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Observations of gravitational radiation from compact binary systems provide an unprecedented
opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate
how future observations of gravitational radiation from binary neutron star mergers might provide
constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of
freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we
work in the context of metric fðRÞ gravity, which is equivalent to general relativity and a universally
coupled scalar field with a nonlinear potential whose form is fixed by the choice of fðRÞ. In theories where
neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-
range scalar force has implications for both the inspiral and merger phases of binary systems. We first
present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of
the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We
then perform a comparative study of binary neutron star mergers in general relativity with those of a one-
parameter model of fðRÞ gravity using fully relativistic hydrodynamical simulations. These simulations
elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the
full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the
particular model of fðRÞ gravity studied here and for finite-range scalar forces more generally.
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I. INTRODUCTION

The recent detection of gravitational waves by the
Advanced LIGO detectors [1–3] has confirmed a corner-
stone of Einstein’s theory of general relativity (GR).
Modifications of GR have already been tightly constrained
by solar-system tests [4] and observations of binary pulsars
[5], but such tests are restricted to the regime in which low
order post-Newtonian calculations accurately describe the
dynamics. The detection of gravitational waves produced,
for instance, by binary compact object mergers Indeed, the
Advanced LIGO observations of the coalescing binary
black holes GW150914 [3], GW151226 [2], LVT151012,

and GW170104 [6] have already led to some important
constraints on deviations from GR [7,8]. Recently, a
Bayesian method [9] has been presented by which
Advanced LIGO would detect or constrain the presence
of vector and scalar polarizations in the stochastic back-
ground, hence providing a test of GR in the strong-field
highly dynamical regime. Furthermore, the addition of
Advanced Virgo, even though it does not significantly
improve our detection ability, it may considerably improve
our ability to estimate the parameters of backgrounds of
mixed polarization [9]. The nondetection of extra polar-
izations in the stochastic background may lead to exper-
imental constraints on modified gravity theories, some of
which may allow for up to four additional polarization
modes.
A major obstacle in further constraining modified gravity

theories through gravitational wave observations is the lack
of a comprehensive understanding of dynamics in the
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strong-field highly dynamical regime. To contribute to
filling this gap, we undertake the study of compact binary
mergers in fðRÞ theories (see Ref. [10] for a review), as
they represent one of the simplest modifications to GR.
Note that R stands for the Ricci scalar and fðRÞ denotes an
arbitrary function of R. In fðRÞ gravity, the initial value
problem is typically well-posed, and therefore amenable to
studying the nonlinear evolution of relevant initial con-
figurations. Many other modified gravity theories quite
likely do not define well-posed initial value problems, in
particular those with higher derivatives or those with a
complicated non-linear derivative structure, as found in—
for instance—massive gravity [11,12], bigravity [13],
Chern-Simons gravity [14], noncommutative geometry
[15] (to name just a few) and where, beyond clear general
statements that one can make at the mathematical level,
specific studies have explicitly indicated major reasons for
concern [16–19].1 To date there is no definitive well defined
and consistent way to straightforwardly access predictions
for gravitational wave observables for general modifica-
tions in the highly dynamical, strong-gravity regime. Such
a question is beginning to receive attention and solutions in
certain contexts are being proposed, see [19] for a solution
in certain contexts, see also [22,23]. Therefore, one
motivation for the study of fðRÞ gravity is that the relevant
physics can be simulated with the tools at hand, and the
observed phenomenology can be used as guidance toward
possible deviations to consider.
Another motivation is the role that such theories might

play in cosmology [24]. One of the first successful models
of cosmic inflation was based on fðRÞ gravity [25], which
can account for the early inflationary era in the absence of a
scalar field with a suitably fine-tuned potential, which is
used in scalar-field models of inflation. More precisely,
the model fðRÞ ¼ Rþ a2R2 (with a2 > 0, hence it does
not suffer from the appearance of ghosts) leads to an
exponential expansion driven by the a2R2 term.
Subsequently, fðRÞ gravity was employed for infrared
modifications of gravity. Instead of introducing a mysteri-
ous dark energy component, fðRÞ gravity was proposed as
a dynamical explanation of the present cosmic acceleration
[26–30]. Such phenomenological proposals are valid pro-
vided certain constraints are imposed on the function fðRÞ,
for the model at hand to be linearly stable and cosmologi-
cally viable.
Under certain conditions, and certainly in the cases we

focus here, it can be shown that fðRÞ gravity is dynamically
equivalent to Einstein gravity minimally coupled to a scalar
field with a nontrivial potential that couples to matter

through the trace of the energy momentum tensor in the
Einstein frame [31]. To the extent that the scalar field is
light, it sources a (finite-range) fifth force that couples
universally, endowing objects with a scalar charge. We can
therefore consider fðRÞ gravity as a proxy for other theories
with a finite-range scalar force. Any theory with such a fifth
force is constrained [32] by laboratory searches [33,34],
solar system tests [35], and cosmology [36]. In some cases,
the fifth force can be screened, and such constraints evaded,
for example through the chameleon mechanism [37]. This
mechanism generates an effective mass for the scalar field,
through the interplay of scalar field self-interactions and
interactions with the ambient matter (see however [38]).
In fðRÞ gravity, there can be nontrivial implications

for the structure of compact objects such as neutron stars
[39–47], implying a possible window into gravity and
cosmology through the study of compact objects. The study
of binary neutron star or neutron star-black hole systems in
general scalar tensor theories has already yielded a number
of important results. For example, some theories exhibit the
phenomenon of spontaneous scalarization [48,49], in
which the scalar charge of neutron stars is environmentally
dependent, and therefore can evolve during the merger
[50–53]. Such observed behavior underlines the impor-
tance of exploring the full dynamics of theories of interest
to reveal unanticipated behavior. In addition, the orbital
dynamics in neutron star-black hole [54,55] and other
binaries [56] can be affected in interesting ways. Finally,
scalar charged neutron stars can arise in other motivated
scenarios, including for some region of parameter space for
the QCD axion [57], with implications for binary neutron
star mergers.
While black hole mergers are an excellent laboratory to

test some extensions of GR, they are not useful for testing
fðRÞ gravity because black holes cannot carry a scalar
charge, and therefore the merger history would be exactly
as predicted in GR (see however [58,59]). Thus, because of
their relatively large compaction, neutron stars are the most
viable distribution of matter that can be used to probe fðRÞ
gravity in the strong-field regime, and so in this paper we
focus on binary neutron star mergers.
During the inspiral phase, once the neutron stars are

within the Compton wavelength of the scalar, the scalar
force accelerates the merger. This leads to a potentially
observable modification to the gravitational wave form
during the inspiral phase. During the merger, the scalar
could in principle affect the final state (e.g., whether for a
given system the merger results in a final state neutron star
or prompt collapse into a black hole) and the post-merger
dynamics. Such post-merger dynamics can lead to a long-
lived time-dependent quadrupole, giving rise to a detectable
post-merger gravitational wave signature (see, e.g., [60] for
a review). In principle, more total energy can be emitted in
gravitational radiation after the merger than during the
inspiral [61], implying that the post-merger waveform can

1Considering the spectral action of an almost commutative
torsion geometry, it has been shown [20] that the obtained
Hamiltonian is bounded from below, hence noncommutative
spectral geometry, a theory that offers a purely geometric
explanation for the standard model of particle physics [21], does
not suffer from linear instability.
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provide important constraints as well. Constraints from the
post-merger phase, however, have significant uncertainties
associated with the neutron star equation of state, the role
of magnetic fields and other forms of dissipation, etc.
Nevertheless, one may hope that the observation of
electromagnetic counterparts can assist in minimizing
these astrophysical uncertainties (see, e.g., [62]). Finally,
although we focus on a particular model of fðRÞ gravity for
concreteness, our results for the inspiral, and to some
degree our results for the postmerger phase, are generally
applicable to any theory giving rise to a universally coupled
massive scalar field. This is because any theory of fðRÞ
gravity in the Einstein frame can be approximated by a
universally coupled massive scalar field in the linear regime
relevant to the inspiral, and as long as the nonlinearities in
the scalar sector are not probed in the merger.
In this paper, we take a combined analytic and numerical

approach. Because it is too computationally expensive to
simulate a significant portion of the inspiral, and because
the dynamics are well-described analytically, in Sec. II, we
present a model of the inspiral dynamics in the presence of
a universally coupled massive scalar in the Newtonian
approximation. We find the associated gravitational wave-
form and estimate the potential constraints on the range of
the force and the scalar charges that can be obtained by
Advanced LIGO at design sensitivity. The Newtonian model
cannot accurately capture the merger and postmerger phases
of the evolution, which additionally can in principle depend
on the structure of the full theory, including non-linearities in
the gravitational and scalar sectors. We therefore specialize
to numerical simulations in fðRÞ gravity. We outline the
theory in Sec. III, and present the results from fully
relativistic hydrodynamical simulations of neutron star
binary mergers in Sec. IV, first presenting individual neutron
star solutions and then mergers. We conclude in Sec. V. We
work in natural units with c ¼ ℏ ¼ 1.

II. INSPIRAL IN THE PRESENCE OF A
FINITE-RANGE SCALAR FORCE

Before specializing to fðRÞ gravity in the fully dynami-
cal regime, we first study the inspiral dynamics of a binary
system in the presence of gravity and a generic finite-range
scalar force at Newtonian order. This will provide a
qualitative understanding of the dynamics and the interest-
ing regions of parameter space, but will miss the effects of
non-linear dynamics that become increasingly important
late in the inspiral. To explore this regime, we rely on the
results of our simulations, presented in Sec. IV. Here, we
begin by reviewing the mechanism by which neutron stars
acquire a scalar charge, then calculate the orbital dynamics
along with the associated gravitational waveform, and
finally forecast constraints on the range of the scalar force
and charge of neutron stars that could be possible in the
near-future with Advanced LIGO.

A. Scalar charged neutron stars

In this paper, we consider scenarios where a massive
scalar ϕwith potential V, couples linearly to the trace of the
energy momentum tensor. Neglecting gravity, the action is
generically

S ¼ −
Z

d4x

�∂ϕ2

2
þ V − β

ϕ

MPl
Tμ
μ

�
: ð1Þ

In this section, we assume a spherically symmetric flat
spacetime with radial coordinate r. As a starting point, we
neglect all relativistic effects and approximate the matter
energy-momentum tensor, which is sourced by the neutron
star, as

Tμ
μ ¼ −ρþ 3p ≃ −ρ: ð2Þ

Here, ρ and p are respectively the matter density and
pressure of the neutron star, and we assume that the density
field is static. For a static scalar field, which we will denote
by φ0ðrÞ, the equation of motion is

d2φ0

dr2
þ 2

r
dφ0

dr
¼ m2φ0 þ

β

MPl
ρ; ð3Þ

where the dimensionless parameter β characterizes the
strength of the coupling between the scalar and energy
momentum tensor, m stands for the mass of the scalar field
and M2

Pl ≡ ð8πGÞ−1. In the fðRÞ theories studied below,
β ¼ 6−1/2; this can be kept in mind as a representative value
in the following. We can solve this inhomogeneous differ-
ential equation by using a Green’s function

φ0ðrÞ ¼
β

MPl

Z
e−mðr−r0Þ

jr − r0j ρðr
0Þr02dr0: ð4Þ

1. Point charge

Treating the neutron star as a pointlike object, the mass
density is

ρðrÞ ¼ M1

δðrÞ
4π

: ð5Þ

Hence, the static solution for the scalar field simplifies to

φ0ðrÞ ¼
�

β

4πMPl

�
M1e−mr

r
þ φ∞; ð6Þ

with φ∞ being an integration constant.
If we now imagine a second neutron star with mass M2,

we can use the previous equation to compute the scalar
force from the first neutron star that acts on the second one:
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Fφ ¼ β

MPl
M2∇φ ¼ β2

4πM2
Pl

M1M2∇
�
e−mr

r
þ φ∞

�
: ð7Þ

It is convenient to define a potential energy Vφ, in analogy
to the gravitational potential energy:

Vφ ¼ −Gα1
M1e−mr

r
; ð8Þ

where we refer to αi as the charge of the ith neutron star.
This yields a scalar force:

Fφ ¼ −α2M2∇Vφ ¼ Gα1α2M1M2∇
�
e−mr

r

�
: ð9Þ

Note that in the limit where m → 0, α1 ¼ α2 ¼ 1 yields a
scalar force of equal strength to gravity. If we next assume
the masses and the charges of the two neutron stars to
be equal, M1 ¼ M2 ≡M and α1 ¼ α2 ≡ α, comparing
Eqs. (7) and (9), we can relate the coupling β to the
charge α by

α2 ¼ 2β2: ð10Þ

Hence, in fðRÞ gravity, where β ¼ 6−1/2, the scalar charge
α of a neutron star approximated as a pointlike object is
equal to α ¼ 3−1/2 ≃ 0.58.

2. Constant density sphere

As a second example, we treat the neutron stars as
extended objects and assume that the matter energy-
momentum tensor Tμ

μ is constant inside the neutron star
and vanishes outside it, i.e.,

Tμ
μ ¼

�−ρc for r < Rc

0 for r > Rc
; ð11Þ

where Rc is the radius of the neutron star.
The scalar field outside the star is given by [37]

φ0ðrÞ ≃
�

β

4πMPl

�
Me−mφr

r
þ φ∞ if

ΔRc

Rc
> 1;

φ0ðrÞ ≃
�

β

4πMPl

��
3ΔRc

Rc

�
Me−mφr

r
þ φ∞ if

ΔRc

Rc
≪ 1;

ð12Þ

where

ΔRc

Rc
¼ φ∞ − φc

6βMPlΦc
; ð13Þ

with Φc ¼ GM/Rc being the Newtonian potential at the
surface of the star. Here φ∞ is the asymptotic value of the
field φ as r goes to infinity. Allowing for a more general

potential VðφÞ for the scalar, we may expect that φ∞ is the
minimum of the potential VðφÞ (zero for a purely massive
field), while φc is the minimum of the effective potential
VeffðφÞ ¼ VðφÞ þ βρcφ/MPl. Finally, M is the mass of the
neutron star and mφ is the mass of the scalar field at φ∞.
From this result, we conclude that the charge of the

neutron star is

α2 ¼ 2β2 if
ΔRc

Rc
> 1;

α2 ¼ 2β2
�
3ΔRc

Rc

�
if

ΔRc

Rc
≪ 1: ð14Þ

In the former case, we obtain the expected result for a point
charge. In the latter case, the charge of the neutron star can
be screened via the Chameleon screening mechanism [37].
Below, we focus on cases where the scalar charge of the
neutron stars is not screened.

B. Inspiral dynamics

In this section, we consider a binary system of two
neutron stars with masses M1 and M2 separated by a
distance Δ. The inspiral dynamics of this binary can be
described, to lowest order, as two Newtonian point par-
ticles. In the presence of a universally coupled massive
scalar, the neutron stars carry scalar charges α1 and α2
respectively, and experience an (attractive) scalar force
with magnitude

jFsj ¼
Gα1M1α2M2

Δ2
ð1þmΔÞe−mΔ; ð15Þ

where the mass of the scalar is m and the range of the
scalar force is characterized by the Compton wavelength
λ ¼ 1/m. The scalar force does not operate if the scalar field
is very heavy, i.e., if λ is smaller than the neutron star
radius, or the scalar charge goes to zero.
In the final stages of the inspiral phase, which is of

most interest for GW observations, orbits are expected to
have circularized, in which case the orbital frequency Ω is
related to the separation Δ via the modified Keplerian
relation

Ω2 ¼
�
GMtot

Δ3

�
½1þ α1α2ð1þmΔÞe−mΔ�; ð16Þ

whereMtot ¼ M1 þM2. Setting the binding energy to zero
for infinitely separated stars, the total energy of this binary
system is

E ¼ −
GμMtot

Δ
ð1þ α1α2e−mΔÞ þ 1

2
IΩ2; ð17Þ

with μ ¼ M1M2/Mtot the reduced mass, and I the moment
of inertia for the neutron star system
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I ¼ Ĩ1M1R2
1 þ Ĩ2M2R2

2 þ μΔ2; ð18Þ

where R1;2 are the radii of the two neutron stars and Ĩ their
dimensionless moment of inertia (e.g., Ĩ1;2 ¼ 2/5 when
approximating neutron stars as constant density spheres).
For simplicity, below we neglect the spin of the neutron
stars as well as their internal structure and assume I ≃ μΔ2.
During the inspiral phase the orbit decays due to the

emission of gravitational and scalar radiation.2 Taking the
time derivative of the total energy Eq. (17), the energy loss
rate is

dE
dt

¼ Aðα1; α2;mΔÞμΔ2Ω
dΩ
dt

: ð19Þ

Here we have defined a dimensionless coefficient

Aðα1; α2;mΔÞ ¼ 1 −
4ð1þ α1α2ð1þmΔÞe−mΔÞ

3þ α1α2ð3þ 3mΔþm2Δ2Þe−mΔ ;

ð20Þ

which goes to −1/3 in the GR limit.
The power emitted in gravitational waves is related to the

quadrupole moment of the binary mass as

dEg

dt
¼ 32Gμ2Δ4Ω6

5
∝ Ω10/3: ð21Þ

The gravitational waves are emitted at a frequency
f ¼ Ω/π, e.g., twice the orbital frequency.
The scalar radiation, however, is related to the dipole

moment of the scalar charge for circular orbits (where
the monopole vanishes). The power emitted in scalar
radiation is

dEs

dt
¼ Gμ2Δ2ðα1 − α2Þ2Ω4

6
∝ Ω8/3: ð22Þ

Hence, scalar radiation is emitted at a frequency f ¼ Ω/2π,
e.g., at the orbital frequency.
If there is no other form of energy loss, we can identify

dEg

dt
þ dEs

dt
¼ −

dE
dt

; ð23Þ

which allows us to find the time derivative of the angular
frequency

dΩ
dt

¼ −
GμΩ3

Aðα1; α2;mΔÞ
�
32

5
Δ2Ω2 þ C

�
ð24Þ

and then combining Eqs. (21), (24), and (23) we get

dEg

dΩ
¼ μΔ4Ω3

Aðα1; α2;mΔÞ
G2/3M2/3

tot B
2/3Ω2/3 þ 5

32
C
; ð25Þ

where we defined

B ¼ 1þ α1α2ð1þmΔÞe−mΔ and C ¼ 1

6
ðα1 − α2Þ2:

ð26Þ

Note that the power emitted in gravitational radiation
(∝ Ω10/3) ramps up faster as the orbit decays, than the power
emitted in scalar radiation (∝ Ω8/3). Therefore, we expect
scalar radiation to dominate at low frequencies, or equiv-
alently at large separations. If the separation is larger than
the one where the power in scalar radiation equals that in
gravitational radiation,Δ > Δeq, onemay therefore conclude
that the scalar radiation can be an important factor to consider
in the orbital decay. This is true for a massless scalar field.
When the scalar has a mass, we must alter the story

above somewhat. It becomes possible for scalar radiation
to remain gravitationally bound to the orbital system, and
therefore energy does not meaningfully leave the system.
As noted above, the frequency of the emitted scalar
radiation is equal to the orbital frequency of the binary.
Therefore, there will be a critical separation for the binary,
below which radiation has sufficient energy to escape the
gravitational potential of the binary, and hence carry energy
away. We can estimate this critical separation, Δcrit, by
requiring the momentum of the scalar waves to be larger
than the escape momentum, for a particle of mass m, from
the binary. The momentum of scalar waves is

pm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 −m2

p
; ð27Þ

where we can approximate Ω ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMtot/Δ3

p
. The minimal

momentum for a particle of mass m to escape from the
binary is

pesc ≃m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMtot

Δ

r
: ð28Þ

For Δ ≫ 2GMtot

Δcrit ≃ ð2GMtot/m2Þ1/3; ð29Þ

which is between the Schwarzschild radius associated with
the binary and the Compton wavelength of the scalar. When
the mass of the scalar is small, this critical value is smaller
than the Compton wavelength of the scalar. When the mass
of the scalar is instead large, Δcrit can be larger than the
Compton wavelength of the scalar, but still smaller than the
Schwarzschild radius. So, we can summarize by saying that

2Rigorously speaking, a massive scalar field does not radiate
energy to infinity but since it does take energy away from the
otherwise isolated object, we would indistinctly refer to it as
radiation.
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scalar radiation can carry away energy only when: (1) the
Compton wavelength of the scalar is larger than the
Schwarzschild radius associated with the binary and
(2) the members of the binary system are a bit closer than
the Compton wavelength of the scalar. Note that this is
roughly what you expect, since the scalar force between the
members of the binary only turns on when they are closer
than a Compton wavelength apart.
As we mentioned above, scalar radiation can carry

energy away from the system only when Δ < Δcrit and
the power in scalar radiation dominates that in gravitational
radiation when Δ > Δeq. Therefore, scalar radiation will
contribute significantly to the orbital dynamics when
Δeq < Δcrit. Since mΔcrit ∼Oð1Þ, we conclude that mΔeq

needs to be smaller than one, hence using Eqs. (21) and
(22), Δeq can be approximated as

Δeq ≃
192GMtot

5

1þ α1α2
ðα1 − α2Þ2

: ð30Þ

Here, we have used that Ω ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMtot/Δ3Þð1þ α1α2Þ

p
[compare with Eq. (16)]. Consequently, the criterion
Δeq < Δcrit implies that we must have a Compton wave-
length λ greater than a certain value, as

λ > 2GMtot

�
96

5

1þ α1α2
ðα1 − α2Þ2

�
3/2
: ð31Þ

Unless the magnitude of the charge dipole is Oð1Þ, the
Compton wavelength of the scalar must be large compared
to the scales characterizing the final stages of inspiral
(e.g., 2GMtot). This implies that we can safely neglect
scalar radiation for scenarios where the Compton wave-
length is of order the size of individual neutron stars.
For this reason, we will simply neglect the effects caused

by the scalar radiation by setting C ¼ 0 in the following, in
which case Eq. (25) simplifies to

dEg

dΩ
¼ ð−3AB2/3Þ

�
−
1

3
G2/3M2/3

tot μΩ−1/3
�
; ð32Þ

whereΩ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMtot/Δ3

p
. When the separation of two stars is

much larger than the Compton wavelength of the scalar
field, i.e., mΔ > 1, we have A ≃ −1/3 and B ≃ 1, and we
recover the GR result

dEg

dΩ
≃ −

1

3
G2/3μM2/3

totΩ−1/3: ð33Þ

When the separation is much smaller than the Compton
wavelength of scalar field, we have A ≃ −1/3 and
B ≃ 1þ α1α2, and we get

dEg

dΩ
≃ −

1

3
G2/3μM2/3

tot ð1þ α1α2Þ−2/3Ω−1/3; ð34Þ

in which case the power is enhanced by a factor of
ð1þ α1α2Þ−2/3. It is also instructive to calculate the total
energy emitted during the inspiral phase. In the absence of
other forms of dissipation, we can estimate the total energy
emitted in radiation (gravitational and scalar) to be

Einsp¼
�
GμMtot

Δ
ð1þα1α2e−mΔÞ−1

2
IΩ2

�
Δ¼R1þR2

: ð35Þ

To get an idea for the potential boost in radiated energy,
consider the case of identical neutron stars (M ¼ M1 ¼ M2

and R ¼ R1 ¼ R2). For equal scalar charge, we can neglect
scalar radiation (as described below, a scalar charge dipole
is necessary to efficiently emit scalar radiation). In this
scenario, assuming that λ ≫ R1 þ R2, we have

Einsp ¼
GM2

4R
ð1 − ĨÞð1þ α2Þ ¼ ð1þ α2ÞEinsp;GR: ð36Þ

In the presence of the scalar force, the total energy emitted
in gravitational radiation during the inspiral phase is
boosted by a factor of 1þ α2 as compared to GR. For
α2 ≃ 1/3, a choice relevant to our discussion below, the
total energy emitted during inspiral can be up to ∼33%
higher in the presence of the scalar force.

C. Inspiral waveform

Given the inspiral dynamics, we now examine the
gravitational waveform in the presence of a finite-range
scalar force. The measured strain hðtÞ in a gravitational
wave detector is [63,64]

hðtÞ ¼ 4Q
DL

GμΩ2Δ2 cos

�Z
2πfdt

�
; ð37Þ

where DL is the luminosity distance to the source and Q
encodes the detector response as a function of the angular
position and orientation of the binary. In the following, we
set Q ¼ 1 for convenience (equivalent to perfect response to
either of the two GW polarizations). In addition, we neglect
the cosmological red-shifting of the observed frequency of
gravitational radiation (motivated by the limited horizon for
neutron star binary mergers with LIGO). In the presence of a
scalar force, the GW frequency evolves as

df
dt

¼ B2/3

−3A
96

5
π8/3G5/3M5/3f11/3; ð38Þ

where M ¼ μ3/5M2/5
tot is the chirp mass.

In the left panel of Fig. 1, we plot fðtÞ for GR and two
merger scenarios with a scalar force (with α2 ¼ 1/3 for both
and two choices of the Compton wavelength λ ¼ 2Δc;
10Δc). We track the evolution until the stars come into
contact at a separation Δc, here assumed to be Δc ¼
GMtot/C with identical compaction C≡GM/R ¼ 0.1 for
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both merging stars. Generally speaking, the presence of the
scalar force accelerates the merger and produces a higher
pitched chirp (higher peak frequency). The merger takes
place earlier and the peak frequency is higher, as the
Compton wavelength of the scalar increases.
We will also need the Fourier transform of the time-

domain waveform, given by

h̃ðfÞ≡
Z

∞

−∞
e2πifthðtÞdt: ð39Þ

For a strain of a form hðtÞ ¼ h0ðtÞ cosϕðtÞ, where
d ln h0/dt ≪ dϕ/dt and d2ϕ/dt2 ≪ ðdϕ/dtÞ2, h̃ðfÞ can be
computed using the stationary phase approximation,

h̃ðfÞ ≃HðfÞeiΨðfÞ; ð40Þ

where

HðfÞ ¼ 1

2
h0ðtÞ

�
df
dt

�
−1/2

; ð41Þ

and

ΨðfÞ ¼ 2πft − ϕðfÞ − π

4
: ð42Þ

In the above two equations, t should be thought as a function
of f and is defined as the time at which dϕ/dt ¼ 2πf. Using
Eqs. (16), (37), and (38), we find the amplitude of h̃ðfÞ in the
presence of the scalar force, given by

HðfÞ ¼ ð−3AðfÞÞ1/2BðfÞ1/3
ffiffiffiffiffi
5

24

r
G5/6M5/6

π2/3DL
f−7/6: ð43Þ

An analytic expression for the phase cannot be obtained
in the general case. However, in the limit where m → 0,
we get

ΨðfÞ ¼ 2πtcf −
π

4
þ 3

4ð1þ α2Þ2/3 ð8πGMfÞ−5/3 − ϕc:

ð44Þ

Here, tc is the time at which the separation (formally) goes to
zero in the Newtonian limit of coalescing point particles, and
ϕc is the phase at this time. More generally, we integrate
dϕ/dt ¼ 2πf to obtain Ψ from Eq. (42). We set the
integration constant by choosing a value for Ψ at a particular
frequency feq.
In the right panel of Fig. 1, we show the square root of

the power spectral density
ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p ¼ 2f1/2H for GR
and the two merger scenarios described above plotted
against the projected sensitivity of advanced LIGO [65].
We have assumed that the binary is located at DL ¼
135 Mpc in this example. For Compton wavelengths
significantly larger than the separation at merger, Δc,
the scalar force has a significant effect on the amplitude
within the frequency window probed by LIGO. The phase
ΨðfÞ also plays an important role in distinguishing
waveforms. We show the phase within the LIGO sensi-
tivity window in Fig. 2, where it can be seen that the
difference in phase is significant. In this figure we set
the phases equal at feq ¼ 10 Hz by choosing a set of
integration constants appropriately.

D. Forecasted constraints from the inspiral waveform

Given a high signal-to-noise detection of a neutron star
merger, it is possible to use the measured inspiral waveform
to derive constraints on the product of charges α1α2 and
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FIG. 1. GW signals from a neutron star binary with M1 ¼ M2 ¼ 1.25 M⊙ and DL ¼ 135 Mpc in the Newtonian approximation. We
assume that the compaction of the neutron stars is 0.1, and that the merger happens (and therefore the plots are cut off) when the two
neutron stars contact. Also, the geometrical factor has been taken to be perfect response. The gray dashed line are signals predicted by
GR. The blue and orange lines are signals with the presence of a scalar force of different Compton wavelength. The left panel shows the
time dependence of the frequency. The right panel shows the square root of the power spectral density against the LIGO sensitivity curve
(the line in black).
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Compton wavelength λ in the general model described
above. Given a measured signal sðt; θ̄Þ ¼ nðtÞ þ h̄ðt; θ̄Þ
consisting of a noise realization nðtÞ and merger waveform
h̄ðt; θ̄Þ depending on the “true” parameters θ̄, as well as a
set of template wave-forms gðt; θÞ depending on a set of
candidate parameters θ (the best fit parameters in the
presence of some realization of the noise), the likelihood
function is given by

LðsjθÞ ¼ N exp

�
−
1

2
ðs − gjs − gÞ

�
; ð45Þ

where N is a normalization factor [66]. Given two signals
hðtÞ and gðtÞ, the inner product ðhjgÞ on the vector space
of signals is defined as

ðhjgÞ ¼ 2

Z
∞

0

h̃�ðfÞg̃ðfÞ þ h̃ðfÞg̃�ðfÞ
SnðfÞ

df; ð46Þ

where SnðfÞ is the detector noise spectral density and h̃, g̃
are the Fourier transforms of h, g. The inner product is
defined so that the probability of having a noise realization
n0ðtÞ is pðn ¼ n0Þ ∝ exp½−ðn0jn0Þ/2�. We then marginalize
the logarithm of the likelihood over many noise realizations
(e.g., [67])

hΔχ2ðθÞi≡ 2hlog ½LðsjθÞ/Lðsjθ̄Þ�i
¼ ðh̄ − gjh̄ − gÞ

¼ 4

Z
∞

0

df
SnðfÞ

ðHðf; θ̄Þ2 þHðf; θÞ2

− 2Hðf; θ̄ÞHðf; θÞ cos ½Ψðf; θÞ −Ψðf; θ̄Þ�Þ;
ð47Þ

where Lðsjθ̄Þ is the likelihood evaluated at g ¼ h̄ with H
and Ψ the amplitude and phase of the waveform in the
stationary phase approximation.
To give an idea of the constraints on the parameters in the

sector of the scalar force, we consider a parameter space
including θ ¼ fα2 ≡ α1α2; λ;A;M;Mtot; tc;ϕcg, where

A≡
ffiffiffiffi
5
24

q
G5/6M5/6

π2/3DL
. Note that since the dynamics of the

binary depend only on the product α1α2 it is not possible
to derive constraints on the two charges individually, at
least in the Newtonian limit we are working in [and in the
absence of the effects of scalar radiation, which could in
principle be used to break this degeneracy as it depends on
the charge dipole; see Eq. (22)].We consider two fiducial
scenarios, focusing on α2 and λ. In the first one, the
binary evolves according to GR (e.g., the case of a binary
merger in the absence of a scalar force), θ̄ ¼ fα2 → 0;
λ → 0;…g and we assume thatM1 ¼ M2 ¼ 1.25 M⊙, and
DL ¼ 40 Mpc. This provides an idea of the noise-limited
constraints that could be obtained by Advanced LIGO for
a nearby event. In the second case, the signal contains
a binary influenced by a scalar force with θ̄ ¼ fα2 ¼ 1/3;
λ ¼ 7 GM⊙;…g and the other parameters the same as the
first scenario. For both scenarios, we perform Markov
chain Monte Carlo (MCMC) sampling using the EMCEE

package [68] to sample the likelihood function on the full
7-dimensional parameter space. In addition, we use both
the observed noise curve during the first run of LIGO
(“O1”) [69], and the forecasted noise curve for advanced
LIGO at design sensitivity (“Design”) based on the zero
det, high power scenario [70].
The result is shown in Fig. 3. In the left panel, we show

the noise-limited 3-σ constraints in the absence of a scalar
force. For this fiducial merger, constraints on the Compton
wavelength of order λ≲Oð5–10 kmÞ can be placed over a
wide variety of scalar charges. In addition, it can be seen
that there is little improvement in the constraint when
comparing O1 and design sensitivity, and so already with
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FIG. 2. Phases of GW signals predicted by GR (the gray dashed
line) and theories in the presence of a scalar force (the blue and
orange lines). The parameters are the same as those in Fig. 1. To
show the differences, the phases are calibrated so that they are
identical at the low frequency boundary of the LIGO sensitivity
window.

FIG. 3. The marginalized constraints at one and three σ in the
α2—λ plane with θ̄ ¼ fα2 → 0; λ → 0;…g (left panel) and θ̄ ¼
fα2 ¼ 1/3; λ ¼ 7GM⊙;…g (right panel). The other parameters
are fixed by choosing M1 ¼ M2 ¼ 1.25 M⊙, and DL ¼ 40 Mpc
in both scenarios. The errors are calculated with both LIGO’s O1
noise curve (in blue) and design noise curve (in orange).
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one detection at current sensitivity LIGO should be able to
place stringent bounds. In the right panel, we show the one
and three sigma contours obtained from the case with a
nonzero scalar charge and compton wavelength. Here, there
is a more dramatic improvement between O1 and design
sensitivity. At design sensitivity, and for this fiducial event,
LIGO would be able to determine the charge and compton
wavelength of the scalar at the ∼10% level.
In conclusion, the inspiral phase of neutron star mergers

appears to be a powerful laboratory for constraining scalar
forces weaker than gravity with ranges down to the
λ ∼Oð5–10 kmÞ scale, or providing the basis for a possible
detection if such scalar fifth forces are realized in nature.
This brief analysis motivates a more systematic study of the
possible constraints given a realistic source population and
using the full parameter space, which we defer to
future work.

III. METRIC f(R) GRAVITY

One of the simplest extensions of Einstein’s theory of
general relativity is fðRÞ modified gravity (see, e.g.,
[10,71,72] for reviews). In fðRÞ modified gravity, the
Einstein-Hilbert action of GR is generalized by replacing
the Ricci scalar R with an arbitrary function fðRÞ. Hence,
the action for fðRÞ gravity reads [71]

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ SM½gμν;ψ �; ð48Þ

where we set ℏ ¼ c ¼ 1. Moreover, we defined g≡
detðgμνÞ as the determinant of the metric tensor gμν, and
SM denotes the action of the matter fields, which are
collectively denoted by ψ. To avoid tachyonic instabilities
and the appearance of ghosts (negative kinetic energy
states), viable fðRÞ theories require monotonically growing
and convex functions fðRÞ such that

dfðRÞ
dR

> 0;
d2fðRÞ
dR2

≥ 0: ð49Þ

Note that, in what follows, we will focus on metric fðRÞ
gravity where the field equations are obtained by varying
the action Eq. (48) with respect to the metric tensor. Wewill
not discuss Palatini fðRÞ gravity [71,73] here.
Dynamically fðRÞ theories are equivalent to a specific

class of scalar-tensor theories [74–77]. Depending on
which quantity is identified with the scalar field, different
formulations of this dynamical equivalence exist (see [78]).
A common choice is to transform the fðRÞ action (48) into
a Brans-Dicke theory [79,80] (with ω ¼ 0) in the Jordan
frame,

SJ ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðϕR −UðϕÞÞ þ SJ;M½gμν;ψ �; ð50Þ

where the scalar field ϕ and the Brans-Dicke potential
UðϕÞ are defined by

ϕ≡ dfðRÞ
dR

; UðϕÞ≡ R
dfðRÞ
dR

− fðRÞ: ð51Þ

In many cases it is useful to study fðRÞ gravity as a scalar-
tensor theory in the Einstein frame. One can recast the
action (50) as an action in the Einstein frame by performing
a conformal transformation and redefining the scalar
field [31,74]

gEμν ≡ ϕðφÞgμν; ϕðφÞ≡ e2β
φ

MPl ; ð52Þ

with β ¼ 1/
ffiffiffi
6

p
. Thus, the action in the Einstein frame for

the scalar field φ reads

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

Pl

2
RE −

1

2
∂μφ∂μφ − VðφÞ

�
þ SE;M½gEμνϕðφÞ−1;ψ �; ð53Þ

where the scalar potential is

VðφÞ≡UðϕðφÞÞ
ϕðφÞ2 ; ð54Þ

[compare definitions (51) and (52)]. Notice that, in the
presence of a nontrivial potential VðφÞ, the scalar field φ is
massive; its mass arises from the potential as

m2 ≡ d2VðφÞ
dφ2

����
φ¼φmin

; ð55Þ

with φmin being the field value at the minimum of the
potential.

A. R2 gravity

As a case study, we specialize to R2 gravity, a particular
model of fðRÞ gravity with a single free parameter. In R2

gravity, the function fðRÞ in the Einstein-Hilbert action
(48) is set to [81]

fðRÞ ¼ Rþ a2R2; ð56Þ

where a2 is a free parameter of dimension ½a2� ¼ ½R�−1.
Note that the second inequality in Eq. (49) requires
a2 ≥ 0.
According to Eq. (51), the scalar field ϕ and the Brans-

Dicke potential UðϕÞ for R2 gravity are given by

ϕ ¼ 1þ 2a2R; UðϕÞ ¼ 1

4a2
ðϕ − 1Þ2: ð57Þ

Consequently, the scalar potential VðφÞ in Eq. (54) equals
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VðφÞ ¼ M2
Pl

8a2

�
1 − e−

ffiffi
2
3

p
φ

MPl

�
2

: ð58Þ

This allows us in turn to determine from Eq. (55) the mass
mφ of the scalar field about the vacuum at φ ¼ 0 as

mφ ¼
ffiffiffiffiffiffiffi
1

6a2

s
: ð59Þ

Deviations from a quadratic potential about the vacuum
become important for field excursions of order Δϕ≳ ΔϕNL

with ΔϕNL ≡
ffiffiffiffiffiffiffi
3/2

p
MPl ≃ 0.244G−1/2.

B. Experimental constraints on a2
Several experimental bounds which constrain the free

parameter a2 of R2 gravity exist [82]. For example, the
laboratory bound from the Eöt-Wash experiment is
a2 ≲ 10−10 m2. This effectively rules out the parameter range
relevant here, unless there is some novel screening mecha-
nism that operates on the Earth but not for other astrophysical
systems.Nevertheless, it is important to consider independent
constraints. The tightest existing space-based constraint,
coming from the satellite mission Gravity Probe B, requires
a2 ≲ 5 × 1011 m2. Measurements of the precession of the
pulsar B in the PSR J0737-3039 system impose instead a less
stringent limit of a2 ≲ 2.3 × 1015 m2.
The first neutron star mergers observed by LIGO have

the potential to impose far more stringent bounds on a2
than the existing astrophysical constraints. Considering
only the inspiral, and assuming that α2 ¼ 1/3 as expected
from the discussion above, the predictions from R2 gravity
trace out a horizontal line in the left panel of Fig. 3. For the
binary considered in this plot, we have λ≲ 5 km, and we
find that it would be possible to constrain a2 ≲ 4 × 106 m2

at 3σ. This represents an improvement of 5 orders of
magnitude over the constraint imposed by Gravity Probe B.

C. Equations of motion

In order to derive the equation of motion for the scalar
field φ, we will work in the Einstein frame. By rewriting the
action in the Einstein-frame, SE, in Eq. (53) as a space-time
integral over the corresponding Lagrangian, we see that
this Lagrangian consists of a φ-dependent as well as a
φ-independent part. From the φ-dependent part,

LE;φ ¼ −
ffiffiffiffiffiffiffiffi
−gE

p �
1

2
∂μφ∂μφþ VðφÞ

�
þ LE;M½gEμνϕðφÞ−1;ψ �; ð60Þ

we can derive the equation of motion for the scalar field φ.
For this purpose, we first varyLE;φ with respect to the metric
tensor gμνE to obtain the energy-momentum tensor TE;φ

μν ,

2ffiffiffiffiffiffi−gp δLE;φ

δgμνE
≡ T̃E;φ

μν : ð61Þ

The latter is the sum of the scalar-field and matter energy-
momentum tensors, T̃E;φ

μν ¼ TE;φ
μν þ TE;M

μν , which arise as
(see also [83,84])

TE;φ
μν ¼ −gμν

�
1

2
∂αφ∂αφþ VðφÞ

�
þ ∂μφ∂μφ;

TE
μν ¼

2ffiffiffiffiffiffi−gp δLE;M

δgμν
: ð62Þ

Thereby, TE
μν is related to the physical energy-momentum

tensor Tμν in the Jordan frame by the conformal trans-
formation (52),

TE
μν ¼ ϕðφÞ−2Tμν: ð63Þ

In the case of a perfect fluid, for example, the physical stress-
energy tensor equals Tμν¼ðρþpÞuμuνþpgμν with energy-
density ρ, pressure p and four-velocity uμ. Then, the
corresponding energy density and pressure in the Einstein
frame are given respectively by ρE ¼ ϕðφÞ−2ρ and
pE ¼ ϕðφÞ−2p.
Varying the action Eq. (53), the equations of motion read

□
Eφ ¼ dVðφÞ

dφ
−

β

MPl
TE;M; ð64Þ

GE
μν ¼ 8πGðTE;φ

μν þ TE;M
μν Þ; ð65Þ

and

∇E
μT

μν
E;M ¼ −

β

MPl
TE;MgμνE ∂μφ; ð66Þ

where we consider a matter stress tensor Tμν
E;M consisting

of a perfect fluid. The initial data consist of cold stars
described by a polytropic equation of state p/c2 ¼ KρΓ

with Γ ¼ 2 and K ¼ 123G3M2⊙/c6. In the following, we
will exclusively work in the Einstein frame and omit the
indices “E” denoting the Einstein frame for the sake of
clarity.

IV. SIMULATING NEUTRON STAR
MERGERS IN R2 GRAVITY

In this section, we go beyond a Newtonian analysis of
binary mergers in theories with finite-range scalar forces. A
complete treatment of the fully dynamical strong-gravity
regime requires us to give up on full generality and choose
a particular framework. We focus on the R2 gravity model
described in Sec. III A, performing fully relativistic hydro-
dynamic simulations of individual neutron stars and binary
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neutron star mergers. This model has the benefit of having
only one free parameter, a2, which directly controls the
mass of the scalar d.o.f. in the Einstein frame via Eq. (59),
and therefore the range of the scalar force sourced by
unscreened matter distributions. The numerical techniques
we use have been developed and tested in [52,85–91]. We
refer the reader to these references, which describe the
numerical implementation of the system of Eqs. (64), (65),
and (66). Briefly, and for reference, we employ a finite
difference approximation of the equations of motion, based
on the method of lines, on a regular Cartesian grid. We
adopt fourth order accurate spatial discretization satisfying
the summation by parts rule, and a third order accurate
(Runge-Kutta) time integrator which provides a robust
approach to achieve stability of our numerical implemen-
tation [92–94]. We employ adaptive mesh refinement
(AMR) via the HAD computational infrastructure which
provides distributed, Berger-Oliger style AMR [95,96] with
full subcycling in time, together with an improved treat-
ment of artificial boundaries [97]. Each grid evolves with a
time step satisfying Δtl ¼ 0.25Δxl to guarantee satisfying
the Courant-Friedrichs-Levy condition. In all cases we
employ the LORENE library [91] to define consistent initial
data in GR describing isolated neutron stars or binary
neutron stars in a quasicircular regime. In all our simu-
lations, we monitor the constraint violations and confirm
they stay roughly at the level of that measured at the initial
time throughout our evolutions. As well, we have verified
convergence in a few representative cases in the case of
single stars discussed next (since they are less computa-
tionally demanding than binaries).
With this implementation, we focus first on the study of

individual stars and then binary neutron star systems.
In particular, in Sec. IVA we explore the properties of
individual neutron stars in the Einstein frame of R2 gravity
as a function of a2. We empirically determine the scalar
charge as a function of a2 from the scalar profiles sourced
by neutron stars, and describe how the scalar profile can
exhibit long-lived dynamical excited states. In Sec. IV B,
we perform a comparative study of binary mergers in GR
and R2 gravity sourcing both a long-range and short-range
scalar force. These simulations confirm the qualitative
picture of inspiral described in Sec. II, and reveal novel
effects in the post-merger waveform that are of potential
utility in constraining theories giving rise to short-range
scalar forces.

A. Neutron stars in R2 gravity

To determine the properties of individual neutron stars
in R2 gravity, we perform a suite of fully dynamical
simulations of non-rotating neutron stars. Our initial data
consists of a fluid that would, within GR, describe non-
rotating, static spherically symmetric solutions (constructed
with LORENE). Here, we supplement this by choosing the
scalar field to be initially zero and so these solutions are no

longer static (see discussion in [98] and the Appendix).
We choose stars with ADM mass M ≃ 1.08 M⊙, which
have compaction C ≃ 0.07 for the polytrope considered
here (see Sec. III C), and vary a2 in the range
a2 ¼ f21.8 km2;…; 5000 km2g. Recall from Eq. (59) that
the square of the mass of the scalar d.o.f. in the Einstein
frame is inversely proportional to a2, and therefore smaller
values of a2 correspond to larger masses. The scalar field
is initialized to φ ¼ 0, and subsequently evolves in the
presence of the star. The evolution is tracked for
t ¼ 2.46 ms, corresponding to roughly 20 crossing times
of the neutron star.
For larger values of a2, the scalar profile quickly grows

in the presence of the neutron star, oscillating for a few
cycles, and sourcing (through the scalar monopole
moment) an outgoing pulse of scalar radiation. For values
a2 ≳ 102 km2, the scalar radiation is quite efficient, and the
scalar and density profiles quickly settle into a nearly static
configuration. For smaller values of a2, the scalar profile
oscillates for many cycles, sourcing very little outgoing
scalar radiation. There is also an associated oscillation in
the density. These excited states of the scalar profile are
longer lived than the simulation time, with the amplitude
and frequency of oscillation growing with mass.
Apparently, the oscillating profile for small a2 is not a
very good antenna for scalar radiation. We provide a simple
illustration of this phenomenon in the Appendix. A similar
phenomenon occurs in the context of oscillons [99]: long-
lived, spatially localized, oscillating configurations of a
scalar field with an appropriate nonlinear potential. As
shown in, e.g., [100,101], the hierarchy between the
characteristic size of the oscillon (or more precisely, their
frequency content) and the Compton wavelength of the
scalar in vacuum is responsible for their long lifetimes. This
matches the trend for the neutron star solutions studied
here,3 and suggests that excited state profiles may be
sufficiently long-lived to be phenomenologically relevant
for scalar forces whose Compton wavelength is of order the
size of the neutron star or smaller.
Of primary interest to us here is to characterize the scalar

force induced by the profile around neutron stars, by
making contact with the charge and range defined in
Sec. II. In order to obtain an approximation to the
ground-state scalar profile, we time-average the density
and scalar field profiles in each simulation. Two examples
for the time-averaged density and scalar field profile,
respectively, are depicted in Figs. 4 and 5.
Figure 4 shows the time-averaged neutron star density

profile ρðrÞ for a2 ¼ 21.8 km2 (on the left) and a2 ¼
1090.3 km2 (on the right). These particular values are
chosen to span Compton wavelengths comparable to the

3There are additional effects arising from the nonlinearity of
the scalar potential and the nonlinearities due to the coupling to
gravity which could be relevant here as well.
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size of the stars (left) or the computational domain (right)
and will be the ones employed in our binary simulations.
While the time average of the density profile is displayed
by the blue line, the error bars in light blue correspond to
the standard deviation of the time average. In addition, we
show the neutron star radius for each simulation (dashed
gray line) estimated by the radius containing 95% of the
baryonic mass. Finally, we compare the neutron star
density profile in R2 gravity with the one in GR (black
dashed line). We find that the compaction in R2 gravity is
in general bigger than the corresponding in GR, with
compaction increasing as a2 is decreased over the range
of a2 simulated.
The shape of the scalar field profile φðrÞ clearly varies

for different values of a2. This can be seen from Fig. 5
where we show the time-averaged profile of the scalar field

(blue line) and its standard deviation (light blue error bars)
for a2 ¼ 21.8 km2 in the left panel and a2 ¼ 1090.3 km2

in the right panel. The strong dependence of φðrÞ on a2 and
hence on the scalar mass m [see Eq. (55)] agrees with our
theoretical predictions for the scalar field. From the static
solution for the scalar field in Eq. (12), we can directly
see the exponential dependence of φðrÞ on m. Moreover,
Eq. (12) reveals the dependence of the scalar field on the
parameter β, which is related to the scalar charge α via
Eq. (10). By combining Eqs. (10), (12), we can fit the mass
m and the charge α from the scalar profile extracted from
the simulations. The fit of the simulation data with this
ansatz is shown by the yellow line in Fig. 5. Its error bars
are so small that they are not visible in the plots. Clearly,
the flat-space expectation for the scalar profile is a good
approximation to the fully relativistic solution.
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FIG. 4. Time-averaged neutron star density profiles ρðrÞ in R2 gravity for a2 ¼ 21.8 km2 (left panel) and a2 ¼ 1090.3 km2 (right
panel). The time average of the neutron star density profile corresponds to the blue line, whereas the standard deviation of the time
average is represented by the light blue errors bars. The estimated neutron star radius RNS is indicated by the gray dashed line. In both
cases, the value of the neutron star radius is approximately RNS ≃ 17.9 km. For comparison, we also show the neutron star density profile
in GR which is represented by the black dashed line.
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FIG. 5. Time-averaged scalar field profiles φðrÞ in R2 gravity for a2 ¼ 21.8 km2 (left panel) and a2 ¼ 1090.3 km2 (right panel). As in
Fig. 4, the blue line displays the time average of the scalar field profiles, the light blue errors correspond to the standard deviation of the
time average and the gray dashed line is the estimated neutron star radius, RNS ≃ 17.9 km. In addition, the yellow line represents the best
fit of the simulation data using the first expression in Eq. (12). The errors of the fit are negligibly small and not visible here.
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Results from fitting for the scalar Compton wavelength λ
and scalar charge α are displayed in Fig. 6. We show the
Compton wavelength λ (on the left) and the square of the
scalar charge α2 (on the right) as a function of a2. As in
Fig. 5, the error bars of the extracted fit parameters are
negligibly small and not visible in the plots. We find good
agreement between the values for the Compton wavelength
of the scalar field from the simulation and the theoretical
prediction [see Eq. (55) and note that λ ¼ 1/m)]4 For the
scalar charge, we find that α2 < 1/3 for large values of a2
(recall that we expect α2 ¼ 1/3 for a nonrelativistic star).
This is to be expected because the scalar couples to the
trace of the energy momentum tensor, and the significant
pressure inside the neutron star therefore hinders the ability
of the scalar to couple to density. A lower coupling has the
effect of lowering the scalar charge somewhat. The results
from Fig. 6 are immediately useful for determining the
constraining power from the inspiral phase as a function of
a2 for the binary considered here.

B. Neutron star mergers

We now move on to describe, in fully dynamical strong
gravity, coalescence using some representative numerical
relativity simulations. To explore the dynamics, we focus
on an equal mass binary in a quasicircular configuration
with masses M1 ¼ M2 ¼ 1.32 M⊙, described by a poly-
tropic equation of state with Γ ¼ 2. This mass is not only
close to inferred masses in galactic binary neutron stars
system but is also chosen to avoid prompt-collapse after
merger (in GR), which yields a rotating, deformed massive
neutron star instead lasting for at least 10 ms after the stars

come into contact. We initialize the scalar field to zero
and let the dynamics grow the field to its quasi-stationary
configuration as the orbit ensues.
We first simulate the merger in GR, initializing the

binary at a separation of 50 km, which yields 4 orbital
cycles before the merger, and tracking the post-merger
evolution for at least 10 ms. We extract the Newman-
Penrose scalar Ψ4 ¼ ḧþ − iḧ× on shells in the wave zone,
and integrate in time to obtain the strain. The result is
shown as the dashed-dotted blue line in Fig. 7, which
displays a characteristic chirp during the inspiral followed
by a rich post-merger waveform. In Fig. 8, we show the
post-merger power spectral density (PSD) of the waveform.
In the left panel, we choose a time window defined after the
peak of strain (which takes place ≃2 ms after contact) until
the end of our simulations in the time frame ½17–25� ms; in
the center panel we choose the time frame ½19–25� ms to
remove some of the earlier transient in the merger; in the
right panel we show the time frame ½21–25� ms corre-
sponding to the last part of the simulation. As seen in
previous work (e.g., [102–106]), there are two clear peaks.
The higher frequency, larger amplitude peak, at ≃1.89 kHz
is associated with the quadrupole moment of the massive
neutron star resulting from the merger, and in GR it has
been shown to be correlated to roughly twice the orbital
frequency at the time of contact. Indeed, using the fit
presented in [105], the estimated frequency is 1.93 kHz, in
very good agreement with the measured value. The lower
frequency, lower amplitude peak arises from the radial
modes of the neutron star and/or spiral deformation induced
after the merger [102,103,107] though as time progresses
its relevance is significantly reduced (e.g., [108]). This can
be seen comparing the three panels of Fig. 8.
We perform two simulations in R2 gravity for the same

neutron star system described above, choosing a value of
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FIG. 6. Compton wavelength λ and square of the scalar charge, α2, as a function of a2. The blue dots indicate the best fit parameters for
λ and α2 extracted from fitting the simulation data of the scalar field profiles (compare with Fig. 5). As in Fig. 5, the error bars of the best
fit values are too small to be visible. The blue dashed line is an interpolation of the extracted values. Note that all profiles are averaged
over a same period of time, and therefore results in different residual phases for different examples. That is why there are wiggles in the
right panel.

4There is some deviation at the (1–10)% level, particularly for
large a2. Given the quality of the fits, it is unclear what the source
of this deviation is.
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a2 ¼ 1090.3 km2 that yields a scalar force whose range is
of order the size of the simulation box and a value of a2 ¼
21.8 km2 that yields a scalar force whose range is of order
the size of the neutron stars. The scalar field is initialized to
zero, but “turns on” in a short time scale during the small
portion of an orbit. As described above, this initial con-
dition leads to an initial burst of scalar radiation associated
with the monopole moment of each star, followed by a
period during which the scalar profile around each star
oscillates in time. The gravitational wave forms are
extracted as described above, and plotted in Fig. 7 in
dashed-red (long-range scalar force) and solid-black (short-
range scalar force). The waveform for a2 ¼ 1090.3 km2

has been shifted in time such that the peak strain occurs at
the same moment as for the GR case. In Fig. 8, we show the
postmerger component of the waveforms in the frequency
domain in dashed-red (long-range scalar force) and solid-
black (short-range scalar force) lines.
In the case of a long-range scalar force, the merger is

clearly accelerated as compared to GR. In particular the
sweep upwards in frequency and amplitude is rather rapid.
For instance, the strain amplitude and frequency essentially

doubles in just a single orbit. There is also a clear
modulation of the frequency. This behavior is determined
by several factors. First, the orbit is initialized with an
angular velocity that is consistent with a circular orbit in the
presence of the “GR” gravitational force alone. Therefore,
the contribution to the net gravitational force provided by
the scalar force, which is activated soon after the simulation
begins, induces a nearly radial impulse that accelerates the
merger process. Second, there is a faster rate of orbital
decay due to a higher luminosity of gravitational radiation
associated with the higher angular frequency at fixed
separation which is evidenced in the more rapid/intense
sweep in the chirp during the coalesence as indicated in
Fig. 7. These factors prevent a direct comparison with the
inspiral model presented in Sec. II. However, the qualitative
picture is maintained: the scalar force has a significant
impact on the orbital dynamics.
In the case of a short-range scalar force, the waveform

before the objects contact at t ∼ 13 ms is quite near that of
GR. This is to be expected, since the Compton wavelength
of the scalar, λ ¼ ffiffiffiffiffiffiffi

6a2
p

∼ 11 km, is slightly smaller than
the radius of the neutron stars. There are, however, some
small deviations during the inspiral, which can be traced
back to the initialization of the scalar field during the first
few cycles. As the scalar field is grows, it overshoots its
static profile and begins oscillating. This temporarily
increases the range of the scalar force, and the resulting
radial impulse makes the orbit slightly elliptical.
As the stars merge, they form a massive neutron star

which rotates at a varying frequency as the object com-
presses/decompresses from the perspective of the co-rotating
frame. The difference in structure between the neutron stars
in GR and the short range scalar force is already apparent in
the waveform, with the waveform attaining a peak amplitude
and frequency at a somewhat later time than for GR. This is
because, as we found in Sec. IVA, the core of the neutron
star in the presence of a short range force is somewhat more
dense than in GR. The full post-merger behaviour can be
more easily analyzed in the frequency domain by inspecting
the (square root of the) power spectral density as shown in
Fig. 8. There is a clear shift towards higher frequencies in
the case of the short-range scalar force as compared to GR,
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(a2 ¼ 21.8 km2), A500 (a2 ¼ 1090.3 km2), GR for the short-
range, long-range and GR cases respectively]. Notice the long-
range scalar force case has been shifted in time to ease the
comparison across all cases. The stars contact each other at
t ≃ 13 ms in the plot.
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implying that in this case the scalar force inside the neutron
star plays a nontrivial role in the postmerger dynamics. In
addition, the dominant peak for the short-range scalar force
drifts to higher frequency with time, which is consistent with
the presence of a short range force accelerating the orbital
frequency of the peaks in density inside the postmerger
neutron star.
Examining the subleading peak, the amplitude in the

case of GR and the long-range scalar force decreases with
time, becoming nearly invisible in the right panel of Fig. 8.
However, this is not the case in the binary with a short-
range scalar force at least for about 12 ms after merger.
Here, the reported oscillations in the scalar field—which
induce non-trivial variations (at the level of 10%) in the
central density of the merged object when compared to the
GR case—seemingly helps to maintain this subleading
mode. This behavior thus represents a possible smoking
gun signal for the presence of such a short-range additional
force. Further studies of this behavior are required to fully
understand its generality. At this point we find it important
to stress how relevant having some clear evidence for a
possible short-range scalar force acting in the system is.
Namely, we have already discussed that pre-merger gravi-
tational wave signals in this case will be quite similar to
those obtained in the GR case. As discussed, the shift in the
PSD could hint of such an effect but could potentially be
degenerate with equation of state effects. For instance,
employing the fit between peak frequency and contact
frequency from [104], one can check that a binary systems
described by stars of the same mass but a compaction
higher by 4% would have a peak gravitational wave PSD in
GR at the peak frequency we observe.
Interestingly there is no frequency shift, and only a

moderate difference in the relative peak heights, between
the long-range scalar force case and GR. While we note
again that the behavior in this case is partially obscured
by the initial data issue discussed earlier, the fact that the
post merger frequencies align well with the GR case
indicates the physics after the merger is likely robust. In
the case of the short-range scalar force, the post-merger
object achieves a higher degree of compaction as it rotates
and oscillates (in the comoving frame), which naturally
implies that a higher frequency is achieved. On the other
hand, the long-range scalar force does not yield a more
compact post-merger object, displaying a dynamics quite
similar to that in the GR case.
Both the frequencies and amplitudes of peaks in the

frequency domain carry useful information about scalar
forces whose range is smaller than the size of the neutron
star, providing a possible observable to extend the con-
straints from inspiral presented in Sec. II D to smaller
masses. The likelihood of extracting such information in
the postmerger stage, even in the case of GR alone, has been
the subject of increased scrutiny recently, e.g., [102,103,105,
108,109]. One can readily extend the knowledge drawn in

such studies to the question of extracting, for instance, the
peak mode frequency of the postmerger oscillation. In the
case of individual events, it will be difficult to extract such
information unless a “fortunate” event happens sufficiently
close, e.g., within 50 Mpc, the mode lasts for sufficiently
long (in the order of tens of milliseconds) and a rather
aggressive (SNR ≃ 3) threshold is adopted. Otherwise,
statistically, one will require a more sensitive detector (like
the Cosmic Explorer or the Einstein Telescope) and a
suitable combination of several events [110]).

V. CONCLUSIONS

In this paper, we have demonstrated that the observation
of neutron star mergers with existing and near-future
gravitational wave observatories can provide powerful
constraints on finite range scalar-forces, which appear in
many modifications of general relativity. A set of high
signal-to-noise detections by Advanced LIGO could tightly
constrain scalar forces with a range of order the size of
individual neutron stars, λ ∼Oð5–10 kmÞ, using the inspi-
ral phase alone. Focusing on a particular theory of modified
gravity giving rise to a finite-range scalar force, the R2

model of fðRÞ gravity, a suite of numerical simulations
shows that there is additional information in the post-
merger waveform that could be targeted in future gravita-
tional wave observatories to provide constraining power for
forces with an even smaller range.
The analysis we have presented here motivates a more

systematic study of constraints on theories with finite-range
scalar forces such as fðRÞ gravity. Several possible future
directions include:

(i) A study of models where nonlinearities in the
additional scalar d.o.f. play an important role. For
the particular model of fðRÞ gravity we have chosen,
the additional scalar d.o.f. in the Einstein frame
never experiences large enough field excursions to
sample the nonlinear nature of its potential. This
need not be true in other fðRÞ models, or more
generally, for theories with scalar d.o.f. Nonlinear-
ities in the potential can lead to interesting dynamics
in the scalar sector, such as long-lived oscillating
field configurations (oscillons and oscillatons),
domain walls, and runaway behavior to large field
excursions. These behaviors could lead to new
phenomenology during the inspiral, merger, and
postmerger phases of binary evolution.

(ii) A more systematic study of the inspiral phase
including post-Newtonian corrections and scalar
radiation. In Sec. II, we presented a simplified
computation of the gravitational waveform during
inspiral, whose accuracy should be improved by
adding post-Newtonian corrections and incorporat-
ing the (small) energy loss to scalar radiation. These
corrections could play an important role in breaking
parameter degeneracies (e.g., as in GR, where 1PN
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order corrections break the degeneracy between
the individual masses in a binary merger), and
may provide sensitivity to properties of the scalar
profile around the neutron stars beyond the Compton
wavelength and charge described above.

(iii) Detailed forecasts in the context of the design
of future gravitational wave observatories. In
Sec. II D, we provided a forecast for Advanced
LIGO based on the inspiral waveform alone. This
analysis did not consider the full parameter space
(e.g., spin, tidal effects, etc.), and worked at
Newtonian order in the inspiral waveform. In
addition, we did not consider the information
contained in the merger and post-merger phases,
which could be provided by a larger suite of
numerical simulations (although this will be com-
putationally expensive). A more detailed forecast
would go beyond these simplifications, and also
provide a systematic study of which experimental
configurations could yield the optimal constraints.

(iv) Exploration of degeneracies with the neutron star
equation of state. In Sec. IV B, we have seen that the
dynamics of the scalar d.o.f. in R2 gravity can lead to
important differences in the postmerger waveform.
However, the postmerger waveform is also sensitive
to variations of the equation of state of the neutron
star. It is clear that changing the equation of state can
lead to, at least in part, similar phenomena (e.g.,
changing the peak structure of the power spectrum
as in Fig. 8). A more systematic investigation should
be performed to understand what further information
can help break possible degeneracies.

(v) Connections with models of dark energy and screen-
ing mechanisms. Although the R2 gravity model
chosen here does not provide a model for cosmic
acceleration, other choices of fðRÞ (and other
modifications of GR) do. In order for these models
to be phenomenologically viable, the scalar force
must be screened via the Chameleon mechanism (or
other mechanisms, such as Vainstein screening or
the Symmetron mechanism). Although this implies
that there will be no signature from the scalar force
during the inspiral phase [see, e.g., Eq. (14)], there
may be important differences in the post-merger
waveform. This occurred in the R2 model studied in
Sec. IV B with a2 ¼ 21.8 km2, where there were no
effects during inspiral, but interesting differences
from GR in the post-merger waveform. Such a
connection would provide a new window on dark
energy physics, possibly accessible with the next
generation of gravitational wave observatories.

This paper represents only a small step in a systematic
investigation of how to maximize the science return from
future gravitational wave observatories. We hope that
our results serve as further motivation for the community

to undertake detailed studies of how broad this science
return might be in terms of testing modifications and
extensions of general relativity. Although in many cases
the derived constraints on fðRÞ gravity will not be
competitive with existing constraints from terrestrial
experiments (which rule out fifth forces on scales of
order ∼1 μm and larger [33]), binary neutron star mergers
can be used to place independent constraints in a
completely different environment.
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Note added.—Recently, we became aware of the first
detection of gravitational waves from a binary neutron
star merger was announced by LIGO [111]. This event
makes the scenario presented in this paper imminently
testable with existing data, an effort that we hope to
undertake in follow-up work.

APPENDIX: THE LONG-LIVED OSCILLATING
CONFIGURATION OF THE SCALAR FIELD

As mentioned in Sec. IVA, we start the single neutron
star simulation with φ ¼ 0, and expect that φ will approach
a static profile by radiating energy away until the configu-
ration settles into a stable, static state. However, we find
that there still are some oscillating modes left, and are
longer lived than the simulation time. In this Appendix, we
try to understand why such modes persist.
Again, we assume a spherically symmetric flat spacetime

and keep only the quadratic term of the scalar potential for
simplicity. In this case, the time dependent equation of
motion of φ is

−
d2φ
dt2

þ d2φ
dr2

þ 2

r
dφ
dr

¼ m2φþ β

MPl
Tμ
μ: ðA1Þ

We assume the scalar field will approach a static profile
φ0ðrÞ which satisfies
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d2φ0

dr2
þ 2

r
dφ0

dr
¼ m2φ0 þ

β

MPl
T0

μ
μ: ðA2Þ

and rewrite φðt; rÞ as

φðt; rÞ ¼ ½1þ fðtÞ�φ0ðrÞ þ δφðt; rÞ: ðA3Þ

Here fðtÞ represents the oscillations on top of φ0. To
demonstrate, we could focus on oscillations with a single
frequency by choosing fðtÞ≡ f0 sinðω0tÞ. Inserting the
ansatz (A3) in Eq. (A1) and subtracting the static part of
the equation, we obtain the equation for δφðr; tÞ,

−
d2δφ
dt2

þ d2δφ
dr2

þ 2

r
dδφ
dr

−m2δφ ¼ fðtÞJðrÞ; ðA4Þ

where

JðrÞ≡ β

MPl
Tμ
μ − ω2

0φ0ðrÞ: ðA5Þ

From Eq. (A4), we find that δφ is sourced by fðtÞJðrÞ,
and therefore could drain energy from the oscillations.
Using the retarded Green function

GRðωjr − r0Þ ¼ esignðωÞei
ffiffiffiffiffiffiffiffiffiffi
ω2−m2

p
ðr−r0Þ

jr − r0j ðA6Þ

for jωj ≥ m, we solve δφ in the frequency domain

δφðωjrÞ ¼ −
esignðωÞei

ffiffiffiffiffiffiffiffiffiffi
ω2−m2

p
r

r
fðωÞJ0; ðA7Þ

where we defined J0 ¼
R
dr0r02Jðr0Þ. Then we can find

δφðt; rÞ ¼ −
f0J0
r

sin

�
ω0t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 −m2

q
r

�
; ðA8Þ

which carries an energy flux (averaged over one
period) of

h∂tδφ∂rδφi ¼ −
2f20J

2
0

r2
ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 −m2

q
: ðA9Þ

From this we see that the oscillation of the scalar field
will decay slowly if ω0 ∼m. It is indeed this behavior that
we observe in our simulations (see Sec. IV).
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