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Robustness of the cluster expansion: Assessing the roles of relaxation and numerical error
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Cluster expansion (CE) is effective in modeling the stability of metallic alloys, but sometimes cluster
expansions fail. Failures are often attributed to atomic relaxation in the DFT-calculated data, but there is no
metric for quantifying the degree of relaxation. Additionally, numerical errors can also be responsible for slow
CE convergence. We studied over one hundred different Hamiltonians and identified a heuristic, based on a
normalized mean-squared displacement of atomic positions in a crystal, to determine if the effects of relaxation
in CE data are too severe to build a reliable CE model. Using this heuristic, CE practitioners can determine
a priori whether or not an alloy system can be reliably expanded in the cluster basis. We also examined the
error distributions of the fitting data. We find no clear relationship between the type of error distribution and CE
prediction ability, but there are clear correlations between CE formalism reliability, model complexity, and the
number of significant terms in the model. Our results show that the size of the errors is much more important
than their distribution.
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I. INTRODUCTION

Increases in computational power and algorithmic advance-
ments are making many computational materials problems
more tractable. For example, density functional theory (DFT)
is used to assess the stability of potential metal alloys with high
accuracy. However, the computational costs of DFT prevents
exhaustive exploration of all possible configurations of a
system. In certain cases, one can map first-principles results
on to a faster Hamiltonian, the cluster expansion (CE) [1–3].
Over the past 30 years, CE has been used in combination with
first-principles calculations to predict the stability of metal
alloys [4–16], to study the stability of oxides [17–21], and to
model interaction and ordering phenomena at metal surfaces
[22–26]. Numerical error and relaxation effects decrease the
predictive power of CE models. The aim of this paper is to
demonstrate the effects of both and to provide a heuristic so
one can know when a reliable CE model can be expected for a
particular material system.

CE treats alloys as a purely configurational problem, i.e.,
a problem of decorating a fixed lattice with the alloying
elements [1,2]. However, CE models are usually trained with
data taken from “relaxed” first-principles calculations where
the individual atoms assume positions that minimize the total
energy, displaced from ideal lattice positions. Unfortunately,
cluster expansions of systems with larger lattice relaxation
converge more slowly than cluster expansions for unrelaxed
systems [27]. In fact, CEs with increased relaxation may fail
to converge altogether. No rigorous description of conditions
for when the CE breakdown occurs exists in the CE literature.

A persistent question in the CE community regards the
impact of relaxation on the accuracy of the cluster expansion.
Some proponents of CE argue that the CE formalism holds
even when the training structures are relaxed because there is
a one-to-one correspondence in configurational space between
relaxed and unrelaxed structures. This is an assumption.
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Independent of whether or not it is true, the relevant issue
is not the correspondence but the sparsity of the expansion. In
this paper, we demonstrate a relationship between relaxation
and sparsity in the CE model. As relaxation increases, CE
sparsity and the accuracy of CE predictions decreases.

In addition to the effects of relaxation, we also examine the
impact of numerical error on the reliability of the CE fits. There
are several sources of numerical error: approximations to the
physics of the model, the number of k points, the smearing
method, basis set sizes and types, etc. Most previous studies
[28–30] only examine the effect of Gaussian errors on the
CE model, but Arnold et al. [28] also investigated systematic
error (round-off and saturation error). They showed that, above
a certain threshold, the CE model fails to recover the correct
answer, that is, the CE model started to incorporate spurious
terms (i.e., sparsity was reduced). A primary question that we
seek to answer is whether the shape of the error distribution
impacts predictive performance of a CE model.

In this study, we quantify the effects of: (1) relaxation, by
comparing CE fits for relaxed and unrelaxed data sets and (2)
numerical error, by adding different error distributions (i.e.,
Gaussian, skewed, etc.) to ideal CE models. We study more
than one hundred Hamiltonians ranging from very simple pair
potentials to first-principles DFT Hamiltonians. We present a
heuristic for judging the quality of the CE fits. We find that
a small mean-squared displacement is indicative of a good
CE model. In agreement with past studies, we show that the
predictive power of CE is lowered when the level of error is
increased. We find that there is no clear correlation between
the shape of the error profile and the CE predictive power.
It is possible to decide whether the computational cost of
generating CE fitting data is worthwhile by examining the
degree of relaxation in a smaller set of 50–150 structures.

II. RELAXATION

Relaxation is distinct from numerical error—it is not an
error—but it has a similar negative effect. When relaxations
are significant, it is less likely that a reliable CE model
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(a) (b)

FIG. 1. Symmetry-allowed distortions for two different unit cells.
The atomic positions of the cell on the left do not have any
symmetry-allowed degrees of freedom, but the aspect ratio of the
unit cell is allowed to change. For the unit cell on the right, the
horizontal positions of the atoms in the middle layer may change
without destroying the symmetry. (The unit cell aspect ratio may also
change.)

exists. Relaxation is a systematic form of distortion, the local
adjustment of atomic positions to accommodate atoms of
different sizes. Atoms “relax” away from ideal lattice sites
to reduce the energy, with larger atoms taking up more room,
and smaller atoms giving up volume. The type of relaxations
(i.e., the distortions that are possible) for a particular unit
cell are limited by the symmetry of the initially undistorted
case, as shown in Fig. 1. In the rectangular case (left),
the unit cell aspect ratio may change without changing the
initial rectangular symmetry. At the same time, the position
of the blue atom is not allowed to change because doing
so would destroy rectangular symmetry. In contrast, the two
blue atoms in the similar structure shown in the right panel
of the figure can move horizontally without reducing the
symmetry.

Conceptually, the cluster expansion is a technique that
describes the local environment around an atom and then
sums up all the “atomic energies” (environments in a unit
cell) to determine a total energy for the unit cell. For the
cluster expansion model to be sparse—to be a predictive model
with few parameters—it relies on the premise that any specific
local neighborhood contributes the same atomic energy to the
total energy regardless of the crystal in which it is embedded.
For example, the top row of Fig. 2 shows the same local
environment (denoted by the hexagon around the central blue
atom) embedded in two distinct crystals. If the contribution
of this local environment to the total energy is the same in
both cases, then the cluster expansion of the energy will be
sparse.

The effect of relaxation on the sparsity becomes clear in
the bottom row of Fig. 2. In the left-hand case [panel (a)],
the crystal relaxes dramatically and the central blue atom is
now fourfold coordinated entirely by red atoms. By contrast,
in the right-hand case [panel (b)], a collapse of the layers
is not possible and the blue atoms are allowed by symmetry
to move closer to each other. From the point of view of the
cluster expansion, the local environments of the central blue
atom are the same for both cases. This fact, that two different
relaxed local environments have identical descriptions in the
cluster expansion basis, leads to a slow convergence of cluster
expansion models. The problem is severe when the atomic
mismatch is large and relaxations are significant (i.e., when
atoms move far from the ideal lattice positions.)

(a) (b)

(a) (b)

FIG. 2. Relaxation scheme. The top images show the original
unrelaxed configurations, while the bottom figures show the relaxed
configuration. The left images (a) shows the relaxation where the
hexagon is contracted as shown by the black arrows in the bottom
left figure. The relaxation in the right images (b) is restricted to
displacement of the blue atoms as shown by the black arrows in the
bottom right figure.

A. Methodology

We investigated the predictive power of cluster expansions
using data from more than one hundred Hamiltonians gen-
erated from density functional theory (DFT), the embedded
atom method, Lennard-Jones potential, and Stillinger-Weber
potential. To investigate the effects of relaxation, we examined
different metrics to measure the degree of atomic relaxation in
a crystal configuration.

1. Hamiltonians

First-principles DFT calculations have been used to simu-
late metal alloys and for building cluster expansion models
[7,9–14]. However, DFT calculations are too expensive to
extensively examine the relaxation in many different systems
(lattice mismatch). Thus, we examine other methods such as
the embedded atom method (EAM) which is a multibody
potential. The EAM potential is a semiempirical potential
derived from first-principles calculations. EAM potentials
of metal alloys such as Ni-Cu, Ni-Al, and Cu-Al have
been parameterized from DFT calculations and validated to
reproduce their experimental properties such as bulk modulus,
elastic constants, lattice constants, etc. [31]. EAM potentials
are computationally cheaper, allowing us to explore the effects
of relaxation for large training sets; however, we are limited
by the number of EAM potentials available.

Therefore, we also selected two classical potentials,
Lennard-Jones (LJ) and Stillinger-Weber (SW), to adequately
examine various degrees of relaxation, which can be varied
using free parameters in each model. The Lennard-Jones
potential is a pairwise potential. Using the LJ potential, we
can model a binary (AxB1−x) alloy with different lattice
mismatch and interaction strength between the A and B atoms
by adjusting the σ parameter in the model. Additionally,
we also examined the Stillinger-Weber potential which has
a pair term and an angular (three-body) term. In attempting
to determine the conditions under which the CE formalism
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breaks down, we implemented a set of parameters in the SW
potential where the angular dependent term could be turned
on/off using the λ coefficient [32]. For example, depending on
the strength of λ, the local atomic environment in a relaxed,
two-dimensional structure switches between three-, four- and
six-fold coordination. When the system relaxes to a different
coordination, the CE fits would no longer be valid or at least
not sparse.

All first-principles calculations were performed using the
Vienna ab initio simulation package (VASP) [33–36]. We used
the projector-augmented-wave (PAW) [37] potential and the
exchange-correlation functional proposed by Perdew, Burke,
and Ernzerhof (PBE) [38]. In all calculations, we used the
default settings implied by the high-precision option of the
code. Equivalent k-point meshes were used for Brillioun zone
integration to reduce numerical errors [39]. We used 1728 (123)
k points for the pure element structures and an equivalent mesh
for the binary alloy configurations. Each structure was allowed
to fully relax (atomic, cell shape, and cell volume).

Relaxation was carried out using molecular dynamics
simulations for EAM, LJ, and SW potentials. Two molecular
dynamics packages were used to study the relaxation: GULP

[40,41] and LAMMPS [42]. Details for the LJ, SW, and EAM
potentials and the DFT calculations can be found in the
Supplemental Material [43].

2. Cluster expansion setup

The universal cluster expansion (UNCLE) software [44–46]
was used to generate 1000 derivative superstructures each
of face-centered cubic (FCC), body-centered cubic (BCC),
and hexagonal closed-packed (HCP) lattice. For the DFT
calculations, we used only 500 structures instead of 1000
due to the computational cost. We generated a set of 1100
clusters, ranging from two-body up to six-body interactions.
100 independent CE fits were performed for each system
(Hamiltonian and lattice).

We briefly discuss some important details about cluster
expansion here, but for a more complete description, see the
Supplemental Material [43] and past works [1,4,10,13,47–50].
Cluster expansion is a generalized Ising model with many-
body interactions. The cluster expansion formalism allows one
to map a physical property, such as E, to a configuration (�σ ):

ECE
i = �iJi�i(�σ ), (1)

where E is energy, � is the correlation matrix (basis), and J

is coefficient or effective cluster interaction (ECI).
When constructing a CE model, we are solving for the

effective cluster interactions or J s. We used the compressive
sensing (CS) framework to solve for these coefficients [13,50].
The key assumption in compressive sensing is that the solution
vector has few nonzero components, i.e., the solution is sparse
[51,52]. The CS framework guarantees that the sparse solution
can be recovered from a limited number of DFT energies.
Using the J s, we can build a CE model to interpolate the
configuration space.

Each CE fit used a random selection of 25% of the data
for training and 75% for validation. Results were averaged
over the 100 CE fits with error bars computed from the
standard deviation. We defined the percent error as a ratio

of the prediction root mean squared error (RMS) over the
standard deviation of the input energies, percent error =
RMS/STD(Einput) × 100%. This definition of percent error
allowed us to consistently compare different systems.

3. Relaxation metrics

Currently, there is no standard measure to indicate the
degree of relaxation. We evaluated different metrics as a mea-
sure of the relaxation: normalized mean-squared displacement,
Ackland’s order parameter [53], difference in Steinhardt order
parameter (D6) [54], SOAP [55], and the centrosymmetry
parameter [56]. We compared the metrics across various
Hamiltonians to find a criterion that is independent of the
potentials and systems [43]. We found that none of these met-
rics are descriptive/general enough except for the normalized
mean-squared displacement.

4. Normalized mean-squared displacement (NMSD)

To measure the relaxation of each structure/configuration,
we used the mean-squared displacement (MSD) to measure the
displacement of an atom from its reference position, i.e., the
unrelaxed atomic position. The MSD metric is implemented
in the LAMMPS software [42], which also incorporates the peri-
odic boundary conditions to properly account for displacement
across a unit cell boundary. The MSD is the total squared
displacement averaged over all atoms in the crystal:

MSD = 1

Natom

∑

atom

∑

X=x,y,z

(X[t] − X[0])2, (2)

where X represents the Cartesian components of each atom
position, t is the final relaxed configuration, and 0 is the
initial unrelaxed configuration. Additionally, we defined a
normalized mean-square displacement (NMSD) percent:

NMSD = MSD

V 2/3
× 100% (3)

which is the ratio of MSD to volume of the system. This allows
for a relaxation comparison parameter that is independent of
the overall scale.

B. Results and discussions

To explore the effects of relaxation on CE predictability,
we examine relaxation in various systems from very high
accuracy (DFT) to very simple, tunable systems (LJ and
SW potentials). We examine more than one hundred different
Hamiltonians and we find several common trends among the
different systems.

In most cases, we find that the relaxed CE fits are worse
(higher prediction error and higher number of coefficients)
than the unrelaxed ones. For example, Fig. 3 shows the cluster
expansion fitting for unrelaxed and relaxed data sets of Ni-Cu
alloy system using DFT and EAM with two different primitive
lattices, FCC and BCC. Because Ni-Cu alloys are naturally
FCC-like and the lattice mismatch is small, the training
structures for the FCC-based training structures have small
relaxations, whereas BCC-based training structures have large
relaxations. The contrast between the two cases demonstrates
the effect of atomic relaxations. As Fig. 3 shows, Ni-Cu alloy
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FIG. 3. Cluster expansion fits for Ni-Cu alloy using DFT or EAM
potential. Each bar represents the average percent error and error bar
(standard deviations) for 100 independent CE fits. The blue bars
represent the unrelaxed CE fits, while the red bars represent the
relaxed CE fits. The colored number represents the average number
of coefficients used in the CE models. When the configurations are
relaxed, we find that the CE fits are often worse (higher prediction
error and higher number of J s) than the unrelaxed system. However,
we show that in one case (Ni-Cu EAM) the unrelaxed and relaxed CE
fits are identical (same error and same number of coefficients) and
this is due to a small relaxation.

fitting for a FCC lattice is below 10% error, while BCC
fitting result in more J s and higher percent error (above 10%)
[57]. We find similar results in the relaxation of Ni-Cu alloy
using first-principles DFT and EAM potential. The difference
between relaxed and unrelaxed CE fits are negligible when
relaxations are small. This is shown in Fig. 3 for the relaxation
of FCC superstructures using a Ni-Cu EAM potential.

Figure 3 shows that relaxation is often associated with
reduced sparsity (increased cardinality of J s) [58]. One
possible implication is that a number of coefficients (J ) could
be used to evaluate the predictive performance of the CE fits.
The number of coefficients used in the fits (such as in Fig. 3)
is a simple way to determine whether or not a CE fit can be
trusted. Figures 4(b) and 4(f) show similar clusters across the
100 independent CE fittings; thus, vertical lines indicate the
presence of the same cluster across all CE fits. When the fit is
good, only a small subset of clusters is needed [Fig. 4(b)]. On
the other hand, Fig. 4(f) shows some common clusters in all of
the CE fits with several additional clusters. Figure 5(a) shows
the correlation of the percent error with the number of terms
in the expansion. We find that as the number of coefficients
increases the percent error increases. However, this is not a
sufficient metric as shown in Fig. 5(a) where the number of
coefficient varies a lot. Nonetheless, the number of coefficients
may be used as a general, quick test.

The degree of relaxation is crucial to define whether or not
the CE model is accurate or not. However, there is no standard
for when cluster expansion fails due to relaxation. Thus far,
we have made some remarks about relaxation and CE fits.
But the question of how much relaxation is allowed has not
been addressed. By examining a few metrics: NMSD, SOAP

[55], D6 [54], Ackland [53], and centrosymmetry [56], we
find that there is a relationship between degree of relaxation
and the quality of CE fits. As shown in the Supplemental
Material, we have used these metrics to investigate over
100+ systems (different potentials, lattice mismatches, and
interaction strengths). Here, we present a heuristic to measure
the degree of relaxation based on the NMSD.

In general, cluster expansion will fail when the relaxation is
large. Figure 5(b) shows that a small NMSD weakly correlates
with a small number of coefficients. However, Fig. 6 high-
lights the correlation between degree of relaxation and predic-
tion error. There is a roughly linear relationship between the
degree of relaxation and the CE prediction. We partition the
quality of the CE models into three regions: good (NMSD <

0.1%), maybe (0.1% � NMSD � 1%), and bad (NMSD >

1%). The “maybe” region is the gray area where the CE fit can
be good or bad. This metric provide a heuristic to evaluate the
reliability of the CE models, i.e., any systems that exhibit high
relaxation will fail to provide an accurate CE model.

III. NUMERICAL ERROR

As we have shown in the previous section, greater relax-
ation results in worse CE fitting. In addition to the effects
of relaxation, we now investigate the effects of numerical
error on reliability of CE models. The distinction between
relaxation “error” and numerical error is that the former is
inherent in the data used to train the CE model. Numerical
error can be completely eliminated, in principle. Numerical
error arises from various sources such as the number of
k points, the smearing method, minimum force tolerance,
basis set sizes and types, etc. These errors are not stochastic
errors or measurement errors; they arise from tuning the
numerical methods. We assume that the relaxation-induced
change in energy for each structure is an error term that
the CE fitting algorithm must handle. The collection of
these “errors” from all structures in the alloy system then
form an error profile (or distribution). Using the simulated
relaxation error profiles from the previous section together
with common analytic distributions, we built “toy” CE models
with known coefficients. We then examined whether or not
the shape of the error distribution affects the CE predictive
ability.

A. Methodology

The numerical errors in DFT calculations are largely
understood, but it is difficult to disentangle the effects of
different, individual error sources. Instead of studying the
effects of errors separately, we added different distributions
of error to a “toy” model in order to imitate the aggregate
effects of the numerical error on CE models. Hence, we opt to
simplify the problem by creating a “toy” problem for which the
exact answer is known. To restrict the number of independent
variables, we formulated a “toy” cluster expansion model by
selecting five nonzero values for a subset of the total clusters.
Using this toy CE, we predicted a set of energies y for 2000
known derivative superstructures of an FCC lattice. These y

values are used as the true energies for all subsequent analysis.
We added error to y, chosen from either: (1) “simulated”
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(b) CE fits vs clusters for FCC parent lattice
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(f) CE fits vs clusters for BCC derivative structures
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FIG. 4. CE fitting and relaxation of Ni-Cu alloys (DFT calculations) using FCC derivative superstructures and BCC derivative
superstructures. Shown in Figs. 4(b) and 4(a) are the 100 CE fits and the histogram of the clusters used for the FCC lattices, while plots
4(f) and 4(e) are for the BCC lattice. The errors and coefficients are shown in 4(c) and 4(d) for the FCC structures and in 4(g) and 4(h) for
the BCC lattice. The plot shows that the number of clusters used in fitting is small when cluster expansion fitting is good (error is on average
6.03% for FCC derivative structures). However, the CE fitting of the BCC parent lattice is worse at 16.70% compared to FCC at 6.03%. More
coefficients are used when CE fails. The increased number of J s and error indicate a bad CE fitting model as shown by plots 4(g) and 4(h).
Figure 4(e) shows only a few significant terms with many other clusters used sparingly in the fits.

distributions obtained by computing the difference between
relaxed and unrelaxed energies predicted by either DFT, EAM,
LJ, or SW models (Fig. 7) or (2) common analytic distributions
(Fig. 8).

To generate the simulated distributions, we chose a set of
identical structures and fitted them using a variety of classical

and semiclassical potentials, and quantum mechanical calcu-
lations using VASP. For each of the potentials we selected, we
calculated an unrelaxed total energy y for each structure and
then performed relaxation to determine the lowest energy state
ỹ. The difference between these two energies (�y = ỹ − y)
was considered to be the “relaxation” error.
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FIG. 5. Plot 5(a) displays the CE fitting error vs the number
of coefficients, while plot 5(b) highlights the relationship between
number of coefficients and relaxation. The dashed line approximates
what we consider as the maximum acceptable error for a CE model
(10%). The dashed line in Fig. 5(b) marks the estimated threshold for
acceptable relaxation level. Each symbol represents 100 independent
CE fittings for each Hamiltonian. Higher error correlates with a higher
number of coefficients.

Certain assumptions are usually made about the error in the
signal, namely that it is Gaussian. The original CS paradigm
proves that the �2 error for signal recovery obeys [52]:

||x∗ − x||�2 � C0 · ||x − xS ||/
√

S + C1 · ε, (4)

where ε bounds the amount of error in the data, x∗ is the CS
solution, x is the true solution, and xS is the vector x with all but
the largest S components set to zero. This shows that, at worst,
the error in the recovery is bounded by a term proportional to
the error. For our plots of this error, we first normalized �y

so that ε ≡ normalized(�y) ∈ [0,1] using

ε = y − min(y)

max(y) − min(y)
. (5)

Not surprisingly, the various potentials produced different
error profiles.
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FIG. 6. Relationships between relaxation and CE fitting reveal
a heuristic for determining the quality of a CE model. This graph
shows the CE fitting error vs normalized mean square displacement
(NMSD). Each mark represents 100 individual CE fittings for each
system (potentials and parameters). As the NMSD (relaxation)
increases, the CE fitting error increases for various systems and
potentials. Using the relaxation metric, the quality/ reliability of the
CE fits can be divided into three regions: good, maybe, and bad CE
model. The solid black lines indicates these three areas.

The expectation value of the distributions was set to be
a percentage of the average, unrelaxed energy across all
structures. Thus, “15% error” means that each unrelaxed
energy was changed by adding a randomly drawn value from
a distribution with an expectation value of 15% of the mean
energy. We performed CE fits as a function of the %-error
added (2, 5, 10, and 15%) for each distribution. Although
we only present the 15% error results in the next section, all
results at different error levels can be found in the supporting
information [43]. For each data point, we performed 100
independent CE fits and used the mean and standard deviation
to produce the values and error bars for the plots.

B. Results and discussions

As shown in Fig. 9, the error is weakly uniform across all
(analytic and simulated) distributions, implying that there is
no correlation between specific distribution and error. None
of the normal quantifying descriptions of distribution shape
(e.g., width, skewness, kurtosis, standard deviation, etc.) show
a correlation with the CE prediction error. The error increased
proportionally with the level of error in each system (2, 5, 10,
and 15% error). We therefore turn to the compressive sensing
(CS) formalism for insight.

The theorems of Tao and Candés [51] guarantee that the
solution for an underdetermined CS problem can be recovered
exactly with overwhelming probability provided:

(1) The solution is sparse within the chosen representation
basis.

(2) Sufficient data points, sampled independent and iden-
tically distributed (i.i.d).

(3) The sensing and representation bases are maximally
incoherent.

If all of these conditions are met, we know that CS will pro-
vide a solution that is very close to the true answer. Conversely,
if CS cannot converge to a good solution, it means that one of
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FIG. 7. Distributions from real relaxations using classical and semiclassical potentials, as well as DFT calculations. The distributions are
all normalized to fall within 0 and 1. The widths � were calculated by taking the difference between the 25th and 75th percentiles.
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FIG. 8. The analytic, equal width distributions used for adding error to the toy model CE fit.
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FIG. 9. Comparison of the predictive error in CE fits as the shape
of relaxation error changes. (A) refers to the analytic distribution
while (S) refers to simulated distribution. The fits are ordered
from lowest to highest distribution width. Fits were averaged over
100 randomly selected subsets with 500/2000 data points used
for training; the remaining 1500 were used to verify the model’s
predictions. The black and red colored symbols represent 2% and
15% error levels, respectively. The circles and triangles represent
the analytical and simulated distributions, respectively. Higher error
produces higher prediction errors.

these conditions has been violated. We have control over the
number of training points, and the incoherence of the sensing-
representation bases. However, we cannot control whether
the true physical solution is sparsely represented for relaxed
systems. This suggests a useful connection between the CS
framework and the robustness of CE: if CS cannot reproduce
a good CE fit (quantified below), then sparsity has been lost.

In the CS framework, the foundational assumption is that
of sparsity, meaning that the compressed signal (or cluster
expansion) requires only a few terms to accurately represent
the true signal (physics). Thus, the number of terms recovered
by CS to produce the CE is a good measure of the quality of
the CS fit. This begs the question: Can we use the number
of terms within the CS framework to heuristically predict in
advance whether the CE fit will converge well?

In answering the question of predictability for a good CE
fit, we define three new quantities:

(1) 	: total number of unique clusters used over 100 CE
fits of the same dataset. We also call this the model complexity.

(2) �∈: number of “exceptional” clusters. These are clusters
that show up fewer than 25 times across 100 fits, implying that
they are not responsible for representing any real physics in
the signal, but are rather included because the CE basis is no
longer a sparse representation for the relaxed alloy system.
They are sensitive to the training/fitting structures.

(3) 
: number of significant clusters in the fit; essentially
just the total number of unique clusters minus the number of
“exceptional” clusters, 
 = 	− �∈.

In the relaxation section, we showed that the average
number of coefficient is not sufficient to determine the quality
of the CE model. Here, we decompose the number of J s into
three new quantities to provide additional insights into the

%

FIG. 10. Prediction error over 65% of the structures for the “toy”
cluster expansion (at 15% error added). The systems are ordered by
	, which is the total number of unique clusters used by any of the
100 CE fits for the system. This ordering shows a definite trend with
increasing 	.

reliability of the CE fits. In Fig. 10, we plot the CE error,
ordered by model complexity and show that it reproduces the
trend identified by the number of coefficients (indeed they are
intimately related, 	 being the statistically averaged number
of coefficients across many fits). An ordering by the number
of exceptional clusters �∈ produces an identical trend, showing
that it may also serve to quantify a good fit [43].

As indicated earlier, all these experiments were performed
for a known CE model that had five nonzero terms. Additional
insight is gained by plotting the errors, ordered by 
, the
number of significant clusters (Fig. 11). Figure 11 shows that in
almost all cases, once we remove the exceptional clusters �∈, the
remaining model is almost exactly the known CE model that
we started with. The CS framework provides a rigorous math-
ematical framework for this statement because it guarantees to
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FIG. 11. Prediction error over 65% of the structures for the “toy”
CE model (at 15% error added). The errors are ordered by 
, the
number of significant terms in the expansion. As expected, the values
are close to the known model complexity (5 terms) and the ordering
once more appears random.
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exactly recover the original function with high probability as
long as we have enough measurements and our representation
basis is truly sparse. Once the cluster expansion stops converg-
ing, we lose sparsity and CS fails. This gives us confidence to
use the CS framework as a predictive tool for CE robustness.

Provided the training structures are independent and identi-
cally distributed, we do not necessarily need hundreds of costly
DFT calculations to tell us that the CE will not converge. Using
our toy CE model, we discovered that for all error distributions,
a training set size of 50 data points was sufficient to recover
the actual model complexity (five terms) [43]. For actual
DFT calculations, where relaxation was known to disrupt CE
convergence, we saw a similar trend with about 100 data points
needed to identify whether the CE would converge with more
data or not.

We conclude that CE robustness for relaxed systems can
be predicted with a much smaller number of data points than
is typically needed for a good CE fit (on the order of 5–10%
from our experience) [59]. The proposed heuristic to verify
convergence of the relaxed CE, when trained with a limited
dataset, is to examine the values of 
 and 	 over a large
number of independent fits. If the number of the exceptional
clusters �∈ is significant compared to 
, then it is likely that the
CE will not converge on a larger dataset as shown in Fig. 12.
Figure 13 highlights the CE fitting as a function of training
set size. We observe small relaxation (black curve) correlates
with a small number of coefficients; thus the CE can fit using
a small number of J s even with 5% (25) to 10% (50) of the
structures. On the other hand, red and blue curves, which have
high relaxation, do not converge. By using a small relaxed
dataset (50 to 100 structures), we can predict whether or not
the computational cost of relaxing many structures is fruitful.

IV. CONCLUSIONS

Relaxation and error decrease the reliability of the cluster
expansion fit because the CE model is no longer sparse. Never-

FIG. 12. Plot of predictive error over 65% of the structures for
the “toy” problem (at 15% error added). The systems are ordered by
�∈ the number of clusters that were used less than 25 times across all
100 CE fits. These are considered exceptions to the overall fit for the
system. As for Fig. 10, there is a definite trend toward higher error
for systems with more exceptional clusters.
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FIG. 13. For a reliable CE model, the number of coefficients
converges as a function of the training set size. A total of 500 structure
were available for training. The number of coefficients in a fit and its
error bars give us an indication of the predictive power of CE with
only a small training set. The black curve represents a good CE fit;
only 25 to 50 (or 5 to 10%) of training structures were needed. On
the other hand, the red and blue curves show that CE fails to fit the
data due to a slowly converging expansion. The error bars on the blue
points indicate extremely bad fitting.

theless, until now, there has been no measure of relaxation that
provides a heuristic as to when the CE fitting data is reliable.
Using four different Hamiltonians (first-principles, Lennard-
Jones, Stillinger-Weber, and embedded atom method), we
show that the normalized mean-squared displacement of
alloy configuration is a good measure of relaxation and CE
predictability. A small displacement percent, e.g., less than
0.1%, will usually generate a reliable CE model. The number
of cluster terms in the CE models can be an indicator of how
well cluster expansions perform; we find that models with a
large number of parameters have poor predictive capability
and tend not to converge, even with more training data. CE
tends to fail when the number of J s exceeds 80.

In our error analysis, we investigated the ability of the
compressive sensing framework to obtain fits to a toy, cluster
expansion model as the energy of relaxation changes in a
predictable way. We used 16 relaxation error distributions
(both analytic and simulated) and compared the prediction
errors of the resulting CE fits for the relaxed vs unrelaxed case.
No clear correlation appears between the statistical measures
of distribution shape and the predictive errors. However,
there are clear correlations between the predictive error, the
complexity of the resulting CE model, and the number of
significant terms in that model.

We cannot use the relaxation distributions alone to de-
termine the viability of a CE fit in advance. However, the
analysis does reveal that the majority of the clusters used by the
unrelaxed CE fit will also be present in the relaxed case (albeit
with adjusted J values) if the CE fit is viable. This suggests
that it may be possible to decide whether the computational
cost of full CE is worthwhile by making predictions for a few
relaxed systems (50–100) and determining whether the error
remains small enough.
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