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Grazing Collisions of Black Holes via the Excision of Singularities
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We present the first simulations of non-head-on (grazing) collisions of binary black holes in which the
singularities are excised from the simulation. Initially equal mass m black holes (spinning or not) are
separated by �10m and with impact parameter �2m. Evolutions to t � 35m are obtained where two
separate horizons are present for t � 3.8m; then a single enveloping horizon forms indicating that the
holes merged. Apparent horizon area estimates suggest gravitational radiation of about 2% 3% of the
total mass. The evolutions end after a moderate amount of time because of instabilities.

PACS numbers: 04.25.Dm, 04.30.Db, 97.60.Lf
Introduction.— Gravitational wave detectors [1] will
soon begin searching for gravitational radiation from
astrophysical binary compact objects. To understand
these observations, and to predict parameter regimes in
which to search for their radiation, efforts are underway
to model the interaction of compact sources. We report
here a direct numerical simulation of interacting spinning
black hole binaries, in genuinely hyperbolic (non-head-on)
trajectories. The initial spin angular momenta evolved
here are either zero or parallel to each other and perpen-
dicular to the orbital plane. The interior of the equal mass
holes and their interior singularities are excised from the
computation. (Our method is neither restricted to equal
masses nor to parallel spins.) Evolution is carried out in
a Cauchy scheme, in which the state of the gravitational
system (the three-spatial metric gab) and its rate of change
(the three-spatial extrinsic curvature Kab) are specified at
one instant (i.e., on a three-dimensional spacelike hyper-
surface) and are then stepped to the next instant using an
“Arnowitt-Deser-Misner” (ADM) [2] form of the Einstein
evolution equations [3]. The evolution is unconstrained,
and maintenance of the constraint functions with small
error is verified throughout the run.

This work extends previous work on head-on encounters
[4–7]. It is comparable to recent results of Brügmann [8]:
non-head-on black hole evolution through to significant in-
teraction and merger. But our approach has a novel fea-
ture: the singularity-excising character of the computation
of generic encounters which allows “natural” motion of the
black holes through the computational grid. Singularity
excision may be crucial to carrying out long term simu-
lations predicting gravitational waveforms through several
wave cycles. Considerable efforts are being invested on
finding the best possible way(s) to implement this strategy
in 3D [9].

Initial data.—We carry out three binary black hole
simulations. Data are created with spinning holes, each
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of mass m, located at �65m, 6m, 0�, each with Kerr
spin parameter a. The holes are boosted in opposite x̂
directions with speed c�2, representing a grazing colli-
sion with impact parameter of 2m (and resulting total
orbital angular momentum in the ẑ direction). We distin-
guish three cases: case (I)—both holes have a � 0.5m
opposite to the orbital angular momentum, case (II)—non-
spinning holes a � 0, and case (III)—both holes have
a � 0.5m aligned with the total angular momentum.

The total initial ADM mass of each simulation is 2.31m,
which agrees very well with the estimate given by the
special relativistic limit mADM � 2gm, with g � �1 2

0.52�21�2 � 1.155. The total initial ADM angular momen-
tum J � Jẑ is 0.0, 1.17m2, and 2.34m2 for cases I, II, and
III, respectively (see [10]).

The data setting technique is based on the boost-
invariant Kerr-Schild [11] form of the Kerr black hole
metric. Our Cauchy formulation requires first the solution
of the initial data problem. As outlined in [12–14],
superposed boosted Kerr-Schild data for two single holes
produce a conformal background space; the physical data
are solved via a York-conformal approach (solving four
coupled elliptic equations) [15] on this background. Note
that even when an exact solution of the elliptic equations
is known, the error in the evolved solution will be deter-
mined by the inherent evolution-equation truncation error.
Therefore, the accuracy of the elliptic solver employed
need be consistent just with this truncation error. For the
discretization used here (Dx � m�4) the truncation error
is of order 5%. The quality of the data is validated by
computing the constraints, normalized to a dimensionless
quantity by the factor m22. Analytically the constraints
should be zero everywhere. In fact, with the parameters
of the problem, and with the current discretization and
truncation error, the superposed background solution is
acceptable with no further elliptic problem solution [14]
(i.e., the zeroth order of the elliptic solver). However,
© 2000 The American Physical Society
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as we progress to larger and better resolved evolutions,
we find it mandatory to cycle through the elliptic solve
step [16] to obtain satisfactory solution of the constraints.
Figure 1 presents the Hamiltonian constraint for case III,
evaluated at integration time step t � 3m along the x̂ axis,
together with a time history of the l2 norm (over volume
outside the horizons, and excluding the outer boundary
region) of the Hamiltonian constraint and the similarly
normed momentum constraint. The late time rise in the
momentum constraint in Fig. 1 shows the beginning of the
exponential mode that appears at about t � 36m and ends
the simulation. We have quite good constraint behavior,
of order 0.4%, with peak errors in the Hamiltonian of
order 5% until that time.

Evolution methods.—The time evolutions presented
here are done using AGAVE, a code that solves the Einstein
equations in an ADM 3 1 1 form via finite difference
techniques [3]. A parallel implementation is obtained
with the use of MPI [17], employing the Cactus compu-
tational toolkit [18] solely to aid in this task. AGAVE is a
major revision of the binary black hole grand challenge
alliance Cauchy code [19,20]. The lapse function a

and shift vector bi express coordinate conditions which
are chosen to allow the black holes to move freely. For
our simulations, prior to the time that a single black
hole surrounding the incoming pair is detected, we use
a superposition of functions from boosted black holes:
a � a1 1 a2 2 1, bi � b

i
1 1 b

i
2, where these func-

tions are centered with the current location of the holes,

FIG. 1. For case I (and grid620), the Hamiltonian and mo-
mentum constraints, on the domain of outer communication
[outside the apparent horizon(s) and inside the outer boundary
blending zone]. We give the time history of the l2 (rms) norm
of the Hamiltonian (solid line) and the l2 norm over all three
components of the momentum constraint (dotted line). The mo-
mentum l2 is constructed only along coordinate lines (all that
is available from this computation); the Hamiltonian l2 is com-
puted from the whole volume. The sudden change in the errors
at t � 4m occurs when a single outer apparent horizon envelops
the merging holes. Also, the drop at t � 20m is due to bound-
ary effects. The inset shows the Hamiltonian constraint along
the x axis at time t � 3m.
and with the velocity initially obtained from Newtonian
approximation to the trajectories of the holes and subse-
quently inferred from the history of the locations of the
apparent horizons (see below); after the detected merger,
we use the lapse and shift of a single black hole with a
mass, which is the sum of the original bare masses, and
angular momentum, which is the (naive vectorial) sum
of the spin and orbital angular momentum in the original
system. (See Discussion below.)

The interior of the black holes is excised (Unruh, quoted
in [21]). We use the apparent horizon surface, locatable at
each time slice, as a marker for the excision. We utilize
a combination of two different finite difference methods
to find the apparent horizon: a direct solver [22] and a
curvature flow method [23]. Once the apparent horizon is
located, we define a mask function that delineates the ex-
cluded region (interior to the holes) from the computation.
The result is that we literally evolve two holes moving
freely through the computational domain. That domain is
a 1613 lattice, corresponding at our resolution to a cube
�40m�3 (620m in each direction from the centered ori-
gin). However, boundary conditions are set by providing
Dirichlet boundary conditions for gab and blending [24,25]
outwards from a sphere of radius 19m the computational
solution of Kab to an analytically given (time-dependent)
solution for Kab at the outer boundary sphere. “Blend-
ing” means taking a linear combination of values from the
computed and the analytically given solution, over a few
(here, four) spatial zones, reducing gradients and second
derivatives at the boundary. The analytic blending solu-
tion is created by superposition of boosted holes given by
the initial data construction (with centers and velocities
propagated according to the lapse and shift computation)
or after the merger by the final estimated black hole with
postmerger lapse and shift.

The discretization of the Einstein equations is consistent
to second order accuracy. On the time scale where insta-
bilities do not play a significant role, the convergence rate
of this code is �1.6, reduced from 2 apparently because
of extrapolation at the excision boundaries.

Results.—To the current accuracy of the code, cases
I– III behave similarly. The total proper area of the ap-
parent horizon A for case I is shown in Fig. 2. The value
of A is particularly interesting since it provides a measure
of the total mass contained in the apparent horizon. For a
given black hole of mass m and spin parameter a its area
is ABH � 4p�R2

1 1 a2� (with R1 � m 1
p

m2 2 a2 ).
Since at early times there is no common apparent hori-
zon the total area is approximately A � ABH1 1 ABH2 �
2ABH1, as the holes merge the total mass enclosed in
the common horizon is (roughly) expected to double, and
hence its area would be 4 times as big, i.e., for a nonspin-
ning final black hole A � 4p�2�2m��2 & 4ABH1. There-
fore, a plot of A vs time (like the one in Fig. 2) shows a
considerable “jump” at the time the holes merge t � 3.8m.
Additionally, effects of the outer boundary can be clearly
seen in Fig. 2. For a 610 grid an abrupt “kink” is seen
5497
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FIG. 2. The area of the apparent horizon(s) (transition to
a single horizon at t � 4m) for case I (spatial resolution
D � M�4). For the smallest domain (610m, dashed line) the
simulation runs to t � 26m and exhibits strong boundary
effects at t � 9m. For the 610m domain (dotted line), the
simulation runs to t � 31m exhibiting boundary effects at
t � 14m. In the larger (620m) domain (solid line) boundary
effects show at later time, around 19m. Instabilities cause the
measured area to rise abruptly at t � 36m and eventually stop
the simulation.

at t � 9m while in the 620 grid the kink appears at
t � 19m. At about t � 36m (t � 26m) apparent instabil-
ities in the 620m (610m) grid cause a rapid increase in the
computed horizon size and eventually crash the run. Thus
at t � 35m the solution becomes untrustworthy. While
the simulation is free of boundary effects the coincidence
of the measured horizon area values supports confidence
in the results. Figures 3A–3F track the apparent hori-
zons through the merger for case I. A single enveloping
black hole appears at t � 3.8m. The horizon oscillates
and grows slightly.

We have in place Cauchy-characteristic extraction,
where the Cauchy solution sampled at some “large”
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FIG. 3. For case I, time history of the horizons. The times
corresponding to (A)– (F) are t � 0, 2.6m, 5.1m, 8.8m, 13.8m,
and 18.8m. These are coordinate plots; the corresponding areas
appear in Fig. 2. After the merger the horizon oscillates through
a fraction of a cycle.
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radius acts as data for a characteristic evolution to infinity
[26,27] for waveform extraction. We also can compute the
Newman-Penrose tensor c4, which captures at null infinity
the outgoing radiation. Additionally, we are develop-
ing a perturbative radiation extraction module. We are
preparing a paper explaining how these tools are applied
and illustrating the radiation patterns obtained from these
simulations.

Discussion and future directions.—The simulations re-
ported here are genuinely, but not excessively, hyperbolic
encounters. A Newtonian estimate gives a free fall velocity
of 0.4c from infinity, as compared with the velocity 0.5c
specified in our initial data. Future work will concentrate
on generic hyperbolic and elliptic orbits.

Ongoing research concerns the late-time stability of the
black hole simulations. We have carried out a number
of one-dimensional simulations, all of which have longer
term stability than this three-dimensional simulation of
merged holes. We are investigating the behavior of the dif-
ferencing scheme at the inner boundary. (The one we use
behaves well in the spherical case.) We are implementing
a new outer boundary algorithm which has been shown to
be robustly stable in a linearized version of the code [28].
We are developing more sophisticated gauges based on el-
liptic equations for the lapse and the shift. These include
the minimal distortion and minimal shear gauges [29] and
other elliptic gauges [12,30]. Stable evolution of single
black holes is quite sensitive to gauge conditions, and we
anticipate much useful science from future improvement
in the lifetime of our simulations of black hole mergers.

Our gauge and boundary conditions for the final merged
black hole naively assume that all the initial mass (i.e.,
Mfinal � 2m) and angular momentum reside in the final
hole: Jfinal � afinal 3 Mfinal. For cases I, II, and III our
gauge takes afinal � �0, 0.25, 0.5� 3 Mfinal. These esti-
mates do not take into account the emission of energy and
angular momentum during the dynamics or the g factor
in the initial mass and angular momentum. The actual
postcollision mass and angular momentum of the residual
hole will be evaluated to further improve the simulations;
behavior of the code is robust under changes in the final
assumed mass and spin.

Of extreme interest is the size of the final apparent hori-
zon. The total initial ADM mass leads to horizon area of
4p�2 3 2.31m�2 � 268m2. The postmerger numerically
computed apparent horizon area (Fig. 2) is about 255m2,
5% smaller than this estimate. This measure would give
a preliminary indication that total energy radiated in this
simulation is about 2.6%. However, we have yet to com-
plete a three-dimensional event horizon tracker, which will
allow a correct comparison of the initial and final event
horizon area.

The present work demonstrates the first simulation of
binary black hole systems via the excision of singularities.
The data sets evolved are not only useful for validation of
the techniques employed here but as valid data sets in an
astrophysical sense for the final “plunge” of the merger. In
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this work we (a) demonstrate well behaved (convergent)
descriptions of the black holes as they evolve, (b) show
that apparent horizon tracking and black hole excision can
produce dynamical multiblack hole spacetimes, with rea-
sonably well controlled errors for a considerable length of
time (long enough for an accurate modeling of the merger
phase), and (c) demonstrate that relatively unsophisticated
gauge functions a and b can lead to physically interesting
evolution lifetimes.
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