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Abstract: A frequency-domain nonlinearity indicator has previously
been characterized for two analytical solutions to the generalized
Burgers equation (GBE) [Reichman, Gee, Neilsen, and Miller, J.
Acoust. Soc. Am. 139, 2505–2513 (2016)], including an analytical,
asymptotic expression for the Blackstock Bridging Function. This letter
gives similar old-age analytical expressions of the indicator for the
Mendousse solution and a computational solution to the GBE with
spherical spreading. The indicator can be used to characterize the cumu-
lative nonlinearity of a waveform with a single-point measurement, with
suggested application to noise waveforms as well.
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1. Introduction

Nonlinearity indicators have been used to characterize and understand the cumulative
nonlinear behavior of propagating, high-amplitude acoustic waves. Examples of nonline-
arity indicators include the pressure waveform derivative skewness,1,2 average and wave
steepening factors,3–5 bicoherence,6 and the Morfey and Howell-derived Q/S.1,7–10

Indicators have been most useful for analyzing noise, e.g., from high-speed jets, but real-
world system complexities can hinder connections between analytical and noise11 treat-
ments. To guide the characterization of nonlinear propagation in noise, this letter
explores the asymptotic behavior of a frequency-domain, single-point nonlinearity indica-
tor for solutions to the generalized Burgers equation (GBE), building upon prior work
which has shown that high-harmonic decay proceeds more slowly than linear absorption
predicts.12,13 Similar trends have been predicted for noise propagation,14,15 and the letter
concludes by discussing the connections between the analytical behavior and that seen
for jet noise.16

2. Quantitative nonlinearity indicator

An ensemble-averaged, frequency-domain version of the GBE was recently used to
derive three quantities that yield the change in sound pressure level (SPL) with distance
caused by geometric spreading, absorption, and nonlinearity, respectively.17 The non-
linearity indicator is a single-point indicator, meaning it can be calculated directly
from a single waveform measurement. It includes the Morfey and Howell-derived Q/S,
defined as Q=S ¼ Qpp2=ðprmsSppÞ, where Qpp2 is the quadspectral density between the
pressure and pressure-squared waveforms, prms is the waveform’s root-mean-square
pressure, and Spp is the autospectral density. The calculated quadspectrum of the pres-
sure and squared pressure reveals phase coupling between two different frequencies,
which occurs from sum and difference-frequency nonlinear harmonic generation in
steepening waves.6,18

The indicator is derived from the time-domain version of the GBE for an
arbitrarily diverging pressure waveform, p(t), in thermoviscous media, which may be
written as

@p
@r
¼ �m

r
pþ d

2c3
0

@2p
@s2 þ

bp
q0c3

0

@p
@s
; (1)

where r is the distance from the source; m is 0, 0.5, or 1 for planar, cylindrical, and
spherical waves, respectively; d is the diffusivity of sound; c0 is the equilibrium sound
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speed; s is retarded time; b is the coefficient of nonlinearity; and q0 is the equilibrium
density of air. The terms on the right-hand side of Eq. (1) show that the change in
pressure over distance is related to the separate effects of divergence, absorption, and
nonlinearity. If Ln is defined as the SPL for the nth harmonic of a periodic signal with
fundamental frequency x1, the time-domain GBE in Eq. (1) can then be cast17 into a
frequency-domain and ensemble-averaged7 form to give the total rate of change in Ln

with distance as

@Ln

@r
¼ �2g

m
r
� 2gan � g

xbprms

q0c3
0

Q
S
� �S þ �a þ �N ; (2)

where g � 10log10ðeÞ � 4:34, an is the linear attenuation coefficient for the nth har-
monic, and �S, �a, and �N are the rate of change in Ln specifically due to spreading,
absorption, and nonlinearity, respectively.

The nonlinearity indicator, �N , has been previously studied for two solutions
to the GBE:17 the Blackstock Bridging Function (BBF),19 which ignores spreading and
absorption, and the Mendousse solution,20 which neglects spreading. For plane waves
in a lossless medium (BBF), nonlinear losses at the shock cause the waveform to decay
in amplitude, and after shock formation �N is asymptotically negative for all frequen-
cies [see Eqs. (25) and (26) in Ref. 17]. However, shocks in a lossy medium eventually
thicken due to absorption, after which the waveform decay is slower than linearly
predicted. This ongoing transfer of energy upward in the spectrum must correspond to
a positive asymptotic value for �N . Here, asymptotic expressions for planar and diverg-
ing waves in a thermoviscous medium13 are used to derive asymptotic values of �N for
such waves. The indicator is numerically calculated for both cases and compared
against the analytical expressions. Connections are also made between the asymptotic
�N values for initial sinusoids and those for noise.13,18 Knowing the asymptotic value
of the �N indicator, a single measurement can be used to help determine the long-
range nonlinear progression of a waveform.

3. Plane waves in a thermoviscous medium

3.1 Theoretical development

Nonlinear waveform distortion of sinusoids is based on the normalized distance
r ¼ x=�x, where �x is the planar shock formation distance. The Mendousse solution is
an infinite-series solution to the GBE for plane waves, but with thermoviscous absorp-
tion (a 6¼ 0, m¼ 0).20 The solution depends on the linear absorption coefficient calcu-
lated from the frequency of the initial sinusoid, a1, and the corresponding Gol’dberg
number, C ¼ 1=�xa1. As C ! 1, nonlinearity dominates linear absorption and the
Mendousse solution becomes equal to the BBF. For strong waves (C� 1) in the old-
age region (a1x ¼ r=C� 1) as defined by Blackstock et al.,21 the term in the series
specifying the absorption decay becomes e�na1x instead of e�n2a1x.13 In this letter, these
two different decay rates are referred to as linear and quadratic exponential decays,
respectively, because of their dependence on harmonic number, n. For the Mendousse
solution, the spatial rate of change in Ln is given by the combined effects of absorption
and nonlinearity, or �a þ �N . Working from Eq. (2), the asymptotic value of �N for the
Mendousse solution can be expressed as

�N;x!1 ¼
@Ln

@x
� �a ¼

@

@x
20 log10 C xnð Þe�na1x� �� �

þ 2gn2a1

¼ 2g n2 � nð Þa1; (3)

where CðxnÞ is a certain function independent of x. From Eq. (3), �N is non-negative
in the old-age region for all harmonics (�N;x!1 ¼ 0 for n¼ 1). The expression shows
an addition of energy due to nonlinearity and a slower old-age decay, unlike the loss
of energy which occurs for the BBF (negative �N ). Note that the asymptotic behavior
of �N is independent of C, as is the asymptotic waveform shape.21 Since the waveform
amplitude decays asymptotically, the sum of the effects of absorption and nonlinearity,
�a þ �N , remains negative.

3.2 Computational results

For plane waves in a lossless medium, the first pressure discontinuity occurs at r¼ 1,
the shock reaches a maximum amplitude at r¼ p/2, and a sawtooth wave forms at r
� 3.21 Here, normalized waveforms out to r¼ 20 are shown in Fig. 1(a) with C¼ 30.
This moderate C results in a waveform that is close to, but not exactly, a sawtooth at
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r¼ 3, and then begins to unsteepen due to strong absorption of the high frequencies.
The waveform at r¼ 20 is approaching the old-age region.

The change in waveform shape shown in Fig. 1(a) can also be observed in the
harmonic spectral amplitudes, Sn, shown in Fig. 1(b). The amplitude of the fundamen-
tal is always decreasing (negative �N ) as energy is given to higher harmonics, whose
spectral amplitudes generally increase between r¼ 1 and r¼ p/2 as the waveform
steepens. However, depending on the value of C, the low-frequency harmonic ampli-
tudes (e.g., for n¼ 2) can also experience nonlinear losses as they drive higher-
harmonic generation [see Fig. 6(c) in Ref. 17]. Shock thickening is manifested by the
increasingly steeper rolloff for r> p/2. The spatial rate of change of the spectral
levels is described by �N . The �N values for several harmonics were shown in Fig. 6 of
Ref. 17 as a function of r for C¼ 30, but only up to r¼ 3. The value of �N as a
function of frequency is calculated—by taking Fourier transforms to calculate Q/S in
Eq. (2)—from the Mendousse solution waveforms at two distances and is shown in
Fig. 1 (c). By the chain rule, Eq. (2) can be multiplied by �x to give @Ln=@r rather than
@Ln=@x. The calculated indicator, �x�N , is an accurate prediction of the spatial rate of
change in Ln; the difference between �x�N and the numerical derivatives of Ln, DL=Dr,
is much less than 1%. At r¼ 3, the indicator values follow the analytical trend only
for harmonics n � 10. At r¼ 20, the �N indicator has converged to the asymptotic
expression in Eq. (3) with an error of less than 2% for n¼ 3 to n¼ 10.

4. Spherically diverging waves in a thermoviscous medium

4.1 Theoretical development

A complete analytical solution to the GBE with spherical spreading (a 6¼ 0, m¼ 1) does
not exist, and difficulties with solving the equation have been described in Refs. 22–24.
However, an asymptotic solution (a1r � 1) up through the first four harmonics shows
a nonlinear decay of r�ne�na1x rather than a linear decay of r�1e�n2a1x.13 The asymp-
totic value of �N for spherical spreading and thermoviscous absorption can once again
be determined from Eq. (2) to be

�N;r!1 ¼
@Ln

@r
� �S rð Þ � �a xnð Þ

¼ @

@r
20 log10 C xnð Þr�ne�na1r� �� �

þ 2g
1
r
þ n2a1

� �

¼ 2g � n� 1
r
þ n2 � nð Þa1

� 	
: (4)

At least to n¼ 4, the –ðn – 1Þ=r term represents a larger effective geometric spreading
decay with increasing n, and the ðn2 – nÞ=a1 term represents a reduction in absorption
from a quadratic exponential to a linear exponential decay. In the limit of large r, the
absorption term dominates the spreading term and �N is positive for n> 1. Once again,
�a þ �N , remains negative asymptotically.

4.2 Computational results

Since there is no known analytical solution to the GBE with thermoviscous absorption
and spherical spreading, a numerical solution is used.25 To compare with the analysis
from Sec. 3.2, a Gol’dberg number of 30 is desired. However, due to divergence there
is much less nonlinear steepening for a spherical wave than for a plane wave of the
same initial amplitude. For this reason, an effective spherical Gol’dberg number of

Fig. 1. (Color online) (a) Normalized waveforms for the Mendousse solution at various normalized distances
with C¼ 30. (b) Spectral amplitudes, Sn, of the same waveforms. (c) Comparison of �x�N calculated at two
distances to the analytical, asymptotic prediction. The convergence is good for n � 10 at r¼ 3, but good for all
harmonics at r¼ 20.
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K¼ 30 is used.26 In addition, a spherically normalized distance is used to describe the
waveform propagation, defined as f � r0=�x lnðr=r0Þ, where r0 is a known distance at
which the waveform is sinusoidal and �x is the shock formation distance for plane
waves. With these parameters, the waveform can be characterized similarly to the
Mendousse solution waveform so long as kr� 1. For this example, the fundamental
frequency was 10 kHz, r0 was 1 m, the initial waveform amplitude was 415 Pa, the tem-
perature was taken to be 20 �C, and the atmospheric pressure was 1 atm, giving K¼ 30
and C¼ 348.

The waveform shock formation is shown in Fig. 2(a), showing some trends
similar to those of the Mendousse waveforms in Fig. 1(a). The shock appears to be
steepest for f � p/2, after which the waveform begins to unsteepen. However, unlike
the Mendousse waveforms, at f¼ 3.75 the waveform has nearly reached sinusoidal
shape again. The rapid unsteepening occurs because f is a function of ln(r) rather
than r, meaning that the physical distance propagated to get the same scaled values of
r and f is much larger for the diverging case. Absorption therefore causes a large
decrease in the higher harmonic amplitudes, contributing to a thicker shock.
Compared to the Mendousse spectral amplitudes in Fig. 1(b), the Sn in Fig. 2(b) show
a much larger overall decrease in amplitude due to divergence from f � p/2 to f¼ 3,
as well as significantly more high-frequency absorption at f¼ 3 and f¼ 3.75.

Given the ln(r) dependence of f, an asymptotic analysis can be performed at a
relatively small scaled distance. Similar to the scaling by �x for the Mendousse case in
Fig. 1(c), by the chain rule Eq. (2) can be multiplied by e � �xe�xf=r0 ¼ �xr=r0 to give
@Ln=@f rather than @Ln=@r in Fig. 2(c). The calculated �N indicator in Fig. 2(c) con-
verges to the analytical value from Eq. (4)—labeled f ! 1—at a much smaller nor-
malized distance than does the Mendousse solution in Fig. 1(c). The waveform is
approaching the old-age region at f¼ 3.75, with a1r � 0:64. The numerical derivative
due to nonlinearity, calculated from DLn=Df – e�S – e�a, is also shown because the �N
calculation deviates slightly from the actual spatial change. The slight discrepancy
between the two is at least partially due to the extremely low spectral amplitudes of
the harmonics, as seen at f¼ 3.75 in Fig. 2(b). Note that the nonlinear numerical
derivative is calculated assuming complete accuracy in �S and �a, which both have
well-understood mechanisms.21 Finally, to emphasize the distinction between the pla-
nar and diverging cases, the Mendousse solution asymptotic indicator value, e�N;r!1,
is shown in Fig. 2(c) and differs substantially from all other curves.

Various values of f were tested for the asymptotic behavior, with f¼ 3.75
selected as the smallest distance for which the convergence was good. The error
between the �N curve, numerical derivative, and asymptotic value is less than 8% for
harmonics 3–6. For n> 6, the round-off error in the spectrum is too large for the �N
calculation to be accurate, so larger harmonic numbers are not shown. A substantial
difference is seen between the Mendousse and the spherical spreading asymptotic
values for the indicator, and �N clearly follows the expression in Eq. (4), which was
derived for n � 4. The agreement to n¼ 6 suggests the validity of the expansion in
Ref. 13 to harmonics beyond n¼ 4.

5. Extensions to broadband noise propagation

This work has extended the prior analysis of Reichman et al.,17 where a quadspectral,
frequency-domain nonlinearity indicator, �N , was used to quantitatively determine the

Fig. 2. (Color online) (a) Waveforms for the computational solution to the GBE with spherical spreading at var-
ious normalized distances with K¼ 30. (b) Spectral amplitudes, Sn, of the same waveforms. (c) Comparison of
the calculated �N indicator at f¼ 3.75, the numerical derivative of the spectral amplitude due to nonlinearity
(calculated from DL=Df – e�S – e�a) at f¼ 3.75, and the two asymptotic predictions from Eq. (3)—r!1—and
Eq. (4)—f ! 1. By the chain rule, the indicators have been multiplied by e � �xe�xf=r0 to give units of dB/f
rather than dB/m.
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nonlinear rate of change in sound pressure level over distance for acoustic waves.
Here, �N for planar and diverging waves in a thermoviscous medium was shown to be
positive and increasing with frequency in the old-age region, signifying a slower decay
than predicted by linear theory. The derived asymptotic expressions in Eqs. (3) and (4)
are found to agree with �N calculated from analytical and computational solutions to
the GBE.

The analytical work for sinusoids and thermoviscous media guides under-
standing of broadband noise evolution in air. In Ref. 16, experimental jet noise was
numerically propagated to beyond 3 km—for atmospheric absorption and disper-
sion—and the nonlinear gain (NG), i.e., the change in sound pressure level due to
nonlinearity, was calculated. The spatial derivative of the NG, @NG=@r, is essentially
equivalent to �N and was compared for various frequencies as a function of distance.
Figures 2 and 3 of Ref. 16 show @NG=@r decreasing asymptotically to zero in the
peak-frequency region, and for higher frequencies @NG=@r asymptotically converges
to a successively larger value that is constant with distance. These trends seen for jet
noise propagation are the same trends shown here for both planar and diverging
waves in a lossy medium.

A quantitative connection can be found between the jet noise example and the
sinusoidal results shown in Sec. 4. As r becomes large, the spreading term in Eq. (4)
becomes much smaller than the absorption term. Neglecting the spreading term and
taking the ratio of �N;r!1 for two different harmonics, np and nq, yields
ðn2

q � nqÞ=ðn2
p � npÞ. If the jet noise peak frequency in Ref. 16 is taken to be 113 Hz,

the ratio of the asymptotic �N values for 8, 10, and 12.5 kHz for an initial sinusoid in
a thermoviscous medium should be 1.62, 2.54, and 3.97, respectively. Using the asymp-
totic values for numerically propagated jet noise in air from Fig. 3 of Ref. 16, the
actual ratios are 1.62, 2.50, and 3.71. The ratios from the data are very close to, but
slightly less than the predicted ratios. The slight difference could be due to neglecting
the spreading term in Eq. (4), or to the differences in absorption between air in Ref.
16 and the thermoviscous medium assumed in the theoretical analysis. Regardless, the
close agreement suggests that �N calculations help to understand the asymptotic behav-
ior of noise waveforms as well.

The results in this letter demonstrate that a single-point waveform measure-
ment can be used to determine whether a nonlinear wave—or noise waveform16—has
progressed into the old-age region. The expressions in Eqs. (3) and (4) could be
extended to find asymptotic expressions for other types of spreading (e.g., cylindrical),
as well as calculating asymptotic trends in �N for experimental noise that includes
other atmospheric effects (e.g., turbulence).

Acknowledgments

This work was carried out in part under an Air Force Research Laboratory Small Business
Innovation Research (SBIR) program with Blue Ridge Research and Consulting. Support
from the Utah NASA Space Grant Consortium is also gratefully acknowledged.

References and links
1W. J. Baars, C. E. Tinney, M. S. Wochner, and M. F. Hamilton, “On cumulative nonlinear acoustic
waveform distortions from high-speed jets,” J. Fluid Mech. 749, 331–366 (2014).

2B. O. Reichman, M. B. Muhlestein, K. L. Gee, T. B. Neilsen, and D. C. Thomas, “Evolution of the
derivative skewness for nonlinearly propagating waves,” J. Acoust. Soc. Am. 139, 1390–1403 (2016).

3W. J. Baars and C. E. Tinney, “Shock-structures in the acoustic field of a Mach 3 jet with crackle,”
J. Sound Vib. 333, 2539–2553 (2014).

4J. A. Gallagher, “The effect of non-linear propagation in jet noise,” in 20th Aerospace Sciences Meeting
and Exhibit (1982), AIAA Paper No. 82-0416.

5M. B. Muhlestein, K. L. Gee, T. B. Neilsen, and D. C. Thomas, “Evolution of the average steepening
factor for nonlinearly propagating waves,” J. Acoust. Soc. Am. 137, 640–650 (2015).

6K. L. Gee, A. A. Atchley, L. E. Falco, M. R. Shepherd, L. S. Ukeiley, B. J. Jansen, and J. M. Seiner,
“Bicoherence analysis of model-scale jet noise,” J. Acoust. Soc. Am. 128, EL211–EL216 (2010).

7C. L. Morfey and G. P. Howell, “Nonlinear propagation of aircraft noise in the atmosphere,” AIAA J.
19, 986–992 (1981).

8B. P. Petitjean, K. Viswanathan, and D. K. McLaughlin, “Acoustic pressure waveforms measured in
high speed jet noise experiencing nonlinear propagation,” Int. J. Aeroacoust. 5, 193–215 (2006).

9L. Falco, K. Gee, A. Atchley, and V. Sparrow, “Investigation of a single-point nonlinearity indicator in
one-dimensional propagation,” Forum Acusticum Paper No. 703 (2005).
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