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It is often desired to reduce sound radiated from cylindrical shells. Active structural acoustic con-

trol (ASAC) provides a means of controlling the structural vibration in a manner to efficiently

reduce the radiated sound. Previous work has often required a large number of error sensors to

reduce the radiated sound power, and the control performance has been sensitive to the location of

error sensors. The ultimate objective is to provide global sound power reduction using a minimal

number of local error measurements, while also minimizing any dependence on error sensor loca-

tions. Recently, a control metric referred to as weighted sum of spatial gradients (WSSG) was

developed for ASAC. Specific features associated with WSSG make this method robust under a

variety of conditions. In this work, the WSSG control metric is extended to curved structures, spe-

cifically a simply supported cylindrical shell. It is shown that global attenuation of the radiated

sound power is possible using only one local error measurement. It is shown that the WSSG control

metric provides a solution approximating the optimal solution of attenuating the radiated sound

power, with minimal dependence on the error sensor location. Numerical and experimental results

are presented to demonstrate the effectiveness of the method.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5020784
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I. INTRODUCTION

Cylindrical shells are one of the structures that are com-

monly used around us. It is often desirable to reduce the

sound radiated from these vibrating structures. The method

of controlling the vibration in such a way that it results in

attenuation of the radiated sound power is known as active

structural acoustic control (ASAC), first developed in the

early 1990s. There has been a considerable amount of

research done on ASAC for cylindrical shells.1–6 Within this

class of methods, the ultimate practical goal is to achieve

attenuation of the global sound field using a minimal number

of local error measurements. In addition to minimizing the

number of error sensors needed, it would be desirable to

minimize the dependence on error sensor location. The

search for the method that satisfies these criteria and is opti-

mally effective and practical has been ongoing.

In previous work, some methods have utilized an array

of sensors for the error metric. In some cases, the number of

sensors in the array can be quite large, thereby reducing the

practicality of the method.3,4,7 With these methods, sensitiv-

ity to placement of the error sensors can also be an issue. In

the case of shaped piezoelectric patches, the practicality can

be limited by the fact that the piezoelectric design is depen-

dent on the structure’s dynamic response and the modes that

need to be controlled.8–15 Regardless of the degree of practi-

cality, the control results obtained were generally not opti-

mal. Here, the term optimal is used to refer to the

performance that results in the maximum attenuation of the

radiated sound power.

In terms of achieving the optimal control, a number of

methods have been investigated, including minimization of the

kinetic energy, and the potential energy, as well as the radiated

sound power.1,2,16 While minimizing the sound power yields

optimal control, it is not feasible in practice, since it requires

the measurement and control of the sound power in real-time.

In 2012, Fisher and others presented the method of the

“weighted sum of spatial gradients” (WSSG), which relies

on only a few local measurements and resulted in the global

attenuation of the power while providing minimal sensitivity

to the error sensor location.17 In Fisher’s work, the error met-

ric was referred to as “Vcomp.” In subsequent work, this

method was implemented on planar structures, and the error

metric was referred to as WSSG.18–21

This paper presents the extension of the WSSG method

to curved structures, and specifically applies the method to a

simply supported cylindrical shell, with the objective of ful-

filling the criteria mentioned above for practicality and con-

venience. For curved structures, the membrane and bending

stresses are coupled, and this work investigated whether the

WSSG method would still work effectively given this differ-

ence in the dynamic response. The WSSG control metric uti-

lizes parameters that have some connection with the lowest

order acoustic radiation modes. This similarity provides the

ability to achieve attenuation of the radiated sound power

using only one, or a few, local error measurements. The radi-

ation modes for a cylindrical shell are noticeably different

than for a flat plate, which also raised the question as toa)Electronic mail: Pegah.aslani@gmail.com
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whether the WSSG method would be as effective as it is for

flat structures.22 The WSSG control metric also exhibits rela-

tively little spatial variance which means that there is little

dependence on the error sensor location, making the method

rather robust. It is shown that the WSSG control metric is

able to provide near optimal solutions, in comparison to

methods that use global measurements.

In the remainder of this paper, the numerical model for

the cylindrical shell is first described. The WSSG control

metric is briefly overviewed, and numerical control results

are presented. A comparison of the results obtained by mini-

mizing the sound power, as well as by using the WSSG con-

trol metric and other previously studied control metrics is

presented. In order to compare and evaluate the performance

of the WSSG control, radiated sound power has been chosen

as the quantifying metric. The radiated sound power has

been calculated numerically using the radiation resistance

matrix for the external radiation from cylindrical shells.22 In

order to estimate the radiated sound power experimentally,

the ISO-3741 standard was used. It is shown that there is lit-

tle dependence on the error sensor location. The numerical

results are verified experimentally using a modified filtered-

x LMS algorithm. Comparison of the numerical and the

experimental results suggest that the overall trends between

the numerical and the experimental results agree quite well.

II. METHODOLOGY

A. Development of WSSG for cylindrical shells

The WSSG control function consists of four spatial gra-

dient terms, corresponding to a breathing mode, two rocking

modes, and a twisting mode.17 In order to construct the

WSSG for the cylindrical shell geometry, consider a cylinder

with length L and radius a, in cylindrical coordinates, where

z denotes the dimension along the axis, and h and r are the

polar coordinates. The WSSG function can then be written

for a cylindrical shell as

WSSG ¼ a w2 þ b
@w

@z

� �2

þ d
1

a2

@w

@h

� �2

þ c
1

a2

@2w

@z @h

� �2

; (1)

where w is the displacement in the radial direction and

a; b; d, and c are the set of weights that when applied, yield a

rather uniform field with little spatial variance. This is illus-

trated in Fig. 1, which shows the WSSG for a cylindrical shell

driven at a frequency of 541 Hz, which corresponds to the (2,3)

mode of this shell. It can be seen that there is little variation in

the WSSG, except for a small region near the drive point.

For a single resonance frequency, it has been shown that

by setting a to the arbitrary value of 1, each of the other

weights will be inversely proportional to the square of the

structural wavenumber of the corresponding resonance mode

along the direction of the gradient.17

The squared form of the spatial gradients allows for a

global optimal solution to exist. The spatial gradients can be

measured using four closely spaced accelerometers as one inte-

grated error sensor. Such a configuration is shown in Fig. 2.

Using the finite difference method, the spatial gradients

can be written as

w ¼ a1 þ a2 þ a3 þ a4

4
;

dw

dz
¼ a1 � a2 þ a3 � a4

2Dz
;

1

a

dw

dh
¼ �a1 � a2 þ a3 þ a4

2aDh
;

1

a

d2w

dzdh
¼ �a1 þ a2 þ a3 � a4

aDzDh
; (2)

where a1, a2, a3, and a4 are the signals from the four acceler-

ometers, and Dz is the distance between a1 and a2, as well as

between a3 and a4, along the axis of the cylinder. Also, aDh is

the distance between a1 and a3, as well as a2 and a4, along the

circumference. Since Eq. (2) is only the first term of the Taylor

series expansion, it contains a truncation error on the order of

ðDz2Þ, meaning that the larger the spacing between the sensors

is, the larger the truncation error will be. There are also errors

due to the random noise present in the signals from the sensors.

Since some of the spatial gradient terms are obtained using

subtraction of the accelerometer readings, if the accelerometers

are spaced too closely and the noise floor is similar in magni-

tude to the magnitude of the difference between the two sensor

FIG. 1. (Color online) WSSG at frequency of 541 Hz for the (2,3) mode.

FIG. 2. The configuration of four closely spaced sensors.
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signals, the finite difference term will not be reliable. Thus, it

is best to put the sensors farther apart to decrease this error.

One can see that there is a tradeoff between spacing the accel-

erometers closer or farther apart. Hendricks has shown through

an optimization process that the optimal distance for reducing

these errors is about 1 in. (0.0254 m).18

B. Implementation of WSSG

Let D be the vector that contains the spatial gradient

terms due to the primary force, with weighting applied.

Similarly, the notation G will be used for the matrix which

includes the spatial derivatives of the transfer function, g,

between the secondary source(s) and the WSSG sensor with

weighting applied. Equations (3) and (4) describe D and G as

DT ¼
ffiffiffi
a
p

w;
ffiffiffi
b

p @w

@z
;

ffiffiffi
d
p 1

a

@w

@h
;

ffiffiffi
c
p 1

a

@2w

@z@h

� �
; (3)

GT ¼
ffiffiffi
a
p

g;
ffiffiffi
b

p @g

@z
;

ffiffiffi
d
p 1

a

@g

@h
;

ffiffiffi
c
p 1

a

@2g

@z@h

� �
: (4)

One can view each of the weighted gradient terms as one of

the error components in an error vector used in an active

control implementation. In general, one can establish the

error signal vector as

e ¼ Dþ Gu; (5)

where u is the vector of complex control forces with dimen-

sions of N � 1; where N is the number of control forces

applied, and contains both amplitude and phase information

for the control forces. If there are M error terms, D will have

dimensions of M � 1, and G will have dimensions of M � N.

In this case, since four spatial gradients are utilized, M ¼ 4:
It can be shown that the optimal solution to minimize

the squared error vector in Eq. (5) can be obtained as

uopt ¼ � GHG½ ��1
GHD: (6)

This form can be used to numerically minimize the WSSG

control metric. However, in practice, a modified filtered-x

LMS algorithm is used to implement the WSSG control adap-

tively in real time. For more extensive information on modify-

ing the filtered-x LMS algorithm in this manner, the reader is

referred to the paper by Sommerfeldt and Nashif in 1994.23

In order to apply the filtered-x LMS algorithm to the

WSSG control metric, one needs to adjust the algorithm to

incorporate the gradients of the WSSG control metric.

Hence, the algorithm described in the following will be

referred to as the modified filtered-x algorithm. A schematic

of the block diagram of this algorithm is shown in Fig. 3.

In this application, the excitation signal from the generator

is input to the control system as a reference signal. Considering

the WSSG control metric, one can see that four transducers, such

as accelerometers, are needed in order to obtain the spatial gra-

dients. These accelerometers correspond to subscripts 1, 2, 3,

and 4 in Fig. 3. During the control operation, the response of

each accelerometer is composed of the plant response through

the primary path, resulting in the disturbance signals d1, d2, d3,

and d4, respectively, and the secondary path response, resulting

in the control signals, y1, y2; y3, and y4. These signals physically

add together, so that the response of each accelerometer corre-

sponds to di þ yi, where i ¼ f1; 2; 3; 4g. These four acceler-

ometer signals are then processed according to Eq. (2) to yield

the spatial gradients. This additional processing is denoted by

“WSSG unit” in the block diagram. Therefore, the final error sig-

nals (after being processed by the WSSG unit) can be written as

e1¼
ffiffiffi
a
p d1þd2þd3þd4

4
þuT H1þH2þH3þH4

4

� �� �
;

e2¼
ffiffiffi
b

p d1�d2þd3�d4

2Dz
þuT H1�H2þH3�H4

2Dz

� �� �
;

e3¼
ffiffiffi
d
p �d1�d2þd3þd4

2aDh
þuT �H1�H2þH3þH4

2aDh

� �� �
;

e4¼
ffiffiffi
c
p �d1þd2þd3�d4

ahDz
þuT �H1þH2þH3�H4

aDhDz

� �� �
;

(7)

FIG. 3. Block diagram of the modified

filtered-x LMS algorithm.
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where H1, H2, H3, and H4, are the actual secondary path

transfer functions between the control source and each of the

accelerometers. In Fig. 3, Ĥ1, Ĥ2, Ĥ3, and Ĥ4 are the esti-

mates of these secondary path responses determined by an

off-line system identification process (SysID) prior to control

operation. In addition, r̂1, r̂2, r̂3, and r̂4 are the reference sig-

nal filtered by the estimates of the secondary path responses,

Ĥ1, Ĥ2, Ĥ3, and Ĥ4, respectively, and then processed by the

WSSG unit.

With this control structure in place, the control filter is

then adaptively updated as

Wðtþ 1Þ ¼WðtÞ � l
X4

i¼1

eiðtÞRiðtÞ; (8)

where l is the convergence factor, and RiðtÞ is the vector of

the current and past values of r̂ i.

C. Quantifying the control performance

The radiated sound power is chosen as the metric to

quantify the performance of the WSSG control. Radiation

modes corresponding to external radiation from a cylindrical

shell are used to calculate the radiated sound power numeri-

cally.22 They are also used in monitoring the radiation mode

amplitudes before and after control in order to better under-

stand the mechanism of sound power reduction using the

WSSG control metric. For experimental results, the ISO-

3741 standard has been used to estimate the radiated sound

power in a reverberation chamber using six microphones.

III. NUMERICAL RESULTS

There are a number of shell theories that have been

developed. However, in a paper by Farshidianfar, it was

shown that the Soedel theory provides better results when

compared to other theories considered.24 Hence, in this

paper, Soedel’s shell theory for a thin-walled, simply sup-

ported, cylindrical shell is used to model the response of the

shell due to a point excitation.25 The resulting normal com-

ponent of displacement is incorporated into Eq. (1) to yield

the WSSG function.

For this case, a simply supported aluminum cylindrical

shell with length 1.206 m, radius 0.0778 m, and thickness

0.0016 m is considered. The cylinder model is discretized

using 2500 elements, with 50 elements along the circumfer-

ence and 50 elements along the axis of the cylinder.

This results in dimensions of each element being

0.024 m along the axis, and 0.01 m along the circumference.

The highest frequency considered here is 900 Hz, which cor-

responds to an acoustic wavelength of 0.38 m. Since the

dimensions of the elements considered are significantly less

than the smallest acoustic wavelength, the same discretiza-

tion can be used for all frequencies in the range of interest.

The natural frequencies of modes corresponding to dis-

placement in the normal direction are calculated using

Soedel shell theory and are listed in Table I, where n is the

axial mode number and m is the circumferential mode

number.

As mentioned in Sec. II A, the WSSG weights for each

resonance frequency are inversely proportional to the

squared structural wavenumber in the direction of the corre-

sponding gradient term. This corresponds to b¼ð1=kzÞ2,

d¼ð1=khÞ2, and c¼ð1=kz khÞ2, where kz ¼ ðnp=LÞ and

kh ¼ ðm=aÞ. For instance, at 203.06 Hz the corresponding

weights are [1:0, 1:47� 10�1, 1:51� 10�3, 2:23� 10�4].

Applying a unique set of weights at each of the resonance

frequencies, the WSSG field becomes very uniform, such

that the spatial variance of the WSSG across the shell is less

than 0.03%.

However, in order to apply WSSG control for all fre-

quencies in the range of interest, it is desirable to use a single

set of weights. Therefore, the weights are averaged over all

the resonance peaks present in the frequency range of inter-

est. In order to investigate the WSSG control metric, config-

urations A, B, C, D, and E were considered. The coordinates

for these configurations are listed in Table II.

Figure 4 shows the results for the radiated sound power

before and after WSSG control, where WSSG is minimized

as a function of frequency.

In this figure, the solid line shows the radiated sound

power before WSSG control and the dotted line shows the

radiated sound power, after WSSG control. In addition, the

radiated sound power can be numerically minimized with

respect to the control force.16 The dashed line represents the

minimized radiated sound power, which determines the best

possible attenuation that can be achieved for that particular

source configuration. Here, the total sound power attenuation

achieved using the WSSG control is 11.3 dB, while minimi-

zation of the radiated sound power predicts 13.7 dB

attenuation.

Figure 5 shows the WSSG metric before and after con-

trol at the error sensor location. An overall attenuation of

17.7 dB is achieved. Note that the WSSG metric is a quantity

TABLE I. Natural frequencies of the cylindrical shell.

Frequency (Hz) n m

203.06 1 2

290.23 1 1

413.91 2 2

505.27 1 3

540.71 2 3

653.77 3 3

814.28 3 2

866.07 4 3

TABLE II. Locations of accelerometers (accel.) and actuators [x (m), h
(deg.)] for configurations (config.) A, B, C, D, and E.

Config. A Config. B Config. C Config. D Config. E

Primary shaker (0.1, 330) (0.1, 330) (0.2, 190) (1.08, 10) (0.1, 330)

Control shaker (1.05, 150) (1.05, 150) (1.08, 10) (0.20, 190) (0.76, 102.5)

Accel. 1 (0.8, 282) (0.69, 65) (0.57, 320) (0.57, 50) (0.57, 228)

Accel. 2 (0.77, 282) (0.66, 65) (0.54, 320) (0.54, 50) (0.54, 228)

Accel. 3 (0.8, 302) (0.69, 85) (0.57, 340) (0.57, 70) (0.57, 248)

Accel. 4 (0.77, 302) (0.66, 85) (0.54, 340) (0.54, 70) (0.54, 248)
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that depends only on the vibration of the structure and not on

the acoustic radiation. However, it is a metric that has some

correlation with the radiated sound power, so that attenuation

of the WSSG metric generally results in attenuation of radi-

ated sound power.

In order to investigate the dependence of the control

performance on the sensor location, the sensors were moved

to a different location in configuration B, while the actuators

were kept in the same place. Since the WSSG is nearly uni-

form across the cylinder (see Fig. 1), changing the sensor

location should have little effect on the overall performance.

This test with configuration B was carried out to verify this

assertion.

The WSSG control results for configuration B are shown

in Fig. 6. In this case, the overall attenuation achieved using

the WSSG control metric is 11.0 dB, resulting in less than

1 dB change in the overall attenuation by changing the sen-

sor location.

Using the WSSG control, the overall attenuation for

configurations C, D, and E is 10.8, 9.5, and �0.8 dB, respec-

tively. It is useful to compare the performance of the WSSG

control metric, using only one local measurement, with other

methods that utilize global measurements in order to attenu-

ate the radiated sound power.

Table III summarizes the performance of minimizing

the radiated sound power, minimizing the WSSG control

metric, minimizing the global kinetic energy, and minimiz-

ing the volume velocity for configuration A.

One can see that minimizing the radiated sound power

offers the maximum amount of attenuation possible for this

configuration, although it would require a significant number

of point measurements resulting in a global measurement in

order to achieve this result. Minimizing the global kinetic

energy performs closely to minimizing the radiated sound

power for this configuration, resulting in a slightly lower

attenuation, but again requiring the use of a global measure-

ment. Although volume velocity uses a global measurement

as well, it actually enhances the overall radiated sound

power. The WSSG control metric, using only one measure-

ment location (with four accelerometers), results in 2.3 dB

less attenuation than the optimal performance obtained by

minimizing the radiated sound power. The results shown in

Table III, as well as Figs. 4 and 6, indicate that the WSSG

control metric is able to provide close to optimal perfor-

mance for this shell using only one sensor location, while

also exhibiting minimal dependence on the error sensor loca-

tion. This suggests that this method can effectively substitute

for any of the methods mentioned above in practice, with a

robustness in error sensor positioning and an ease of

implementation.

A. Acoustic radiation before and after control

In order to better understand the mechanism that results

in sound power reduction, it is useful to compare the cou-

pling between the vibration, before and after control, with

the most efficient radiation modes at several resonances

FIG. 4. WSSG control results predicted by the model for configuration A.

FIG. 5. WSSG metric before and after control at the error sensor location

for configuration A.

FIG. 6. WSSG control results predicted by the model for configuration B.

TABLE III. Summary of performance of different methods for configuration

A.

Method Type of metric Sound power level reduction

Minimizing sound power Global 13.7 (dB)

Global kinetic energy Global 12.1 (dB)

WSSG Local 11.4 (dB)

Volume velocity cancellation Global �0.4 (dB)
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where WSSG is able to attenuate the radiated sound consid-

erably. For further discussion on radiation modes for cylin-

drical shells the reader is referred to Ref. 22. Figure 7 shows

the ten most efficient radiation modes at a frequency of

290.23 Hz associated with the (1,1) structural mode. The cor-

responding eigenvalues, which are proportional to the modal

efficiencies, are shown in Fig. 8.

Using the matrix of the eigenvectors for the radiation

resistance matrix, i.e., Q, and the structural velocity vector,

v; the radiation mode amplitudes, i.e., si ¼ QTð:; iÞ � v for

i¼ 1, 2,…, 10, are calculated for the velocity fields before

control ðsbcÞ; after WSSG control ðsacÞ, and after minimizing

the radiated sound power ðsac�optÞ in Table IV. As can be

seen from the values listed in the table, the uncontrolled

amplitude associated with radiation mode 4 (1.21) is the

highest, followed by the radiation mode amplitude associ-

ated with radiation mode 3 (0.127), which has the next high-

est value. This can be understood by considering that the

resonance at 290.23 Hz corresponds to the (1,1) mode, which

most closely aligns with the velocity distribution of radiation

modes 3 and 4, as can be seen in Fig. 7. Although the eigen-

values of radiation modes 3 and 4 are not the highest, the

radiation mode amplitudes are sufficiently large to result in

these modes dominating the resulting radiated sound power.

The strong coupling rises from the fact that the high ampli-

tude velocity field of the actual structure at its structural res-

onance closely matches the velocity distribution of those

particular radiation modes. The radiation amplitude of mode

3 is lower due to the 90� shift of the velocity distribution in

radiation mode 3. On the other hand, even though radiation

modes 1 and 2 have the highest eigenvalues, i.e., they are

more efficient than other modes at this frequency, since the

velocity field of the vibration does not couple with them as

strongly, they do not contribute greatly to the radiated sound

power. Looking at the radiation amplitudes for higher order

modes (for example, modes 7, 8, 9, and 10), we can see that

the amplitudes are slightly higher than the amplitudes for the

first two modes. The reason for this is that the velocity field

of the structure is projected more effectively onto radiation

modes that have the general trend of a ð1; m > 0Þ mode

shape. Now looking at the values listed for sac (after WSSG

control), for radiation mode amplitudes associated with radi-

ation modes 3 and 4, the values drop to 9:1847� 10�5 and

8:6961� 10�4, respectively, which leads to approximately

31 dB of sound power reduction. Comparing these values to

the minimized power amplitudes, sac�opt, for modes 3 and 4,

we can see that the values for WSSG control show similar

trends to the optimal values listed under sac�opt for radiation

modes 3 and 4. This suggests that there is a strong correla-

tion between WSSG and the radiated sound power, since

optimizing WSSG has led to similar results as for minimiz-

ing the radiated power.

IV. EXPERIMENTAL RESULTS

In order to verify the numerical results, a cylindrical

shell with the properties mentioned in Sec. III was

FIG. 7. (Color online) Ten most effi-

cient radiation modes at 290.23 Hz, in

order of efficiency.

FIG. 8. Eigenvalues of the ten most efficient radiation modes at 290.23 Hz.
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fabricated. The simply supported boundary condition was

approximated by machining a shallow groove at each end of

the shell where a circular disk with a knife-edge was slightly

press-fitted inside the groove. This was designed to give zero

displacement but allow for a non-zero slope of the cylinder

wall at the groove point.

As the next step in assembling the experimental set-up, it

is important to mount the cylindrical shell in such a way that

there is no distortion of the shell, nor any mass loading. In

order to fulfill these requirements, the cylindrical shell was

mounted vertically inside a frame. The framed cylinder was

then placed in a reverberation chamber and hung from the

ceiling, as well as lightly supported on a table stand to prevent

unwanted rigid body motion. Vibration isolation materials

were placed between the frame and the table stand in order to

reduce vibration transmission to the table stand which could

cause error in measurements of the radiated sound power.

Four PCB model 352C68 accelerometers were mounted on

the shell, according to Fig. 2, and two mini-shakers were

attached to the shell as the primary and control sources.

To measure the radiated sound power, six microphones

were used and spaced according to the ISO-3741standard.

For this purpose, T60 measurements were made and meteoro-

logical conditions were monitored. A schematic of the com-

plete setup is shown in Fig. 9.

The setup inside the control room included a PC that is

connected to a Digital Signal Processing Board (DSP)

utilizing a TI TMS320C6713GDP processor. For the results

presented here, the control filter and the secondary path filter

were both configured to have 20 coefficients. The DSP used

the modified filtered-x algorithm to implement the active

control. The setup also included a Br€uel & Kjær (B&K)

PULSE signal analyzer. An excitation output signal from

one of the signal generators is directed into an amplifier and

then into the primary, i.e., disturbance, shaker. In addition,

the signal was input to the DSP, in order to provide the refer-

ence signal for the modified filtered-x LMS algorithm. The

six microphones placed in the reverberation chamber were

connected to the signal analyzer and used to obtain the mea-

sured sound power.

The accelerometers were connected to an ICP power

supply. Using the outputs of the ICP power supply, the

amplified accelerometers signals were then connected to an

analog anti-aliasing filter. In addition, they were connected

to the inputs of the B&K signal analyzer in order to be able

to keep track of the accelerometer levels before and after

control at each frequency. The output signals from the anti-

aliasing filter were then input to the DSP, which imple-

mented the ANC code to obtain the control signal. The

accelerometer signals were processed to form the WSSG

terms used to adaptively update the control filter. The output

signal was conditioned using a reconstruction filter and

amplifier, and then the signal was used to drive the control

shaker.

Figure 10 shows the actual set up inside the reverbera-

tion chamber, showing the cylindrical shell installed in the

frame while it is hung from the ceiling, with the shakers and

the accelerometers attached. Figure 11 shows the micro-

phone placing.

The cylindrical shell was scanned using a scanning laser

Doppler vibrometer. In the frequency range below 700 Hz,

resonance peaks observed in the FFT spectrum were at fre-

quencies of 201.1, 310.6, 406.3, 510.1, 581.4, and 637.9 Hz.

The actual frequencies are somewhat different than

those of the model, shown in Table I. The shift in the fre-

quencies seems to be inconsistent. For example, the first fre-

quency is lower than predicted in the model, but the second

frequency is higher than predicted in the model. The

TABLE IV. Radiation mode amplitudes, before and after control, for the ten

most efficient radiation modes at 290.23 Hz.

sbc sac sac�opt

Mode 1 �1:1676� 10�3 �7:0630� 10�5 �5:9740� 10�5

Mode 2 2:5131� 10�3 5:0015� 10�3 5:0262� 10�3

Mode 3 1:2722� 10�1 9:1847� 10�5 1:9270� 10�7

Mode 4 1:2104 8:6961� 10�4 1:8334� 10�6

Mode 5 �2:2861� 10�3 �4:4339� 10�3 �4:4552� 10�3

Mode 6 �1:1503� 10�2 �2:2310� 10�2 �2:2417� 10�2

Mode 7 1:7763� 10�2 3:5353� 10�2 3:5525� 10�2

Mode 8 �1:3518� 10�2 �2:6905� 10�2 �2:7036� 10�2

Mode 9 3:1516� 10�2 3:1177� 10�4 4:7739� 10�8

Mode 10 �1:0240� 10�2 �1:0130� 10�4 �1:5502� 10�8

FIG. 9. Schematic of the complete

experimental active control setup for

the cylindrical shell.
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discrepancies could be a result of slightly different values of

dynamic parameters such as density, Young’s modulus, etc.,

or that the cylinder is not completely behaving as an ideal

simply supported cylindrical shell.

In order to achieve the best performance in sensing the

WSSG terms, it is important to choose accelerometers with

relatively close sensitivities. Therefore, the accelerometers

were calibrated before each measurement and the relative

sensitivities were inserted into the ANC code.

Once the SysID has been completed, the disturbance

signal is activated and the sound pressure at each of the

microphones is recorded due to only the disturbance signal,

in order to determine the sound power with no control.

The WSSG control was implemented for the frequency

range from 180 to 700 Hz, with frequency increments of

10 Hz. For this purpose, pressure data were recorded through

the signal analyzer, where the bandwidth was limited to 1/24

octave bands with the center frequency matching that of the

disturbance frequency. After recording the necessary data

prior to control, the same set of data were measured while

the ANC system was running. The pressure data were then

processed to yield the radiated sound power.

The results of implementing the WSSG control experi-

mentally for configuration A are shown in Fig. 12.

In this configuration, the overall sound power was atten-

uated by 5.7 dB. The damping factor in the model was

adjusted to match the experimental damping factor; how-

ever, some differences might still be present. This can

explain to some extent the difference between the experi-

mental results and the model predictions. As can be seen in

Fig. 12, the WSSG control metric is able to attenuate the

radiated sound power effectively for all but one of the reso-

nance peaks. It should also be noted that the Schroeder fre-

quency of the chamber is about 300 Hz; therefore, the

absolute value of the power measured below this frequency

may not be completely accurate. However, this should not

affect the change measured in the radiated power without

and with control. Figure 13 shows the WSSG at the error

sensor location before and after control, which is the metric

FIG. 10. (Color online) The experi-

mental setup showing the mounted

cylindrical shell in the frame while the

accelerometers and shakers are

attached.

FIG. 11. (Color online) The experimental setup showing the cylindrical

shell, shakers, and accelerometers, as well as the microphone placement. FIG. 12. Experimental WSSG control results for configuration A.

278 J. Acoust. Soc. Am. 143 (1), January 2018 Aslani et al.



actually minimized by the control system. For configuration

A, 17.8 dB overall attenuation of WSSG was obtained.

Comparing Figs. 5 and 13, one can see that the results

predicted by the model agree with the trends observed for

the experimental results for the WSSG control metric. As

can be seen, the attenuation of WSSG results in attenuation

of the radiated sound power for most frequencies, which sug-

gests that there is a correlation between the radiated sound

power and WSSG.

In order to experimentally investigate the effect of sen-

sor location on the control performance, the WSSG control

metric was also implemented for configuration B. The con-

trol results for configuration B are shown in Fig. 14. In this

case, the overall sound power attenuation is 4.9 dB.

In this configuration, the WSSG control metric is able to

provide some attenuation for all resonance peaks.

Comparing this result with the experimental control

result for configuration A in Fig. 12, one can see that there is

only 0.8 dB difference in overall sound power attenuation.

As was stated in Sec. III, there is usually only less than 1 dB

variation when changing the error sensor location.

Observing the performance of the WSSG control metric for

different sensor locations verifies this result experimentally.

The WSSG control was investigated for configurations

C, D, and E, as well. The overall attenuation for these

configurations, as well as a summary of the overall attenua-

tion of radiated sound power obtained both experimentally

and numerically, are listed in Table V.

As can be seen from these results, the location for the

control force in configurations C and D is less favorable in

comparison with configurations A and B, in that less overall

attenuation can be achieved in these cases. Although the per-

formance of the WSSG control metric is only mildly depen-

dent on the error sensor location, the location of the control

force with respect to the disturbance force can be a more sig-

nificant factor in determining the attenuation that can be

achieved. For instance, configuration E presents a case

where the location of the control force is knowingly chosen

to be at a location which takes the least advantage of the cir-

cular symmetry of the cylindrical shell. In this case, due to

the unfavorable location of the control force, the WSSG con-

trol metric has in fact enhanced the overall radiated sound

power by 3.7 dB.

As can be seen from Table V, in general, the experimen-

tal results seem to follow the trends presented in the numeri-

cal results. As the control configuration is modified into less

favorable locations, the control results in both the model and

the experiment follow the same trend in yielding reduced

sound power attenuation. The experimental results are also

consistent for the case where the simulation results predict

enhancement of radiated sound power, rather than

attenuation.

V. CONCLUSIONS

The search for an ASAC method for cylindrical shells

that provides the highest convenience and practicality, while

providing optimal performance and robustness with respect

to error sensor positioning, is still ongoing. The methods that

result in an optimal control solution often employ global

measurements, which generally makes these methods infea-

sible in practice. In this paper, the WSSG method was devel-

oped for simply supported cylindrical shells. The WSSG

control metric was investigated numerically and the results

suggest that this method can provide close to optimal solu-

tions, while being robust with respect to the error sensor

location. More importantly, this method is able to approxi-

mate the optimal sound power reduction for at least some

configurations using only one point measurement.

The numerical model was investigated experimentally

using a modified filtered-x LMS algorithm. The experimen-

tal dynamic analysis suggested that the cylindrical shell

under study may not exhibit ideal simply supported bound-

ary conditions. In spite of this, the experimental control

FIG. 13. Experimental WSSG before and after control.

FIG. 14. Experimental WSSG control results for configuration B.

TABLE V. Summary of the model and experimental overall attenuation of

radiated sound power for all configurations.

Configuration Model Experiment

Config. A 11.3 (dB) 5.7 (dB)

Config. B 11.0 (dB) 4.9 (dB)

Config. C 10.8 (dB) 4.5 (dB)

Config. D 9.50 (dB) 3.2 (dB)

Config. E �0.83 (dB) �3.7 (dB)
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results suggest that the general trends agree well with the

numerical results, and the WSSG control is able to control

most of the resonance peaks similar to the numerical results.

It is also shown that the general trends of the experimental

results agree with the numerical results when the control

source position is degraded. The effectiveness and robust-

ness of this method, as well as the potential for a practical

and convenient implementation, makes this method a suit-

able choice in applying ASAC on cylindrical shells.
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