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Abstract: We assess several widely used vector models of a Gaussian laser beam in the context
of more accurate vector diffraction integration. For the analysis, we present a streamlined
derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic
mirror, both inside and outside of the resulting focus. This exact solution to Maxwell’s equations,
first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments
since the boundary conditions at a focusing optic dictate the form of the focus in a manner
analogous to a physical experiment. In contrast, many models simply assume a field profile near
the focus and develop the surrounding vector fields consistent with Maxwell’s equations. In
comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian
beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides
good agreement in the paraxial limit. Models involving a Lax expansion introduce divergences
outside of the focus while providing little if any improvement in the focal region. Extremely tight
focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky
model for accurate representation.
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1. Introduction

The laser community has worked to effectively model vector fields in a tightly focused laser
for several decades. Rigorous vector diffraction integrals typically require numerical evaluation,
so for many applications researchers prefer an approximate model that is analytic. A variety
of models have been proposed, which often differ markedly from each other [1–14]. These
differences are of concern to anyone who uses computational models to study interactions in the
laser focus. However, comparisons between vector focal models are conspicuously absent in the
literature. Clarification and arbitration between the various approaches is needed, which is the
aim of this article.

We compare several of the most common approaches to modeling vector fields in a focus.
We show that in the paraxial limit, the closed-form analytic model developed by Erikson and
Singh [7] closely resembles rigorous diffraction theory applied to a Gaussian beam reflected
from a parabolic mirror. In contrast with other models, the Singh model imitates the beam well in
both the near and far field. The closed-form formula by Barton and Alexander [5] gives marginal
improvement in the focal region at the expense of divergences outside the focus. For lower
f-numbers, the full integral formula by Ignatovsky is needed for accurate results.

We find that a primary reason for the discrepancies between models is that many models start
from an assumed field profile in the focus and then develop vector fields in the surrounding
region, consistent with Maxwell’s equations. We demonstrate that typical assumed starting
points are often inconsistent with the experimentally relevant boundary condition imposed by a
collimated beam incident on a focusing optic. We thus assert that the boundary condition at the
focusing optic is of paramount concern in all practical experimental situations.

This analysis and comparison of various vector focal models is of particular relevance to
the high-intensity laser community, which expends significant effort to achieve the highest
possible laser intensities. High-end laser systems can currently achieve intensities around 1022

W/cm2 using tight focusing, and many groups continue to work to attain intensities beyond
this level [15–17]. These extreme intensities open new research possibilities, such as particle
acceleration [18–23], gamma-ray and electron-positron-pair production [24,25] as well as nuclear
interactions [17]. To model such phenomena, an accurate accounting of the electric and magnetic
vector field distribution throughout a tight focus is often critical [26].

Rigorous vector diffraction theory of focused light [27–39] has been developed over the course
of nearly a century, beginning with a treatment in 1920 by V. S. Ignatovsky [27–29]. Ignatovsky
first made the key realization that the optical elements used to focus the light, such as mirrors and
lenses, dictate a boundary condition on the vector components of the converging field. Ignatovsky
developed vector diffraction for a uniformly polarized collimated beam reflected from a parabolic
mirror [29]. At the curved mirror surface, the vector field components are modified by the act of
reflection as a function of position. Ignatovsky also worked out the vector field components of a
polarized beam traversing a lens [28]. The specifics of the focusing optic give rise to different
spatial amplitude distributions, referred to as apodizing functions, for the individual vector field
components.

Ignatovsky’s approach is related to the work of Debye, who in 1909 showed how to invert the
traditional diffraction problem. Rather than starting in a focal plane (or at a confining aperture)
and working outward, Debye computed the fields in a focus starting from a converging spherical
wave [40]. Ignatovsky recognized the practical relevance of this approach since the experimenter
has control over (or at least access to the characterization of) the field distribution of the beam
incident on the focusing optic, which endows the field distribution with the characteristics that
appear in the focus.

The Ignatovsky formulation is an exact solution to Maxwell’s equations consistent with
the experimentally relevant boundary condition. It provides a ‘gold standard’ with which to
evaluate the performance of the various simpler analytic models offered in the literature. In this
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paper, we first outline the rigorous diffraction integrals that generate vector fields in the focus
arising from a collimated beam incident on an idealized parabolic mirror. Our derivation of
the Ignatovsky’s diffraction formula is simplified and streamlined relative to earlier treatments.
We point out that there is no need to transfer the incident field onto a converging spherical
surface before performing the diffraction integral, which shortens the development. With the
Ignatovsky formulation in hand, we then compare and contrast its results with other models from
the literature.

2. Reflection from a parabolic mirror

The vector diffraction theory developed here can be applied to both lenses and mirrors with a
large range of prescriptions. We specialize our analysis to the focusing of a linearly-polarized
collimated beam by a parabolic mirror, since the high-intensity community employs this focusing
scheme most commonly. The results discussed here differ in detail from other focusing optics.

The first step is to write the fields arising from a collimated beam just after reflection from
a parabolic mirror. In his original derivation, Ignatovsky employed parabolic coordinates, but
we elect to use cartesian coordinates. We consider an ideal parabolic mirror of focal length f
oriented with its axis of symmetry along the z axis and situated so that its surface intersects the
z-axis a distance f to the left of the origin, as shown in Fig. 1. We denote the mirror surface
using primed coordinates as

z′ = − f +
ρ′2

4 f
and ρ′ =

√
x′2 + y′2. (1)

The surface normal is then given by

n̂(x′ , y′) =
− 1

2 f (x′x̂ + y′ŷ) + ẑ√
1 +

ρ′2

4 f 2

, (2)

Origin

Focal Region

Fig. 1. Incident light (x-polarized) reflected by a parabolic mirror. s- and p-polarized
components of the field reflect as plane waves about the local surface normal n̂.
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Note that x′x̂ + y′ŷ = ρ′ ρ̂′, where ρ̂′ is the radial unit vector.
We define the incident field at the mirror surface to be an x-polarized plane wave, traveling in

the −ẑ direction and multiplied by a smoothly-varying lateral envelope, given by

Ei(x′ , y′) = x̂Eenv(x′ , y′)ei(−k (z′+ f )−ωt) . (3)

The phase of the envelope Eenv(x′ , y′) is referenced to the center of the mirror surface, ρ′ = 0
and z′ = − f . In vacuum, the wavenumber is related to the frequency by k = ω/c. We permit
only slow transverse variations in the envelope Eenv(x′ , y′). The incident beam width and mirror
dimension are assumed to be enormous compared to a wavelength. These requirements allow
us to treat the local incident and reflected fields as plane-wave like at a given point on the
mirror. For purposes of reflection, the local p-polarized component of the incident field lies along
ρ̂′ = (x′x̂ + y′ŷ) /ρ′ with strength Eenv(x′ , y′)x′/ρ′. The local s-polarized component of the
incident field lies along ŝ = (−y′x̂ + x′ŷ) /ρ′ with strength −Eenv (x′ , y′) y′/ρ′.

We make the idealized assumption that the amplitude and phase change of the fields upon
reflection is uniform over the mirror surface, and omit any overall phase factor. After reflection
about the surface normal n̂, the local fields travel toward the focus (i.e. the origin) along the
direction

k̂(x′ , y′) =

− 1
f

(x′x̂ + y′ŷ) +

(
1 − ρ′2

4 f 2

)
ẑ

1 +
ρ′2

4 f 2

. (4)

The orientation of the local s-polarized field remains unchanged, but the new p-polarized field
component aligns along ŝ × k̂.

Combining the reflected s- and p-polarized field components, we obtain the following unit
vector representing the local direction of electric-field polarization after reflection:

p̂(E ) (
x′ , y′

)
=

(
1 − x′2−y′2

4 f 2

)
x̂ − x′y′

2 f 2 ŷ + x′

f
ẑ

1 +
ρ′2

4 f 2

(5)

The reflected field at the surface defined by (1) is then

E(r )
surface

(
x′ , y′

)
= p̂(E ) (

x′ , y′
)

Eenv
(
x′ , y′

)
e
i

(
−

kρ′2
4 f −ωt

)
(6)

This field locally propagates in direction k̂ (not explicitly expressed in (6) since the field has
been evaluated on the parabolic surface).

The associated magnetic field at the surface is

B(r )
surface

(
x′ , y′

)
= p̂(B) (

x′ , y′
) Eenv (x′ , y′)

c
e
i

(
−

kρ′2
4 f −ωt

)
(7)

where p̂(B) is a rotated version of p̂(E ) obtained from the transform x′ → y′ and y′ → −x′

together with the assignments p(B)
x = −p(E )

y , p(B)
y = p(E )

x , and p(B)
z = p(E )

z . Explicitly, the unit
vector for the magnetic-field polarization is

p̂(B) (
x′ , y′

)
=

−
x′y′

2 f 2 x̂ +

(
1 +

x′2−y′2

4 f 2

)
ŷ +

y′

f
ẑ

1 +
ρ′2

4 f 2

(8)

Importantly, the polarization unit vectors Eqs. (5) and (8), which we shall call Ignatovsky vectors,
obey the rules

p̂(E ) × p̂(B) = k̂, k̂ · p̂(E ) = 0, and k̂ · p̂(B) = 0. (9)

Figure 2 plots the fields in (6) and (7) for the case of a Gaussian field envelope.
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Fig. 2. Field components for a Gaussian-envelope beam with Eenv
(
x′ , y′

)
= E0e−ρ

′2/w2
,

immediately after reflection from a parabolic mirror. The fields are computed for f /(2w) =

0.5 (N A = 0.8) on the surface of the mirror as a function of x′ and y′ (horizontal and
vertical in the figure). The rapidly-varying phase factors in (6) and (7) are removed for
clarity. Each box has dimensions 4 f × 4 f , where f is the focal length of the mirror.

3. Green’s theorem and the Debye limit

Now that we have a representation of the fields just after reflection, our next task is to produce
the fields downstream from the mirror. We consider a single-frequency solution to Maxwell’s
equations, which obeys the Helmholtz equation. Green’s theorem applied to the electric field
may be written as [41]

E (x , y, z) =

∮
S′

dA′[E(r ) (n̂ · ∇′G) − G(n̂ · ∇′)E(r )] (10)

where G = eikR /(4πR) and

R =
∣∣∣r − r′

∣∣∣ = r′
√

1 − 2
r′ · r
r′2

+
r2

r′2
→ r′ −

r′ · r
r′

, (11)

with r′ = x′x̂ + y′ŷ + z′ẑ and r = xx̂ + yŷ + zẑ.
The final form of (11) is known as the Debye limit, which retains full consistency with

Maxwell’s equations when used in the exponent of G, as will be later pointed out. The only
assumption is that the mirror resides far from the focus. In the truncated Taylor-series expansion
of the square root, the term r2/r′2 is neglected under the assumption that x, y, and z lie in
the neighborhood of the focus (origin). In the denominator of G, we represent R simply by r′.
Remarkably, there will be no residual restriction on the values for x, y, or z, as will be pointed
out later. On the parabolic surface, when z′ is replaced by (1), we have r′ = −r′k̂ (x′ , y′) and
r′ = f +

ρ′2

4 f .
To summarize, (10) indicates that, in the absence of sources or sinks, the vector field at point

x , y, z inside a volume can be determined entirely from the fields at surface S′ bounding that
volume. We denote points on this bounding surface with x′ , y′ , z′. The entire surface S′ is
comprised of the mirror surface and a large secondary surface that extends beyond the point
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(a) (b)

Fig. 3. (a) Transfer of fields onto a spherical surface prior to diffraction calculation. (b)
Direct use of fields at parabolic surface in diffraction calculation.

x , y, z to enclose a volume as shown in Fig. 3(b). However, the secondary surface with its exiting
flux contributes nothing (on average) to the integral and may safely be ignored. We include only
light that has reflected exactly once from the parabolic surface in the problem; the collimated
beam incident on the parabola and secondary reflections are treated external to the problem. Note
that (10) applies equally well to the magnetic field; simply trade B for E.

In previous derivations, including the original one by Ignatovsky, geometrical optics was first
used to propagate the field from the parabolic mirror to a spherical surface that touches the
mirror in the center, as shown in Fig. 3(a). The diffraction integral was then performed over
the spherical surface. This intermediate propagation is an unnecessary step, since it is straight
forward to perform the diffraction integral over the parabolic surface, as in Fig. 3(b).

Some authors [33] have employed the Stratton-Chu formulation [42] of Green’s theorem
(involving both the electric and magnetic field after substitutions from Maxwell’s equations).
This approach is designed to deal with cropping of the incident field by an sharp aperture,
resulting in an added contour integral around the aperture. Our assumption that the field varies
only gradually in the lateral dimension precludes the use of a sharp aperture, which is a rare
situation in high-intensity laser physics.

4. Ignatovsky diffraction

There remains the task of computing the spatial derivatives in (10). Recall that (6) is the amplitude
of a plane-wave-like field that locally propagates in the k̂ direction, with the assumption that
Eenv (x′ , y′) varies slowly laterally at the mirror. This implies that (n̂ · ∇′)E(r ) → ik (n̂ · k̂)E(r ) .
In the same spirit, we also have ∇′G → −ikk̂G. The paraboloid area element may be written as
dA′ = dx′dy′/(n̂ · ẑ), where n̂ · ẑ is the cosine of the angle between the parabolic surface and
the x-y plane.

With these preliminaries, Green’s theorem applied to (6) produces

E (x , y, z) = −i
kei (k f −ωt )

2π f

∫ ∞

−∞

∫ ∞

−∞

dx′dy′

1 +
ρ′2

4 f 2

Eenv
(
x′ , y′

)
p̂(E ) (

x′ , y′
)

eik k̂(x′ ,y′)·r (12)

This formula may be applied to any (smooth) field distribution incident on the parabola, including
an off-axis incident beam such as considered in Ref. [43]. Similarly, the corresponding magnetic
field is

B (x , y, z) = −i
kei (k f −ωt )

2π f

∫ ∞

−∞

∫ ∞

−∞

dx′dy′

1 +
ρ′2

4 f 2

Eenv (x′ , y′)
c

p̂(B) (
x′ , y′

)
eik k̂(x′ ,y′)·r (13)
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If the distribution Eenv (x′ , y′) is centered on the paraboloid axis and depends only on radius,
for example a Gaussian beam with Eenv (ρ′) = E0e−ρ

′2/w2
, it becomes convenient to change to

cylindrical coordinates: x = ρ cos φ, y = ρ sin φ, x′ = ρ′ cos φ′, y′ = ρ′ sin φ′ with∫ ∞

−∞

∫ ∞

−∞

dx′dy′ →
∫ ∞

0
ρ′dρ′

∫ 2π

0
dφ′. (14)

Then x′2 − y′2 = ρ′2 cos 2φ′, 2x′y′ = ρ′2 sin 2φ′, and xx′ + yy′ = ρ′ρ cos (φ − φ′). In this case,
the azimuthal integration can be performed [44], and (12) simplifies to [29, 33, 34, 37, 45]

E (x , y, z) = −ik f ei (k f −ωt )
[
x̂
(
I0 +

x2 − y2

ρ2 I2

)
+ ŷ

2xy
ρ2 I2 − iẑ

x
ρ

I1

]
(15)

where ρ =
√

x2 + y2. We have again favored cartesian variables using cos 2φ = (x2 − y2)/ρ2,
sin 2φ = 2xy/ρ2, and cos φ = x/ρ, which are all finite when ρ = 0. The solution (15) is in terms
of the following 1-D integrals:

I0 =

∫ π

0
dθEe

(
ρ′

)
J0 (k ρ sin θ) sin θeikz cos θ

I1 = 2
∫ π

0
dθEe

(
ρ′

) √
ξ (θ)J1 (k ρ sin θ) sin θeikz cos θ

I2 =

∫ π

0
dθEe

(
ρ′

)
ξ (θ) J2 (k ρ sin θ) sin θeikz cos θ

(16)

where ξ (θ) = (1 − cos θ)/(1 + cos θ) and ρ′ (θ) = 2 f
√
ξ (θ). To arrive at (16), we introduced a

change of integration variable such that cos θ = (1 − ρ′2

4 f 2 )/(1 +
ρ′2

4 f 2 ). In this representation, θ

may be interpreted as the angle between k̂ and the z-axis, as the integration moves across the
mirror surface. The numeric aperture is described by N A = sin θ0, where θ0 is a characteristic
angular half width of the converging beam.

Equations (15) and (16) were first derived by Ignatovsky in 1920, following a somewhat
cumbersome analysis. For completeness, the magnetic field is given by

B (x , y, z) = −i
k f
c

ei (k f −ωt )
[
x̂

2xy
ρ2 I2 + ŷ

(
I0 −

x2 − y2

ρ2 I2

)
− iẑ

y
ρ

I1

]
(17)

Figure 4 plots the electric and magnetic fields in the focal plane z = 0 computed via (15) and
(17) from the mirror fields depicted Fig. 2. Note the development of diffraction rings surrounding
the main beam as the beam propagates from the mirror to the focus.

Equations (15) and (17) may be evaluated to find the fields anywhere in and outside of the
focus. In the vicinity of a tight focus, the 1-D integrals (16) are only moderately oscillatory
and can be performed rapidly numerically. The numerics depend only on the angular extent of
the focusing beam as opposed to its actual distance and physical size, in contrast with other
approaches [21]. The formula is exact provided the mirror resides at infinity.

It is straightforward to show that Eqs. (12) and (13) as well as Eqs. (15) and (17) satisfy
Maxwell’s equations exactly. This is not surprising since (12) is recognized merely as a linear
superposition of plane waves [46, 47], which obey the properties in (9). The same check can be
made on the azimuthally symmetric forms, Eqs. (15) and (17) [48]. A nice feature is that these
formulas may be evaluated even at the mirror. Appendix A demonstrates that (12) recovers the
initial field distribution when evaluated on the mirror surface, provided the mirror is sufficiently
far away.
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Fig. 4. Field components at z = 0 for the Gaussian beam from Fig. 2 focused with f /(2w) =

0.5 (N A = 0.8). The fields are computed in the plane z = 0. Each box has dimensions
4λ × 4λ, where λ = 2π/k, and E0 denotes the maximum value of Ex .

Since the formula matches the boundary condition at the mirror and obeys Maxwell’s equations
exactly, Ignatovsky’s formula indisputably describes the field produced when a linearly polarized
collimated beam reflects on axis from an ideal parabolic mirror. Of course, other uniform
polarization states can be considered by superimposing (with appropriate phase) a similar
solution initially polarized along the y direction. We do not address nonuniform polarization
states such as radially [37] or azimuthally polarized beams.

5. Analytic paraxial models

For applications such as simulating laser-matter interactions in an intense tightly focused beam,
ideally one would have available a closed analytic formula that adequately represents the field
vector components. In this case, one could avoid evaluating the integrals in (16) at each location
within the interaction region. The success of paraxial scalar diffraction theory has inspired efforts
to formulate corresponding vector-field representations.

For a monochromatic beam, the individual field components obey the Scalar Helmholtz equa-
tion: ∇2U+k2U = 0, where U stands for Ex , Ey , Ez , Bx , By , or Bz . If we are interested in a beam-
like solution that travels in the z direction, we are encouraged to write U = U0ψ(x , y, z)ei (kz−ωt ) ,
whereupon the Helmholtz equation becomes ∂2

∂x2 +
∂2

∂y2 +
�
�
�∂2

∂z2 + 2ik
∂

∂z

 ψ = 0 (18)

In the paraxial limit, the second derivative on z may be neglected, and the well-known lowest-
order-mode Gaussian-beam solution is then

ψ(0) =
z0

Z
exp

(
−

k
2
ρ2

Z

)
, (19)

where Z = z0 + iz, ρ2 = x2 + y2, and the Rayleigh range is z0 = kw2
0/2. One might choose to

set Ex = U, but care must be taken to find associated field components such that Maxwell’s
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equations are satisfied. By direct substitution into Maxwell’s equations, Erikson and Singh [7]
found corresponding functions for Ey , Ez , Bx , By , and Bz to an accuracy commensurate with
the paraxial approximation. Their fields for the lowest-order Gaussian mode are

ESingh = E0

[
x̂ +

xy
2Z2 ŷ − i

x
Z

ẑ
]
ψ(0)ei (kz−ωt ) (20)

BSingh =
E0

c

[ xy
2Z2 x̂ + ŷ − i

y
Z

ẑ
]
ψ(0)ei (kz−ωt ) (21)

They also found vector representations for all paraxial higher-order modes.
Alternatively, one can work with the vector potential A whose components also obey the

scalar Helmholtz equation. Consistent with the Lorenz gauge, Maxwell-respecting fields can be
obtained from B = ∇ × A and E = ic∇(∇ · A)/k + ickA. Conveniently, one may choose Ay = 0,
Az = 0, and Ax = A0ψei (kz−ωt ) and obtain a Maxwell-respecting field (within the paraxial
limit). In this case Bx = 0, while in general Ex , Ey , Ez , 0. We will comment on this asymmetry
between the E-field and B-field in the next section.

Lax et al. [1] proposed an iterative scheme whereby an initially paraxial scalar solution could
be refined in an effort to accommodate tighter focusing geometries. In this case, (18) is written
as (

∂2

∂x2 +
∂2

∂y2 + 2ik
∂

∂z

)
ψrevised = −

∂2ψtrial

∂z2 (22)

The paraxial solution (19) fulfills (22) when ψtrial = 0. Davis [2] worked out an analytic expression
for the first correction (when ψtrial is set to (19)), Barton and Alexander [5] the second, and
Salamin [10] higher-order corrections. After one iterative refinement on Ax , the electric and
magnetic fields work out to be

EDavis = E0

[(
1 +

x2

Z2 −
k ρ4

8Z3

)
x̂ +

xy
Z2 ŷ − i

(
x
Z
−

x
kZ2 +

xρ2

Z3 −
k xρ4

8Z4

)
ẑ
]
ψ(0)ei (kz−ωt ) (23)

BDavis =
E0

c

[(
1 +

ρ2

2Z2 −
k ρ4

8Z3

)
ŷ − i

(
y
Z

+
y

kZ2 +
yρ2

2Z3 −
kyρ4

8Z4

)
ẑ
]
ψ(0)ei (kz−ωt ) (24)

It is natural to compare this field distribution with Ignatovsky diffraction both within and
outside of the focus. Unfortunately, in all orders of the Lax expansion there appear terms that
diverge in the far field. The diverging terms are those with k in the numerator. For example,
the x-component of (23) in the far field becomes Ex → E0[1 − ρ2/z2 − ik ρ4/8z3]. Note the
problematic scaling of the last term with distance z: The angular beam width (as well as the
beam power) continually grows with distance [14], making any comparison with the far-field
meaningless. One cannot, for example, compare the fields at the mirror surface, the starting point
for Ignatovsky diffraction. This divergence, first noticed in 2007 [49], calls into question any
program based on the Lax iterative scheme. The paraxial solution (19), which seeds the iteration,
is valid everywhere; why then should the Lax expansion be trusted in the focal region if it fails in
the far field? Nevertheless, as we shall see, these refinements can modestly improve agreement
with Ignatovsky diffraction within the focal region.

The divergent behavior of the Lax expansion can be understood in the following context:
The paraxial approximation neglects the right-hand term in (22), which corresponds to the
highest-order derivative term in z. This changes the structure from an elliptic differential equation
to a parabolic differential equation. Furthermore, the number of required boundary conditions
goes from two to one. Hence, any further iteration of (22) will yield a singular perturbation
expansion [50].
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6. Symmetry considerations

As was pointed out by Barton and Alexander [5], setting Ay = 0, Az = 0, and Ax = A0ψei (kz−ωt )

leads to an asymmetry between the E and B fields, as manifest by the lack of an x component in
(24). They produced two additional fields from Eqs. (23) and (24) via the assignments

E′ (x , y) /c = x̂By (−y, x) − ŷBx (−y, x) + ẑBz (−y, x)
cB′ (x , y) = −x̂Ey (y, −x) + ŷEx (y, −x) + ẑEz (y, −x)

(25)

These fields were then averaged with the originals to produce fields that posses the symmetry
outlined in connection with (8). To the same order as the Davis model, the Barton model gives

EBarton = E0

[(
1 +

ρ2 + 2x2

4Z2 −
k ρ4

8Z3 + αx

)
x̂ +

( xy
2Z2 + αy

)
ŷ

−i
(

x
Z

+
3xρ2

4Z3 −
k xρ4

8Z4 + αz

)
ẑ
]
ψ(0)ei (kz−ωt )

(26)

BBarton =
E0

c

[( xy
2Z2 + βx

)
x̂ +

(
1 +

ρ2 + 2y2

4Z2 −
k ρ4

8Z3 + βy

)
ŷ

−i
(

y
Z

+
3yρ2

4Z3 −
kyρ4

8Z4 + βz

)
ẑ
]
ψ(0)ei (kz−ωt )

(27)

The terms αx , αy , αz , βx , βy , βz represent second-order refinements worked out by Barton and
Alexander:

αx =
ρ4 + 4x2ρ2

8Z4 −
3k ρ6 + 2k x2ρ4

32Z5 +
k2ρ8

128Z6

αy =
xyρ2

2Z4 −
k xyρ6

16Z5

αz =
5xρ4

8Z5 −
5k xρ6

32Z6 +
k2xρ8

128Z7

βx = αy

βy =
ρ4 + 4y2ρ2

8Z4 −
3k ρ6 + 2ky2ρ4

32Z5 +
k2ρ8

128Z6

βz =
5yρ4

8Z5 −
5kyρ6

32Z6 +
k2yρ8

128Z7

(28)

The terms with k in the numerator diverge in the far field.
Interestingly, the symmetrizing procedure cuts the strength of the y-component of the electric

field by a factor of two (and its power by four times). Note the leading terms in the formula by
Barton and Alexander agree with the model of Erikson and Singh, Eqs. (20) and (21). In contrast,
solutions lacking symmetry such as Eqs. (23) and (24) disagree with Eqs. (20) and (21) and,
as we shall see, with the Ignatovsky result also. The divergence issues associated with the Lax
expansion are not mitigated by the symmetrization procedure.

The far-field radiation pattern of an electric dipole (near the equator) shares the asymmetric
field-component ratios exhibited by Eqs. (23) and (24) to leading order, where the relative
strength of the Ey is double that of (20). By superimposing the emission of an oscillating electric
dipole and an orthogonal oscillating magnetic dipole, one obtains (to leading order) the symmetry
of Eqs. (20) and (21) [51]. Gonoskov and coworkers [52] examined the collimated beam obtained
when placing a radiating dipole at the focus of a parabolic mirror. They suggested that if such a
beam could be imitated and then focused by a parabolic mirror, one could obtain a sharper focus.
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7. Comparisons

To allow for visual comparison of the different models discussed above, we provide animations
showing electric field components for a focused x-polarized Gaussian beam according to the
various model. Figure 5 shows an animation for the Ignatovsky model. The top three cells plot
Ex , Ey , and Ez in an x-y plane with fixed z. The local phase of the field is indicated by color,
while the amplitude is indicated by the brightness of the color. The three lower frames plot
the absolute values of these fields along the dashed lines shown in the top three cells. As the
animation progresses, z is varied from zero to 100λ, where λ = 2π/k, in an accelerated manner
so that the steps in z increase while approaching the far field. The axes for each component are
continuously re-scaled to a maximum amplitude of one, with the scaling indicated in the title
of each frame. This scaling allows the relatively weak y and z components to be plotted on a
similar scale as the x component for clarity. As z increases, the wavefronts curve. This curvature
leads to rapid radial phase variations when plotting the field in a plane with a fixed z. To remove
this rapid phase variation, the phase (displayed by the colors in the images) are plotted relative to
the phase of the x-component of the field: Ex = |Ex |eiφx . Thus, the plot of Ex is just its absolute
value. This method maps some of the phase variations of Ex observed in its ring structure onto
the phase of the plots of Ey and Ez . This artifact is apparent at z = 0, but quickly fades for larger
z. For these animations we model focusing with f /(2w) = 1 (N A = 0.47). For larger values of
f /(2w) , this ratio is similar to the f-number.
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Fig. 5. Animation showing field components for Gaussian beam focused with f /(2w) = 1
(N A = 0.47) computed with the Ignatovsky model (see Visualization 1). The dashed lines in
the upper frames show the locations of line-outs that are plotted beneath. The ρ dimensions
on the lower graphs correspond to the ρ dimensions of the square images above. The phase
displayed by the colors in the images is relative to the phase of the x-component of the field:
Ex = |Ex |eiφx . E0 denotes the maximum value of Ex at z = 0.

Figures 6, 7 and 8 show animations of Singh, Davis, and Barton models, respectively. For
these figures, the line-out from the Ignatovsky model shown in Fig. 5 is repeated to allow for easy
comparison. The models were each fit to the x component of the Ignatovsky result in the focus
by adjusting z0 and E0. Note that in the Ignatovsky formula, E0 represents the field amplitude
at the center of the focusing mirror, whereas in the other models E0 represents the field in the
center of the focus.
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Fig. 6. Animation showing the Singh model for the same parameters used in Fig. 5 (Visu-
alization 2). For comparison, the Ignatovsky result from Fig. 5 is also plotted in the lower
frames.
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Fig. 7. Animation similar to Fig. 6 using the Davis model (Visualization 3).

Discrepancies between all of the models and Ignatovsky diffraction are apparent. The relatively
simple Singh model matches the Ignatovsky result quite well, with only modest differences
everywhere and no divergence issues. In the Davis model, the y components of the electric field
is off by a factor of two. The Barton model matches the Ignatovsky result slightly better than the
Singh or Davis model in the focus near z = 0. However, both the Davis and Barton models are
seen to wildly diverge in the far field. In contrast, the Singh model tracks the field reasonably
well both inside and outside of the focus.

For this comparison we have chosen a relatively wide-angle focusing geometry (∼ f/1) to

                                                                                                  Vol. 25, No. 13 | 26 Jun 2017 | OPTICS EXPRESS 14002 

http://www.opticsexpress.org/viewmedia.cfm?URI=oe-25-13-13990-2
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-25-13-13990-2
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-25-13-13990-3


–2 20–2 20 –2 20

phase

a
m
p
.

Fig. 8. Animation similar to Fig. 6 using the Barton model (Visualization 4).

emphasize the differences between the models. For the more common cases, where the focusing
is not so harsh, the symmetrized models agree quite well near the focus, and the divergence issue
for the Barton model is postponed until larger z. The relatively good agreement between the
Singh model and the Ignatovsky result suggests particular utility. The Singh model provides a
simple analytic form with no divergence issues and good accuracy, at least for the looser focal
geometries commonly used in experiments.

8. Other models

We comment on several related vector models of a laser focus: Refs. [6, 8, 11, 18]. These models
are somewhat akin to the work of Ignatovsky in that their formulas involve one-dimensional
integrals similar to (16). Thus, there is essentially no computational advantage to using this type
of model over the Ignatovsky result. Of the models mentioned, that of Quesnel and Mora [18]
obeys the symmetry of (25) and has the best chance of agreement with Ignatovsky diffraction for
a uniformly polarized Gaussian beam incident on a parabolic mirror. Sepke et al. employ the
same symmetrized model but with the options of super Gaussian and annular focal shapes. The
vector fields for the Quesnel model are given by

EQuesnel = E0e−iωt

[
x̂
(
Ĩ1 +

x2 − y2

k ρ3 Ĩ2 +
y2

ρ2 Ĩ3

)
+ ŷ

xy
ρ2

(
2

k ρ
Ĩ2 − Ĩ3

)
− i ẑ

x
ρ

Ĩ4

]
(29)

BQuesnel =
E0

c
e−iωt

[
x̂

xy
ρ2

(
2

k ρ
Ĩ2 − Ĩ3

)
+ ŷ

(
Ĩ1 +

x2 − y2

k ρ3 Ĩ2 +
x2

ρ2 Ĩ3

)
− i ẑ

y
ρ

Ĩ4

]
(30)

where

Ĩ1 = a
∫ 1

0
e−ab

2
(
1 +

√
1 − b2

)
eikz

√
1−b2

J0 (k ρb) bdb

Ĩ2 = a
∫ 1

0
e−ab

2 1
√

1 − b2
eikz

√
1−b2

J1 (k ρb) b2db

Ĩ3 = a
∫ 1

0
e−ab

2 1
√

1 − b2
eikz

√
1−b2

J0 (k ρb) b3db

(31)
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Ĩ4 = a
∫ 1

0
e−ab

2
(
1 +

1
√

1 − b2

)
eikz

√
1−b2

J1 (k ρb) b2db (32)

with a = (kw0/2)2.
Figure 9 compares the Quesnel model to Ignatovsky diffraction. Note that the y-component of

the field differs from the Ignatovsky by approximately a factor of two near z = 0, but approaches
the Ignatovsky result at large z. This does not imply that the Quesnel model disrespects Maxwell’s
equations, only that it is associated with a different field than is created by a uniformly-polarized
Gaussian beam reflecting on-axis from a paraboloid. Owing to the unique spatial field distribution,
the y-component shows some high frequency oscillations with z in the amplitude in the transition
for the focal region to the far field. Quesnel and Mora also offer an analytic approximation to
their formula [18], which is not analyzed here.
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Fig. 9. Animation similar to Fig. 6 using the Quesnel model (Visualization 5).

9. Discussion

In this article we considered a variety of vector laser-focus models in wide use and compared them
to the exact result for a collimated linearly-polarized beam focused by an on-axis parabolic mirror.
Of the analytic models, we endorse the Singh model as a convenient analytic approximation
that closely mimics Ignatovsky’s integral formulas down to f/2 focusing. The remarkably good
agreement for this looser focusing geometry is shown in Fig. 10. At this level of focusing, there
is little benefit to using the refinements in the Barton model, even in the vicinity of the focus,
and the Singh model completely avoids divergence issues. If accurate results are required for
tighter focusing, it may be best to employ the more computationally-intensive Ignatovsky result
directly. Informal benchmarks indicate that using an analytic model such as the Singh formulas
is several thousand times faster than evaluating the full Ignatovsky integral.

A common stumbling block in many of the models is that they start from an assumed field
distribution in the focal region and develop vector fields, consistent with Maxwell’s equations, in
the surrounding region. However, no experimenter directly controls the field in the focus, and the
ability to directly measure vector components of the fields in an intense focus is limited. Instead,
experimenters typically diagnose and manipulate their incident beam at the focusing optic.
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Fig. 10. Animation of the Singh model similar to Fig. 6 using f /(2w) = 2 (Visualization 6).

In principle, one could use approaches such as the Quesnel model for the purpose of calculating
the field distribution required at a focusing optic to produce a desired field distribution at the
focus. A regular profile in the focus tends to correspond to a more complicated distribution
outside of the focus, and vice versa, as evidenced by Figs. 2 and 4.

An additional purpose of this article is to draw the attention, especially among the high-
intensity community, to the Ignatovsky approach to vector diffraction. The Ignatovsky formula
relies on an experimentally relevant boundary condition, and obeys Maxwell’s equations exactly
everywhere in the beam [46,47]. It is applicable as long as the focusing mirror resides effectively
at infinity, which is almost always well fulfilled experimentally (see Appendix A). The work of
Ignatovsky is perhaps under-appreciated since it was published in an obscure journal, Trans-
actions of the Optical Institute of Petrograd, which resides in the collections of the library of
Vavilov State Optical Institute in St. Petersburg, and has not been translated from the original
Russian. In 1942, Ignatovsky and his wife were executed by the Soviets on dubious charges of
espionage. His sad tale is related in The Gulag Archipelago by literary Nobel laureate Aleksandr
Solzhenitsyn. Ignatovsky was “rehabilitated” posthumously in 1955 [53].

We presented a self-contained streamlined derivation of Ignatovsky diffraction for a uniformly
polarized collimated beam incident on a parabolic mirror. Some authors have referred to Igna-
tovsky’s work as an application of “Debye diffraction” for the fact that it involves convergence
of a spherical wave and makes use of the Debye limit of Green’s theorem, referred to as the
Debye solution [46, 47]. However, Ignatovsky deserves considerable credit for being the first to
write down the relevant Maxwell-respecting vector fields set up by an experimentally relevant
boundary condition, namely a collimated uniformly polarized beam incident on a mirror or lens.
Ignatovsky correctly determined the distinct apodizing functions for each of the vector field
components before computing their diffracted forms in the vicinity of a focus. We advocate using
the term “Ignatovsky vector” to refer to p̂(E ) or p̂(B) in the generic problem of determining the
vector field components of a beam acted upon by a focusing optic.

Ignatovsky’s result has appeared in microscopy literature a number of times: In 1959, Wolf and
Richards [30, 31] produced the first numeric calculations of the vector fields in the focus arising
from a plane wave apertured by a finite-diameter lens using the Ignatovsky formula. Sheppard
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et al. [33] examined the problem of vector diffraction by a lens and by a parabolic mirror in
1977, starting from the Stratton-Chu diffraction formula [42]. The analysis for a parabola was
repeated by Barakat with a central obscuration [34, 35]. Varga and Török [36] revisited the
parabolic-mirror derivation using a different initial field distribution, insisting that reflection
from the mirror produces a different vector field than determined by other authors and ourselves.
In 2001, Lieb and Meixner [37] made extensive comparisons between the fields produced by a
parabolic mirror and by an objective lens. They also explored focusing of an axially polarized
field distribution.

A. Recovery of the field at the mirror

In this appendix, we demonstrate that Ignatovsky field expressions evaluated at the mirror
surface recovers the incident field. With (1) installed for z, after some manipulation, (15) may be
expressed as

Emirror = −i
ke

i

(
−

kρ2
4 f −ωt

)
2π f

∞∫
−∞

∞∫
−∞

dx′dy′

1 +
ρ′2

4 f 2

Eenv
(
x′ , y′

)
p̂(E ) (

x′ , y′
)

e
i k

2 f
(x′−x )2+(y′−y)2

1+
ρ′2

4 f 2 (33)

The integrand is highly oscillatory except in the neighborhood x′ = x and y′ = y, which solely
contributes to the integral. Within this neighborhood, the functions Eenv (x′ , y′) and p̂(E ) (x′ , y′),
as well as the function 1 +

ρ′2

4 f 2 , are all slowly varying (by assumption). We may therefore install
unprimed variables into each of these. (33) then becomes

Emirror → e
i

(
−

k ρ2
4 f −ωt

)
Eenv (x , y) p̂(E ) (x , y)

 −ik

2π f
(
1 +

ρ2

4 f 2

) ∞∫
−∞

∞∫
−∞

dx′dy′e
i k

2 f
(x′−x )2+(y′−y)2(

1+
ρ2

4 f 2

) 
(34)

After integration [54], the factor in square brackets works out to be identically one, and (6) is
recovered as anticipated. Numerical computation of (33) is in agreement.

A comment is in order regarding the size of the region surrounding x′ = x and y′ = y, over
which Eenv (x′ , y′) and the other functions in (33) are assumed not to vary. The dimension of the
neighborhood is characterized by (x′ − x)2 + (y′ − y)2

∼ λ f . For simplicity, we may write

∆θ ∼
√
λ/ f (35)

where ∆θ =
√
∆x2 + ∆y2/ f and ∆x, and ∆y are lateral displacements in the incident beam from

x′ = x and y′ = y over which Eenv (x′ , y′), p̂(E ) (x′ , y′), and 1 +
ρ′2

4 f 2 should remain essentially
constant.

The angular extent of acceptable variations, according to (35), shrinks with increasing mirror
focal length f . As an example, if f = 10 cm and λ = 0.8 µm, then the field at the mirror should
vary only over angular displacements well exceeding ∆θ ∼ 3 mrad, which corresponds to a lateral
displacement of ∆x, ∆y ∼ 0.3 mm at the mirror. For a typical beam, which may be centimeters
across, this condition is easily fulfilled. While the Ignatovsky formulas are exact solutions to
Maxwell’s equations, they correspond to an initial field distribution defined on an ideal mirror
surface situated at infinity. The use of the Debye limit means that the solution is approximate to
the extent that the mirror is positioned at a finite distance.
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