is solved to first or@¢).
~ 5. One must evaluate the equation at the nperturbed hori-
Gyg=r7sirfo, (57 zon location. Lef represent the left-hand side of the appar-

. o ent horizon equatiofiEq. (64)], po=2m is the horizon sur-
with all other components zero. The extrinsic curvature Offace of the single, unperturbed hole, ang(6) is the new
the second holeyK,,, is of O(e?) at the origin, and we ’ ’

_ ~ e 7~ perturbed horizon. We exparttlto first order as
have simplyK ,p,=1K4,. Similarly, the trace of the extrinsic

curvature isK =, K. Finally, the nonzero components Af,, d

F
are FlpH(6)]=Folpo) + p > aP,=0. (66
0

~ 2¢; m Solving Eq.(64), the only nonzero coefficients in E(3)
A=~ 2 +ar +2ecos9), (58) area,=mm'/(3¢), a,=—mm'/(2¢). Integrating the deter-
minant of the perturbed metric over the horizon surface,
5 c, =2m+ X,a,P,(cosé), we find the area of the apparent hori-
A= eTsin 0 cosd, (59 zon to be
7\ 2
~A09=Cz(l+265in26’), (60) Ay=167| m+ T +0(m?(m'/€)?), (67)
Z(,,(,,:Czsinze, (61 corresponding to a horizon mass Mfy=m+mm’'/(2¢) to
Newtonian order, i.e. to ordéd(e)=0(£ ™ 1).
where In this nonmoving case the total ADM mass is just
M apm=Mm-+m’. This leads to the Newtonian binding energy
2M p (2r+3m) at this order
Co=—(— . (62)
3 p+2M (r+2m) ,
mm
Ep=— - (68

While K, is not a function ofe, and hence contains no
information about the second hole, perturbative quantities do ,
P q Because we work only to lowest order én Eq. (68) had

appear inAgy. This perturbation inA,, arises because We , rog it in an expression @(me), but it did not have to
sum the mixed-index components gA;, and because the paye a coefficient of unity. Both the conformally flat and
full background metric, involving terms from each hole, is conformally Kerr-Schild data contain the Newtonian binding
involved in the symmetrization in E423). energy. However, this result is obtained in the superposed
To calculate the binding energy we first find the apparenpackground Kerr-Schild metric, while the Brill-Lindquist
horizon area_of th_e local hole. For a single Schwarzschildyng adezdata give the correct binding energy only after
hole, the horizon is spherical and locatedpat=2m; the  golying the elliptic constraints. This is consistent with the
area of the horizon is 16m?. The effect of the second hole small corrections introduced b andw' (¢~1, |wi|<1) in
is to distor_t the h_orizon along th_eaxis connecting them, the solved Kerr-Schild datésee Sec. Ill E This fact—that
and we define a trial apparent horizon surfacéa®, where  for 3 superposed Kerr-Schild background the solution of the
full elliptic problem modifies the datéand the mass/angular
f=p—2m—2 a,P,(cosf). (63) momentum_ computatiomsmly slightly—demonstrates how
[ powerful this choice of data can be.
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Furthermore, the Newtonian form of the binding energy The physically measurable quantity in question is the fre-
(e<1) means the correct classical total energy is found folquency (at infinity) Eq. (72) associated with the last orbit
orbiting situations. If the holes have nonrelativistic motion, prior to the plunge, the ISCO. This may be impossible to
their individual masses are changed by orgler 1+ O(v?) determine by the initial data set method.
=1+ 0(e€). The binding energy, which is alread(e) and To begin with, isolated black holes form a 2-parameter set
is proportional to the product of the masses, is changed onlgdepending on the mass parameterand the angular mo-
at orderO(€?). The ADM mass, on the other hand, measuresmentum parametej=ma). For isolated black holes without
ym, and M py Will be increased bymv?/2 [an O(e) in-  charge the parametefm,j} uniquely specify the hole. They
creasg for each hole, leading to the correct Newtonian ener-are equal, respectively, to the physical mass and angular mo-
getics for the orhit. mentum. Every method of constructing multiple black hole

The apparent horizon is the only structure available tadata assigns parameter valygs and gj to each constituent
measure the intrinsic mass of a black hole. Complicating thig(hole) in the data set.
issue is the intrinsic spin of the black hole; the relation is There is substantial ambiguity involving spin and mass in

between horizon area amdeducible mass: setting the black hole data. One must consider the evolution-
ary development of the black hole area and spin. This is a
AH=167-rmi2rr=87rm(m+ J(m?2=a?)). (69 real physical phenomenon which contradicts at some level

the usual assumption of invariant mass and spin. A related
As Eq.(69) shows, the irreducible mass is a function of bothconcern arises because it is only téal ADM angular mo-
the mass and the spin, and in general we cannot specify theentum that is accessible in the data, whereas one connects
spin of the black holes. For axisymmetric cases Ashtekar'$o particle motion via therbital angular momentum.
isolated horizon paradigfil4] gives a way to measure the  Consider the behavior of the individual black hole spin
spin locally. We do not pursue the point here since we invesand mass in an inspiral. For widely separated holes, because
tigate generic and typically nonaxisymmetric situations.  the spin effects fall off faster with distance than the dominant
mass effects do, we expect the spin to be approximately con-
served in an inspiral. Therefore it should also be constant
across the initial data sets representing a given sequence of
orbits. But when the holes approach closely, the correct

We have seen that the initial data contain the bindingchoice of spin parameter becomes problematic also.

energy in a multiple black hole spacetime. This information  Newtonian arguments demonstrate some of the possible
can be used to deduce some characteristics of the orbitgpin effects. In every case they aaepriori small until the
dynamics, particularly the radius of the circular orlfit.and  orhits approach very closely. However, at estimates for the
the orbital frequencyw. Given a sequence of initial data |SCO, the effects begin to be large and result in ambiguities
slices with decreasing separations, we deterr&ipéor each  in setting the datgsee Price and Whelaf88]). We will

C. Spin effects in approximating inspiral with initial
data sequences

slice. The circular orbit is found where consider these effects in decreasing order of their magnitude.
For two holes, each of massin Newtonian orbit with a
9Ey : ; _
i (70) total separation of, the orbital frequency is
ot '
J
mo=+2(m/¢)C2), (73

The separation at the ISCO orbftgco, lies at the boundary
between binding energy curves which have a minimum, angtrom recent work by Pfeiffeet al. [2], the estimated ISCO
those that do not. The curve for the ISCO has an inflectioffrequency is of ordermQ=0.085, corresponding td
point: ~6.5m in this Newtonian approach.

To compare this frequency, E73), to an intrinsic fre-

e = quency in the problem, we take the lowdsfuadrupolg
902 =0. (71) quasi-normal mode of the final merged black h@é mass
J 2m) which has frequency®wy,~0.37; the quadrupole dis-
o tortion is excited at twice the orbital frequendgy\Ve are us-
The angular frequency is given by ing the values for a Schwarzschild black hole in this quali-
tative analysi9. The driving frequency equals the quasi-
® :5_Eb 72 normal mode frequency wheff=4m, as might be expected.
ISCO™ 53 - To consider effects linked to the orbital motion on the

initial configurations, we can first treat the effect of imposing

The attempt to model dynamical inspiral seems secure focorotation. While we show below that corotation is not
large separation €(>15m), though surprises appear even physically enforced except for very close orbits, it is a fact
when the holes are very well separated. For instance, Edhat certain formulations, for instance versions of the “thin
(67) above shows that compared to the bare parameter vasandwich” with a helical Killing vector, require corotation in
ues, the mass increase is equal for the two holes in a datas#teir treatment. For any particular initial orbit, corotation is
Thus the smaller hole is proportionately more strongly af-certainly a possible situation.
fected than the larger one. In corotation, then, with Eq(.73), for each hole:
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J=ma=lw=4m?*(mw). (74) q=F(0=0)/} (80)

The result for the moment of inertla= 4m? is the Schwarzs- m
child value[27,39. Thus = (82)
a=4my2(m/¢)G?2), (79 The lagging phase, for driving frequencyw w,, is easily

computed to be
Assumea/m<1, and compute the area of this black hole

27]:
[27] ¢~4y§ (82
A=8am(m+ Jm?—a2)~167m?[ 1 — (a/m)?/4]. °
(76) N w
:4(_) (_) | ©3)
(O] wq

The horizon mass computed from this area is
This lagging tidal distortion will produce a tidal torque on
VAI(167)~m[1—4(m/€)3]. (770 the black hole, which we can approximate using a combina-
tion of Newtonian and black hole ideas. The most substantial
At our estimate of the ISCO orbif,sco~6m, this effect approximation.is that the torque arises from a redistribution
is of order of 10% of the Newtonian binding energy, dis-©f the mass in t3he “target” black hole, of amourm
tinctly enough to affect the location of the ISC@At €,sco =mntq=m(m/{)°. This mass has separatiendm. Thus
~6m, a/m~0.3 for corotation. the torque on the hole is
Two more physical effects are not typically considered in
setting data. They aréame draggingand tidal torquing
Within our Newtonian approximations, we will find that

T=singX (lever arm X AF

these effects are small, but not zero as the orbits approach the =sin g3 (4m)x (Am2m?/ (%)
ISCO. In full nonlinear gravity these effects could be sub- ) 6
stantial precisely at the estimated ISCO. =8 singm(m/¢)
The frame dragging is the largest dynamical effect. The 6
orbiting binary possesses a net angular momentum. For a =32yl wo)(w/ wo)m(m/€)
rotating masghere the complete binary systgitne frame 15/
dragging angular rate is estimated as the rotation rate times ~60m(m/ €)= (84)
the gravitational potential at the measurement p¢Ri]. ) ) i )
Hence What is most important is the effect of this torque on the

angular momentum of the hole over the period of time it
takes the orbit to shrink from a very large radius. To accom-

5/2
mQq :mw(Z_m %<T) ~— (79) plish this, we use the inspiral ratealculated under the as-
e ¢ ¢ 4m sumption of weak gravitational radiation from the orbit; see
[27]):
This is a/m of order 1% atf{=10m; of order 4% at¢
—6m. d¢  128/m\? .
The tidal torquing and dissipative heating of the black dt 5 \¢/) " @9
holes can be similarly estimated. As the two holes spiral
together, the tidal distortion from each hole on the other willThus
have a frequency which is below, but approaching, the quasi-
normal frequency. Just as for tidal effects in the solar system, E_ ﬂ (86)
there will be lag in the phase angle of the distortion, which de Tde
we can determine because the lowest quasi-normal mode is a
dissipative oscillator, driven through the tidal effects at twice 57 /m)\ 3
the orbital frequency: =~ 1287 (87)
q+2y9+ wig=F(w). 79 m) 2
q+2yq+ wpq=F(w) (79) ~—2m(?) | @9

Here m?q is the quadrupole moment of the distorted black
hole. The parametey is (for a Schwarzschild hole of mass and
2m) about 2ny=0.089. In Eq.(79) the driving acceleration -
F(w) is identified with the tidal distortion acceleration. We o

. : J(€)~m ; (89
evaluate it at zero frequency:
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assuming that there is minimal mass increase from the asso- TABLE |. Convergence data for the Hamiltonian constraitt,
ciated heatingwhich we discuss just belgwthis identifies ~ for a solution with two m=1, nonspinning holes ak'= (0,

the induced spin parameter= m(m/€)7/2 for an inspiral  *3m,0) in the conformal background, and outer boundaries at
from infinity. =+6m. The solution was calculated at resolutiomg6, m/8,

The estimatea= m(m/€)7’2 for an inspiral from infinity m/10, andm/12. Thel, norms of C° were calculated over the

assumes the mass of the hole has not changed significantly §ftire volume of the domain using a mask of radiusdround each
the inspiral. By considering the detailed behavior of theh°|e' Whlle_ the computational mask has a radius of appromma_tely
shear induced in the horizon by the tidal perturbation, the-79m. This larger mask was used to compensate for the slight

. . difference of physical location of the mask at different resolutions.
growth in the black hole mass can be estimdie@] as The norms are as follows: ||C%(m/6)||,=0.00389054,

dm  dJ [|c°(m/8)||,=0.00238321, [|C°(m/10)||,=0.00157387  and

— = ¢%m/12)||,=0.00112328.
FTRRAPTS (90 [[c’(m/12)]],
leading to a behavior Convergence dap)
a=m/6 a=m/8 a=m/10
m 5
Am(€)~5m<—) : (91) b=m/8 1.70
4 b=m/10 1.77 1.86
b=m/12 1.79 1.86 1.85

Consequently, the change in mass can be ignored until the
holes are quite close. However, the point is that these New-

tonian estimates lead to possible strong effects just Wherfaered derivatives. We are limited to fairly small domains

they become unreliable, and just where they would affect th%g Xi e[ —12m.,12m] for a typical /8 resolution using

ISCO. 31933 points.

These results are consistent with similar ones of Price an . . . .
: . . . Lo To verify the solution of the discrete equations, we have
Whelan[38], who estimated tidal torquing using a derivation . ) : .
o examined the code’s convergence in some detail. The con-
due to Teukolsky40]. That derivation assumes the quadru- ___. : .
) i . straints have known analytical solutions—they should be
pole moment in the holes arises from their Kerr character . . .
zero—which allow us to determine the code’s convergence

which predlcts specific values for the quadrupole moment, aﬁsing a solution calculated at two different resolutions. Let
a function of angular momentum parameger

Fi . L S, be a solution calculated with resolutidn, andS, be a

inally we consider an effect on binding energy shown by luti lculated with.. then th fact

Wald and also by Dain. Wald directly computes the force foroorution caicuiated witin,, then the convergence factof,

stationary sources with arbitrarily oriented spins. He consid*®

ered a small black hole as a perturbation in the field of a =
]

large hole. The result founidtl] was

ISl
) 2 2 2 A2 A Cro=—p 71— (93
- omm [S.§-3(5n)(S'-n) 0 (E
Ep=— 2 3 . (92 g hy
Here,S, $' are the spin vectors of the sources ani the We constructed a conformal background spacetime with

unit vector connecting the two sources. D@#2], using a two m=1 nonspinning black holes separated by 6n the
definition of intrinsic mass that differs from ours, finds bind- y-axis. The elliptic equations were then solved on grids with
ing energy which agrees with Wald's E(Q2) at O(¢ 3). resolutions ofm/6, m/8, m/10 andm/12. Tables | and Il
This is discussed further in Sec. V B. show the convergence factors as a function of resolution for
the Hamiltonian constraint and thecomponent of the mo-
V. NUMERICAL RESULTS

. . . TABLE Il. Convergence data for the-component of the mo-
We now turn to computational solutions of the constraintyentym constraint, for the same configuration as Table I. The

equations to generate physical data using the superposg@ims of ¢* are as follows: ||C*(m/6)||,=0.00541231,
Kerr-Schild data. We first discuss the computational codq|CX(m/8)||2:0_00310937, ||c*(m/10)||,=0.00196156  and
and tests, as well as some of the limitations of the codej|c*(m/12)||,=0.00136514. Convergence factors were also calcu-
Finally, we consider physical conclusions that can be drawnated forcY andC?, and found to be essentially identical to the data

from the results. shown here, and thus are not given separately.
A. Code performance Convergencedyp)
. . . = = =m/1l
The constraint equations are solvEgeq. (32)] with an a=m/é a=mse a=m10
accelerated successive over relaxation sdl¥8&t. The solu- b=m/8 1.93
tion is iterated until theL, norms of the residuals of the b=m/10 1.99 2.06
fields are less than 16° far below truncation error. Dis- b=m/12 1.99 2.03 1.99

crete derivatives are approximated with second order, cen
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FIG. 9. (Color online zcomponent of momentum constraint
| th is aft ving the ellinti i for 4 diff t (unitsm™?) along thez-axis after solving the elliptic equations for
along they-axis after solving the efiiplic equations for Merent 4 different levels of resolution, showing second order convergence.

levels Qf resolution. The co_nstraints are rescaled by the ratio of thtE)ther components of the momentum constraint evaluated along this
reso'”?'ms sq_uared, showing sec_ond order convergence. The thl%e are zero by symmetry, both analytically and computationally
nonspinning, |nstantan(_eously stationary holesmof 1 are posi- [O(10°13)]. The background physical situation is the same as
tioned at=3 on they-axis. in Fig. 7. The behavior of th&-momentum constraint along the

) ) x-axis is identical to this figure, as required by the symmetry of the
mentum constraintC*. The convergence fo€Y is nearly  problem.

identical toC*, and as thg-axis is an axis of symmetry;? . .
is identical toC*. Figures 7—9 show the convergence behay-Boundary data for this outer boundary are derived from the

ior of the constraints along coordinate lines. The constraintfSymptOtiC behavior of a single Kerr black hole. On very

FIG. 7. (Color onling The Hamiltonian constrairfunits m~2)

calculated at lower resolutions are rescaled to the highed@'9€ domains these conditions should closely approximate

; ; ; e expected field behavior, but on small domains these
resolution by the ratio of resplutlons squar(_ed. We see Se.corboundzfry data may only crudely approximate the real solu-
order for all components with the exception of the pOIntStion. This error in the boundary data then contaminates the
nearest to the inner boundary.

entire solution, as expected for elliptic solutions. Additional

Solutions of elliptic equations are well-known to_ be de- error arises in the calculation of the ADM quantities, as
pendent on all boundary data. The outer boundary is an arti=

ficial boundary, as the physical spacetime is unboundeclspacmime near the outer boundary does not approach
Y phy P asymptotic flatness. As an indication of the error associated

with the artificial outer boundaries, we calculated solutions
0.10 ; with the same physical parameters on grids of differing sizes.
—— (m/B) x (6/12) . . .
- (m8) x (8/12)° The boundary effects in thd 5py are given in Table 111, and
E’""O)X“O”Z) Fig. 10 shows a contour plot @b for equal mass, nonspin-

——= (m/12)x 1 . . ) .
e ning, instantaneously stationary black holes with the outer

0.05 | \ ;
boundaries atx'=+12m. As a further demonstration of
boundary effects in our solutions, Fig. 11 showsfor a
0.00 configuration examined by Pfeiffet al. [8]. Their solution,

shown in Fig. 8 of[8], was computed on a much larger
domain via a spectral methdd4]. Thus, while we achieve
reasonable results, it is important to remember that the
—0.05 | . ] boundary effects may be significant. Moreover, we have only
considered the effect of outer boundaries, while errors aris-

TABLE Ill. Total ADM mass for two instantaneously stationary,

—0.10 . . nonspinning holes separated byn®n a grid of discretizatiorn x
0.0 2.0 4.0 6.0 =m/8 for four different domain sizes.
y-axis (m)
Domain M abm

FIG. 8. (Color online y-component of momentum constraint
(unitsm~2) along they-axis after solving the elliptic equations for 8 m 1.942 m
4 different levels of resolution, showing second order convergence. +=10m 1.964 m
The background physical situation is the same as in Fig. 7. The +11m 1.974 m
other momentum constraint components evaluated on this axis are +12m 1.980 m
zero by symmetry, both analytically, and computationally
[0(10719)].
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FIG. 12. The total ADM energy for two momentarily stationary
nonspinning black holes separated bm @t various resolutions.
The results exhibit second order convergence.

10} J

o]
x axis{m)

-10 -5 10

showing good second order convergence. The angular mo-

mentum calculation is less robust, but exhibits approximately
FIG. 10. Contour plot of for two instantaneously stationary, first order convergence. The fit to Fig. 13, which shaf3"

nonspinning holes of mass parameter1. The holes are sepa- for two nonspinning holes with orbital angular momentum,

rated by 6n along they-axis. The bold circles indicate the apparent gjyes:

horizons.

ADM AX Ax\? )
ing from the approximate inner boundary condition have not ~ Jiz " =| 1.837-0.123 ——]+0.237 —| | €1,m".

been examined. (95)
Other derived quantities also show convergence: Figure

12 shows the ADM masM opy for two nonspinning black Compare this to the angular momentum computed for the

holes at 6n separation, and different resolutions. The fit is packground3APM = 2.0m2.

12
2(Ax
—0.422 —
m

2
)m, (94) B. Physics results

AX
The small computational domain does not negate the util-

- - - - ity of these solutions as initial data for the time-dependent
ol / Einstein equations. For instance, Figs. 14 and 15 show data
for grazing and elliptical orbits. They are currently being
incorporated into the Texas binary black hole evolution code.
57 \ 18290 | .

£
]

- € 18280 f -

E £

g ofF E EO

= 5 18270 ¢
=
(=
c
< 1.8260 | .
3

g 3 - b
T 1.8250 |
(=}
'_
18240 | =
-101 1 . . . .
y m/6 m/8 m/10 m/12
10 5 0 5 10 Resolution
x axis(sm)

FIG. 13. The total ADM angular momentum for two nonspin-

FIG. 11. Contour plot representing the same configuration a§ling holes boosted in the-x direction withv =0.3162 and sepa-
Fig. 10 but with the holes separated by 10 m along yrexis.  rated by 6n at various resolutionébackground angular momentum

Compare to Fig. 8 in Ref8]. JOM=2 0m?).
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10

10} .

E E
2 of E 2 or 1
a A
= kol
-2 ]
A g 5t i
1S 4
-8 ] —1of .
10 L . L L .
-10 10 -10 -5 0 5 10

x axis {m)

FIG. 14. ¢ for a grazing collision between two equal mass, FIG. 16. Conformal facto for two instantaneously stationary
nonspinning holes. The holes are centeregl-at- 1m and boosted holes separated byné with spin parametea=0.5. The spins are
toward each other witlh,= ¥ 0.5c, respectively. parallel and pointed out of the page. Compare to Fig. 10. Also

notice the boundary effect on the outermost contour, labeled 0.999.
While the small domains do mean that our data do not rep- R
resent the best asymptotically flat results available from thid'ONsPINNIng; in Figs. 16 and 17, each has Kerr parareter

method, we can still verify some of the qualitative analytical :tr? 5rTF| In lc%n,?h caser(Flgr.ltilfli)i trk]le dSEI)'m; alr\(? ail\llgnet?]; |\r/1 tlhe
predictions of the previous section. In particular, Figs. 10,O eriFg. ey aré antialigned. fable IV gives the values

16, and 17 show the conformal factér for holes instanta- of the apparent horizon area of each hole, the ADM mass,

neously at rest at a separation af6In Fig. 10 they are a_nd _the binding energy _fractlon _for these conﬁgurapons. The
binding energy is consistent with the analytic estimates of

Wald [41] in Sec. IV C.
Wald’s computation of the binding energy for spinning
holes, Eq.(92), gives for parallel or antiparallel spins or-

5 5
H
-
E
5 0-
-~
B
x axis{m) -10} 1
FIG. 15. ¢ for two nonspinning holes boosted perpendicularly . . . . s
to their separation. The holes are separated by #0d boosted -10 5 ”x? ) 10
with v,= £0.196, giving the system a background angular momen-
tum of IPPM=2.0m%. The calculated)/?™=1.91m? and M spy FIG. 17. Conformal facto for the same configuration as Fig.
=1.970m?. The Newtonian data correspond to an elliptic orbit at 16 except the spins are antiparallel: the spin of the hole at
apastron. (0,—3,0) points into the page.
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TABLE IV. Mapy , Aay and associated quantities calculated for two holes mith1.0 on a grid (24m)*
with resolutionAx=m/8.

Ay @ M Apm Mpy @ Binding energy
Parallel spin 53.20 1.973 1.065 —0.157= —0.147X M ay
Antiparallel spin 53.17 1.974 1.065 —0.156= — 0.146X M py
Zero spin 57.10 1.980 1.066 —0.151=—0.142X M py

aQuantity for a single hole.

thogonal to the separatigas in our computational models pect that data describing hyperbolic encounters will be more
o accurate than data sets describing circular motion. This is

mm S.S§ because, in hyperbolic encounters, which are set as distant
Ep=— 7 73 (96) initial configurations, the radiation is more planar, and con-

fined to near each hole. The radiation should then both be

better defined, and should have less effect on the subsequent
evolution than in the more distorted orbiting data set. In any

a3 . case, the understanding of these problems is extremely sig-
orderO(2x10°") between the parallel and the antiparallel ificant in understanding the physical content of the configu-

cases. For the spinning cases we compute a change in bin tions we must solve to provide waveforms for the new
ing energy between parallel and antiparallel spins of roughlyyaneration of gravitational wave detectors. For more accurate
half that, with the correct sign. This rough correspondence téomputational results, we are undertaking both a multigrid
the analytic result is suggestive. However, the nonspinnin%pproach[%] and a spectral approadH,8] and expect to
case deviates from the expectati_on_that its binding energy,ye extended results soon comparable to tho$8,af]. A
should be between that of the spinning cases. Based on theg; e|lintic solver capable of solving the constraint equations

scatter in the binding ener%]ies shown here, we estimate tha}, |5rge domains can be incorporated into evolution codes.
we have achieved about 3% accuracy in the binding energy, 4qgition to providing the initial conditions for the time

With the accuracy of our solution and the size of our domaing, o) tion, the elliptic solver in such an application is called

we are unable to present a clearer dependence of binding g,cp, integration time step. This has the effect of forcing

energy on spin. the constraints to be satisfied for all time, which is required
by the Einstein equations. Fully constrained evolutions may
VI. OUTLOOK show improvements in stability47]. Evolutions are cur-

To an extent, the difficulty in setting data will become Iessrently being carried out using the initial data described in this

relevant, as good evolutions are eventually achieved. TheRaPer: ‘?‘”d a GMRES solver_based on PE.T.SC’ to solve the
constraint equations at each time step; preliminary results for

data can be set for initial configurations with very large sepa- . ) : >
ration, and the subsequent evolution will tell us the futureconstramed evolution of binary black holes are promising
dynamics. In the shorter term, the iBBH program of Thorne[48]'

anq collaborator§45] will give us an |_nd|cat|_on qf the evo- ACKNOWLEDGMENTS

lution of the black hole parameters in the inspiral, and will B
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with oppositely directed spins showingssbinding energy.
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