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We consider the properties and dynamics of black holes within a family of alternative theories of gravity,
namely Einstein-Maxwell-dilaton theory. We analyze the dynamical evolution of individual black holes as
well as the merger of binary black hole systems. We do this for a wide range of parameter values for the
family of Einstein-Maxwell-dilaton theories, investigating, in the process, the stability of these black holes.
We examine radiative degrees of freedom, explore the impact of the scalar field on the dynamics of merger,
and compare with other scalar-tensor theories. We argue that the dilaton can largely be discounted in
understanding merging binary systems and that the end states essentially interpolate between charged and
uncharged, rotating black holes. For the relatively small charge values considered here, we conclude that
these black hole systems will be difficult to distinguish from their analogs within General Relativity.
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I. INTRODUCTION

One particularly exciting prospect arising from the recent
advent of gravitational wave astronomy is the possibility of
testing General Relativity (GR) in the previously inacces-
sible strongly gravitating/highly dynamical regime. Indeed,
first steps in this direction have already been enabled by
the first three available detections: GW150914 [1],
GW151226 [2], and GW170104 [3]. Analysis of these
signals reveals that they are consistent with those produced
by black hole mergers in GR [4,5], with independent and
complementary tests coming from the inspiral and post-
merger periods.
Ongoing efforts with additional detections and studies

of predicted signals will allow for further scrutiny [6–8].
Accurate predictions of possible signals are not only
important to aid in future detections but are also helpful
in realizing important tests of the theory. Such tests could
potentially indicate that nature deviates from GR. However,
simply identifying possible deviations is unlikely to pro-
vide sufficient guidance as to the alternative that nature may
have chosen. In contrast to the GR case, our understanding
of potential signals within alternative theories of gravity is
still rather limited.
To date, this approach of looking for such deviations has

been primarily restricted to the consideration of phenom-
enological models (e.g. Refs. [9,10]). Another avenue for
obtaining detailed predictions is to use fully nonlinear
treatments within specific alternative gravitational theories.
Such an approach, however, requires theories which pos-
sess well-posed evolutionary problems in addition to

producing spacetime deviations in, for example, binary
black hole mergers. Such a requirement is fairly stringent
and limits the number of possible options. We do note that
there is a body of previous work which has studied the
possibility of deviations within the context of binary
neutron star systems (see e.g. Refs. [11–14]). However,
currently available observations indicate that the majority
of events that we might expect in the near future should
correspond to binary black hole systems [15]. Recent
approaches to the nonlinear regime for such binary mergers
in GR alternatives are beginning to address concerns with,
for example, ill-posedness [16–18].
In the present work, we study black hole systems (single

and binaries) in the Einstein-Maxwell-dilaton (EMD)
theory [19]. This theory, originating from a low energy
limit of string theory, allows for black holes that have mass,
rotation, charge and scalar “hair” together with scalar,
vector, and tensor radiative channels. Furthermore, its
mathematical structure allows for defining a well-posed
initial value problem. It therefore offers an interesting
theoretical and computational playground within which
to explore possible deviations from the Standard Model
(i.e. GR) prediction.
While we provide below some specifics regarding the

black holes we consider in this work, it is worth mentioning
that our understanding of black hole systems in EMD is
admittedly rather limited. For example, analytic solutions
are known primarily for nonrotating systems. A spherically
symmetric family of solutions parametrized by the scalar
(dilaton) coupling exists, and these solutions are known
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analytically across a range of coupling values. However,
analytic investigations of their perturbations, stability, and
rotating generalizations are at best limited to a handful of
specific values of the coupling.
While our aim in the current work is not necessarily to

address all of these questions, we do study single and
binary black hole systems within EMD and draw some
general conclusions to help understand the dynamics of
coalescing binaries.
The subsequent presentation is divided up as follows.

Section II presents the equations of motion describing the
systems’ dynamics. Section III includes a brief description
of known, nonspinning black holes, possible instabilities,
and a discussion of possible radiative effects. Section IV
presents results for both single and binary black hole
systems for the case of small charge. We conclude in
Sec. V. We defer to an Appendix a description of EMD
black hole solutions in isotropic coordinates and to a
second Appendix a calculation of the radiative properties
in the Jordan frame.

II. EQUATIONS

The alternative theory of gravity that we consider has
origins in low energy string theory. A particular sector of
this theory includes a U(1) gauge field and a scalar field that
couples exponentially to the gauge field. For definiteness,
we consider the action for low energy, heterotic string
theory

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
e−2ϕ

�
Rþ Λþ 4ð∇ϕÞ2 − F2 −

H2

12

�
; ð1Þ

where the matter content includes a scalar field serving
as the dilaton, ϕ; a U(1) gauge field, Fab; and a three-
form field, Habc, which is related to the axion and
which, together with the cosmological constant Λ, we
set to zero in the following. This action is written with
respect to the string metric, g̃ab, which is the metric to
which strings couple. (It is also referred to as the Jordan
metric or frame.) In many treatments, including this work, a
conformal transformation is performed to the Einstein
metric, or frame, via gab ¼ e−2ϕg̃ab. On performing this
transformation at the level of the action, we arrive at the
expression

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p h
R − 2ð∇ϕÞ2 − 2V − e−2α0ϕF2

i
; ð2Þ

where, as before, the scalar field, ϕ, is the dilaton and Fab is
the Maxwell tensor. Note that we have chosen to generalize
the theory a bit by including VðϕÞ, a potential for the
dilaton, together with including the real constant α0 to
parametrize among theories. In particular, α0 ¼ 0 is just
Einstein-Maxwell minimally coupled to a real scalar field,
α0 ¼ 1 is the sector of low energy string theory referred to
above, and α0 ¼

ffiffiffi
3

p
corresponds to Kaluza-Klein theory

[20,21]. This action defines a class of theories often
referred to as Einstein-Maxwell-dilaton. Our interest
focuses on dynamical processes within this theory and
how they might compare with standard General Relativity.
The equations of motion that follow from this action are

the Einstein-Maxwell equations coupled nonlinearly to a
propagating scalar field (the dilaton), namely

Rab ¼ 2

�
Tab −

1

2
gabT

�
ð3Þ

∇a∇aϕ ¼ 1

2

∂V
∂ϕ −

α0
2
e−2α0ϕF2 ð4Þ

∇aFab ¼ −Ib: ð5Þ

Notice that the exponential coupling of the dilaton in its
equation of motion is again present in both the four-current,
Ib, and the stress-energy tensor

Ib ¼ −2α0∇aϕFab ð6Þ

Tab ¼ Tϕ
ab þ e−2α0ϕTEM

ab ð7Þ

Tϕ
ab ¼ ∇aϕ∇bϕ −

1

2
gab½∇cϕ∇cϕþ VðϕÞ� ð8Þ

TEM
ab ¼ FacFb

c −
1

4
gabF2: ð9Þ

These equations are supplemented by the identity
∇½aFbc� ¼ 0. Because of the presence of this and related
constraint equations in the above evolution system, we, in
fact, use an extended Maxwell system which aids in
damping dynamically these constraints. To the above
Maxwell equations, we add extra scalar fields, Ψ and Φ,
in such a way that the Maxwell constraints are allowed to
propagate at the speed of light. These equations become

∇aðFab þ gabΨÞ ¼ κ1nbΨ − Ib ð10Þ

∇aðð�FÞab þ gabΦÞ ¼ κ2nbΦ; ð11Þ

where the κs are real constants used to adjust the constraint
damping and ð�FÞab ¼ 1

2
ϵabcdFcd is the dual of Fab.

We use the usual Cauchy, or 3þ 1, decomposition in
which the spacetime is foliated into spacelike hypersurfa-
ces, Σt, labeled by a coordinate time, t. The timelike normal
is na with orientation such that na ¼ −αδta, and the metric
on the hypersurfaces is γij. The lapse and vector shift of the
coordinates are given by α and βi. The line element of the
spacetime is then

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ð12Þ
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Note that we define a derivative operator,Di, built from the
3-metric γij, which should be compared with the full
derivative operator, ∇a, built from gab. Likewise, we
define a 3-Levi-Cività antisymmetric tensor density as
ϵbcd ¼ naϵabcd.
With respect to these 3þ 1 variables, we can write the

above matter equations as

ð∂t − LβÞϕ ¼ −αΠ ð13Þ

ð∂t − LβÞΠ ¼ −DiðαDiϕÞ þ αKΠþ α

2

∂V
∂ϕ

− α0αe−2α0ϕ½BiBi − EiEi� ð14Þ

ð∂t − LβÞEi ¼ ϵijkDjðαBkÞ þ α½KEi −DiΨ�
− 2α0α½ϵijkDjϕBk þ ΠEi� ð15Þ

ð∂t − LβÞΨ ¼ α½2α0DjϕEj −DjEj − κ1Ψ� ð16Þ

ð∂t − LβÞBi ¼ −ϵijkDjðαEkÞ þ α½KBi þDiΦ� ð17Þ

ð∂t − LβÞΦ ¼ α½DjBj − κ2Φ�; ð18Þ

where we define the electric, Ei ≡ γi
jFjcnc, and magnetic,

Bi ≡ 1
2
ϵijkFjk, fields relative to their projections into the

spacelike hypersurface, Σt. Note, too, that we have defined
Π≡ −na∇aϕ and invoked the Lie derivative along the
shift, Lβ.
For the evolution of the gravitational field in the Einstein

frame, we use the BSSN formalism for which we give here
only the projections of the matter stress tensor, namely

ρ ¼ nanbTab ¼ DiϕDiϕþ Π2 þ V

þ e−2α0ϕðBiBi þ EiEiÞ ð19Þ

ji ¼ −naγibTab ¼ −2ΠDiϕ − 2e−2α0ϕϵijkEjBk ð20Þ

Sij ¼ γi
aγj

bTab ¼ 2DiϕDjϕþ 2e−2α0ϕðBiBj − EiEjÞ
− γij½DkϕDkϕ − Π2 þ V

þ e−2α0ϕðBkBk − EkEkÞ�: ð21Þ

We implement the resulting equations using techniques
described previously [22–27] and demonstrate convergence
for a particular case as seen in Fig. 1. We note that we adopt
the “1þ log” and Gamma drivers for the lapse function and
the shift vector. Finally, using standard BSSN notation, we
set the quantities K0 and η to 0 and 2=Mð1=MÞ, respec-
tively, for the single (binary) black holes studied here [28].

III. PRELIMINARIES

Before discussing the dynamics as revealed by numerical
evolutions, we first discuss some properties of the model.

A. Known black hole solutions

There exist a number of black hole solutions in EMD.
One such solution is a static, magnetically charged black
hole solution found in Refs. [19,29]. In Schwarzschild-like
coordinates, this solution takes the form

ds2 ¼ −
�
1 −

rþ
r

��
1 −

r−
r

�
1−α1

dt2

þ
�
1 −

rþ
r

�
−1
�
1 −

r−
r

�
α1−1

dr2

þ r2
�
1 −

r−
r

�
α1
dΩ2 ð22Þ

Fθϕ ¼ Qm sin θ ð23Þ

e−2α0ϕ ¼ e−2α0ϕ0

�
1 −

r−
r

�
α1
; ð24Þ

where α1 ¼ 2α20=ð1þ α20Þ and ϕ0 is the asymptotic value of
the dilaton at spatial infinity. This solution has magnetic
charge Qm. The constants r� are given in terms of Qm, ϕ0,
and the ADM mass, M, of the spacetime:

2M ¼ rþ þ ð1 − α1Þr− ð25Þ

FIG. 1. Convergence for a magnetic black hole. Shown are
various fields at late time (t ¼ 80M) for three different resolutions.
Each run uses fixed mesh refinement but differs by a factor of 2x in
resolution for the same grid structure. The top panel shows that all
three resolutions approach the same, static solution. The bottom
two panels are measures of errors demonstrating that higher
resolution runs have lower errors. In particular, the middle frame
shows the divergence of the magnetic field which should be zero
except at the center (because of the monopole charge). The bottom
frame shows the residual of the Hamiltonian constraint.
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2Q2
m ¼ e2α0ϕ0rþr−ð2 − α1Þ: ð26Þ

Properties of this black hole solution are given, for instance,
in Refs. [19,30]. For our purposes, it suffices to note that rþ
corresponds to an event horizon and r− is the location of a
curvature singularity. Note, too, that the dilaton, for r > r−,
is larger than its asymptotic value and monotonically
decreases toward ϕ0.
There is a discrete electromagnetic duality in this theory

that exchanges magnetic and electric solutions. The explicit
duality leaves the metric unchanged but sends Fab →
e−2α0ϕð�FÞab and ϕ → −ϕ. Because of the presence of
the dilaton, the electrically charged solution is, in fact, a
different solution. While the metric takes the same form as
above, the Maxwell field and dilaton become

Ftr ¼
Qe

r2
ð27Þ

e2α0ϕ ¼ e2α0ϕ0

�
1 −

r−
r

�
α1
; ð28Þ

for which the constants r� satisfy

2M ¼ rþ þ ð1 − α1Þr− ð29Þ
2Q2

e ¼ e−2α0ϕ0rþr−ð2 − α1Þ: ð30Þ

In this case, the solution has electric charge, Qe; ADM
mass, M; asymptotic dilaton value, ϕ0; an event horizon at
r ¼ rþ; a curvature singularity at r−; and, for r > r−, a
dilaton monotonically increasing toward ϕ0.
We know of linearized perturbations of these black holes

only for the case α0 ¼ 1 [31]. There quasinormal spectra
have been computed, and it was shown that the presence of
the dilaton induces a difference in the spectra of axial and
polar perturbations. This difference breaks isospectrality, a
property known to apply to both Schwarzschild and
Reissner-Nordström (RN) black holes.
Note that in the limit α0 → 0 the solution corresponds to

that of a charged RN black hole. As α0 → ∞, the solution is
simply an uncharged Schwarzschild black hole for which the
Maxwell field is zero and the dilaton is a constant. By
extension, we expect (and show below) that for the rotating
solutions α0 interpolates between the charged Kerr-Newman
black hole and the uncharged Kerr solution, the latter
unadorned by scalar or vector fields. One way of under-
standing the α0 → ∞ limit is that the gravitational sector
decouples from thematter sector (see, for example,Ref. [32]).
In this limit, regardless of the behavior of the dilaton and
Maxwell field, the gravitational solutions are just those of
GR, such as Schwarzschild and Kerr black holes.
Moving away from spherical symmetry, there are rotating

black hole solutions in EMD, but to our knowledge, an
analytic solution is only known for the case α0 ¼

ffiffiffi
3

p
, which

corresponds to Kaluza-Klein. Rotating, electrically charged

solutions were constructed in Ref. [20] with dyonic gener-
alizations described in Refs. [33,34]. Rotating solutions in
EMD for other coupling values have been constructed
numerically [35–37]. Further, the behavior of perturbations
and questions related to stability would appear to be largely
unexplored. An important exception to this is Ref. [31],
which considers the quasinormal modes of the spherically
symmetric solutions for α0 ¼ 1. Recently, time-dependent,
spherically symmetric solutions sourced by a charged null
dust flow have been presented in EMD [38]. Interestingly, it
is only for the coupling α0 ¼ 1 that the solution describes a
time-dependent dilaton (in addition to time-dependentmetric
and gauge fields). Although it includes an axionwhichwe do
not consider in thiswork,wenote that quasinormalmodes for
the charged, rotating Kerr-Sen black hole have been con-
sidered in Refs. [39,40].
In what follows, we study both single and binary black

hole scenarios and derive general statements about the
dynamical behavior induced by EMD. As a prelude, we
first present a simple-minded picture which can capture a
possible transition in the behavior of the scalar field.

B. Scalar field instabilities

Here, we argue two types of instabilities could trigger
nontrivial behavior of the scalar field. The analysis follows
closely the arguments presented in Ref. [41].
Consider the linearized equation of motion for the

dilaton, Eq. (4), which becomes

□ϕ ¼ −
α0
2
ð1 − 2α0ϕÞF2 ð31Þ

with □ defined with respect to a background metric. We
can rewrite the above equation as

ð□ − μ2Þϕ ¼ −
α0
2
F2 ð32Þ

by introducing μ2 ≡ α20F
2. Following the discussion in

Appendix A, notice that μ2 can have either sign, depending
on whether the magnetic or electric field dominates.
Assuming the charge Q (either magnetic or electric case)
is small, the metric is that of Schwarzschild to OðQ2Þ.
Expanding the dilaton in spherical harmonics as ϕ ¼
Σlme−iωtYlmðθ;φÞΦlmðrÞ=r yields

f2Φ00
lm þ f0fΦ0

lm þ ½ω2 − fV̄ðrÞ�Φlm ¼ −f
α0
2
F2reiωt

ð33Þ
with V̄ðrÞ¼lðlþ1Þ=r2þ2M=r3þμ2 and fðrÞ ¼ 1–2M=r.
This equation is similar to that obtained in Ref. [41] except
for the presence of a source termon the right-hand sidewhich
is independent ofΦlm. Integrating the equation over a period
does away with the source, and in this cycle-averaged sense,
we will ignore it in the following. A sufficient condition for
an instability is that

R∞
rBH

V̄ðrÞdr < 0, which translates into
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Z
∞

rBH

�
lðlþ 1Þ

r2
þ 2M

r3

�
dr < −α20

Z
∞

rBH

F2dr; ð34Þ

and thus the instability condition becomes

2lðlþ 1Þ þ 1

4M
< −α20

Z
∞

rBH

F2dr: ð35Þ

Condition (35) implies that the electrically dominated
case is subject to this instability while the magnetically
dominated case is not. Indeed, such an instability resembles
the standard negative mass instability, and that will be our
primary focus here. However, we note that the magnetically
dominated case may be subject to a superradiant type
instability associated with rotating black holes as the
effective mass μ could introduce a potential barrier that
would provide feedback for such a process.
For now, consider Eq. (35) and evaluate it in a simple

case such as the solution provided in Appendix A con-
centrating on the electrically dominated case and for small
charge. Evaluation of Eq. (35) gives

2lðlþ 1Þ þ 1

4M
< α20

Q2
e

12M3
; ð36Þ

for which the smallest bound on α0 is achieved with l ¼ 0.
Clearly, the coupling and charge must satisfy

3 < α20

�
Qe

M

�
2

: ð37Þ

On rearranging, this condition, α0 >
ffiffiffi
3

p ðM=QeÞ, indicates
an instability at a large value of α0 for small charges. This
analysis suggests that one needs “large parameters to get
large effects.” For concreteness, a charge of Qe=M ¼ 10−3

predicts an instability for α0 ≳ 1.7 × 103.

C. Extra degrees of freedom and black hole binaries

Although EMD is interesting in its own right, the
remarkable direct detections of the mergers of black hole
binaries by LIGO provides arguably the first opportunity to
truly test gravity in strong field/highly dynamical settings.
As such, we can regard EMD as an alternative to GR, one
that includes additional degrees of freedom in the form of a
scalar and vector field. In that respect, EMD has a scalar
degree of freedom in common with scalar-tensor theories
where several new phenomena have been well established.
In such theories, one can characterize the scalar field by

its scalar monopole charge. This scalar charge (one
generally drops the “monopole”) can be evaluated by
computing the divergence of the field over some large
Gaussian surface. In particular, at large radius, one con-
siders the behavior of the scalar as ϕðrÞ ≈ ϕ0 þ ϕ1=r so
that ϕ1 is the scalar charge and ϕ0 is the asymptotic value of
the scalar field.

In some scalar-tensor gravity theories, it has been found
that the scalar field can grow significantly around compact
neutron stars [42,43]. This process, known as spontaneous
scalarization, induces a scalar charge around each neutron
star that determines the extent to which the theory’s
predictions differ from those of GR [42,44]. In particular,
such effects, originating in the scalar field, allow for an
enhancement of the gravitational force and for additional
channels of radiation (such as dipole scalar radiation). As a
result, one generally expects such binaries to merge earlier
than their GR counterparts (e.g. Refs. [11,14,43,45]). Black
holes in such theories are identical to those of GR, and the
gravitational waves observed in their merger provide no
new features and therefore offer no distinguishing test of
the theory (unless the asymptotic value of the scalar field is
time dependent [46]).
In contrast, the EMD gravity theory that we study here

allows for a scalar charge even without the presence of
matter as long as the gauge field (and thus the gauge charge
of the black hole) is nonzero. There are two ways to
interpret the U(1) gauge field. Astrophysically, one expects
the black hole gauge charge to be very small if the gauge
field corresponds to the Standard Model (SM) electromag-
netic field. On the contrary, one can consider this gauge
field not as the usual electromagnetic field of the SM but
instead an additional field that is simply a component of
gravity. In that case, there exist no constraints in principle
for the black hole charge, but it is natural to expect it should
also be small. Regardless of these considerations, one can
consider black holes in EMD theory as natural proxies to
consider general fields describing gravity: the spin 0 scalar,
the spin 1 gauge field, and the spin 2 metric field.

IV. RESULTS

In what follows, we discuss results obtained for
single and binary black hole systems, which have been
studied via numerical simulations. Our implementation of
Eqs. (13)–(18), along with the BSSN equations coupled to
the sources in Eqs. (19)–(21), adopts finite difference
techniques satisfying summation by parts on a regular
Cartesian grid [47,48]. All fields are discretized using a
fourth order accurate scheme. The time evolution of the
resulting equations is performed by using a third order
accurate Runge-Kutta scheme [22,25]. We employ adaptive
mesh refinement (AMR) via the HAD computational infra-
structure. This provides distributed, Berger-Oliger style
AMR [24,27] with full subcycling in time, with the
inclusion of an improved treatment of artificial boundaries
[49]. In addition, for cases with large values of α0, and for
which the field becomes fairly nonsmooth in the central
area of each black hole, we adopt a more aggressive form of
dissipation (essentially a high-pass filter) on the dilaton
localized to those regions which lie well within the apparent
horizon. This aggressive form of dissipation utilizes a
second order form (in addition to the usual fourth order)
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of Kreiss-Oliger dissipation, which effectively provides
for a smaller transition frequency when considering the
dissipation as a low-pass filter.
In our single black hole runs, we adopt a massM ¼ 1 and

employ a Cartesian grid with extent ½−64; 64�3 with a base
resolution of 81 equispaced points in each direction. There
are six levels of concentric, fixed, finer meshes covering half
the extent of each parent, such that the finest resolution is
h ¼ 0.05. For these runs, we employ the standard gauge
driverwith η ¼ 2=Mwhereη is the standard gaugeparameter
of the Gamma driver coordinate choice.
In our binary black hole runs, we adopt m1 ¼ m2 ¼ 1=2

for the equal mass case or for the unequal case
m1 ¼ 0.5788, m2 ¼ 0.3852. Our coarsest computational
grid is defined over ½−204.8; 204.8�3, and each direction is
covered with 81 uniformly spaced points. We additionally
employ eight levels of refinement (with a 2∶1 refinement
ratio). The first two are fixed in ½−102.4; 102.4�3 and
½−34; 34�3, while the remaining six adapt dynamically
through the shadow hierarchy, giving a finest resolution
of h ¼ 0.02. For these runs, we use the standard gauge
driver but find that resolving the rapid dynamics of the
merger requires choosing η ¼ 1=ðm1 þm2Þ.

A. Single black holes

We present first the behavior of the dilaton scalar field in
spacetimes with a weakly charged single black hole. For a
simple way to choose initial data and to explore the stability
of the black hole, we choose for our initial data a black hole
solution in GR to which we add a monopole electric (or
magnetic) field (the asymptotic charge value of which is
kept fixed). The dilaton is set to a constant equal to its
asymptotic value, ϕ0. This data do not correspond to a
stationary solution, but they are consistent with the con-
straints to OðQ2Þ.
This initial data are evolved, and, after some transient

behavior, the system generally settles into a stationary
solution. This behavior can be appreciated in Fig. 2, which
plots the central value of ϕ as a function of time for a
number of different configurations. In particular, for small
values of α0, as the charge q≡Q=M is increased, the
magnitude of the dilaton increases quadratically (the figure
rescales some of the curves to fit in the figure); similar
behavior is observed when increasing the value of α0,
which induces a linear increase in the dilaton. This behavior
is in agreement with the known solution described in
Appendix A.
Also shown in the figure are the results of choosing a

Gaussian profile for the dilaton at the initial time instead of
a constant value. In particular, adopting a Gaussian
centered at the origin results in essentially the same
stationary solution, despite differences at early times.
This agreement suggests that a unique, static hairy black
hole, insensitive to the initial configuration of the dilaton, is
an attractor.

Also included is one example of a spinning black hole
with a=M ¼ 0.6. Similar to the static case, our evolutions
suggest a unique, stationary, rotating, stable hairy black
hole. The effect of increasing α0 and the spin are dis-
cussed below.
Finally, there is one case where a monopole magnetic

field has been added to the black hole, showing that the
dilaton is basically the same as in the electric case but with
the opposite sign.
To analyze the solution in more detail, we focus on the

case of a nonspinning, electrically charged black hole with
qe ≡Qe=M ¼ 10−3 and obtain the asymptotic dependence
of the field which can be described by ϕðrÞ ≈ ϕ0 þ ϕ1=r.
We stress that, in contrast to the behavior of the scalar field
with neutron stars in scalar-tensor (ST) theories, the scalar
charge ϕ1 does not sensitively depend on the asymptotic
value of the scalar field ϕ0. This insensitivity implies that
effects such as induced and dynamical scalarization are less
significant in EMD than in ST theories [11,14].
In relation to the discussion in Appendix B, Fig. 3 shows

the value of this scalar charge as a function of dilaton
coupling α0. Notice the linear behavior for small values of
α0, whereas a different trend is clear for larger values. This
behavior can be extracted analytically from the solution
presented in Appendix A (neglecting, for the moment, the
asymptotic value of the dilaton), from which the scalar
charge can be calculated as

ϕ1 ¼
α0Q2

e

M
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðα20 − 1ÞQ2

e=M2
p : ð38Þ

FIG. 2. Central value of dilaton scalar field as a function of time
for various configurations of a single black hole. Note that the
system generally settles to an apparently stationary configuration
for some nontrivial profile of the dilaton field. Here, the
asymptotic value of the scalar field for the electric cases is ϕ0 ¼
−10−10 and for the magnetic case is ϕ0 ¼ þ10−10. For those not
denoted otherwise, α0 ¼ 1. The last two cases are rescaled as
indicated to fit the scales of the plot. Note that the first case and
the last two cases overlap one another.
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The behavior at small α0 extracted from Eq. (38) is
ϕ1 ≈ α0Q2

e=ð2MÞ, while for large values, ϕ1 → jQej. The
numerical solutions obtained for α0 ≲ 5000 are in excellent
agreement with this expression, while a lower than expected
scalar charge is obtained above this value of α0. We note,
however, that numerical simulations become quite challeng-
ing at such large values. For this reason, we will restrict to
α0 ≤ 3000 when studying binary mergers [50].
We also monitor the central value of the scalar field and

display its behavior for the electric case in the bottompanel of
Fig. 3. Although the central field increases at small coupling,
the trend changes dramatically around α0 ¼ 2000, precisely
the point at which the dilaton charge saturates. This behavior
is yet another indication of a transition in the system as α0 is
increased.
Additional insights can be gained by examining the

radial profile of the stationary solution and its dependence
on the coupling α0. Figure 4 shows the radial profile of the
dilaton in the case that ϕ0 ¼ 10−10; qe ¼ 10−3 and for
α0 ¼ f1; 10; 102; 103; 3 × 103g. For comparison purposes,
we rescale linearly the profiles with respect to the value
α0 ¼ 1000. That the solution scales linearly for small
coupling is clearly apparent, in contrast to the solutions
for large α0.
Proceeding in a similar fashion for spinning black holes

(keeping for concreteness qe ¼ 0.001; α0 ¼ 1), we measure
the scalar charge as we vary the spin parameter of the black
hole in the range [0, 0.6] (to ensure a small initial constraint
violation). We find that the scalar charge measured from the
stationary state can be fit approximately as

ϕ1ða=MÞ ¼ ϕ1ð0Þ
�
1–0.4

�
a
M

�
2
�
; ð39Þ

where ϕ1ða ¼ 0Þ is the value of the scalar charge for the
nonrotating case. Notice the charge decreases as the spin
increases.
We have also looked at the quasinormal modes (QNM)

of oscillation of perturbed black holes. In particular, on
simulating the head-on collision of two black holes, we
produce a strongly perturbed remnant black hole and can
extract the frequency of the strongest QNM in the ring-
down. Such QNM frequencies have been calculated ana-
lytically for α0 ¼ 1 in EMD [31]. We confirm that the
frequency from the numerical simulation agrees with the
analytic value to within 4(7)% for the real (imaginary) part
of the frequency.
However, we note that for the small (electromagnetic)

charges that we consider here the differences in these QNM
frequencies in comparison to the GR case are small not just
for the α0 ¼ 1 case but for a large range of α0 values as well.
In consequence, the difference in EMD and GR ringdown
dynamics will not be distinguishable above our numerical
error (of the order of 5% in the extracted frequency/decay
rate of the fundamental mode). Another way of saying this is
that the role of the dilaton is largely inconsequential in terms
of its effect on the dynamics and the formation of the final
black hole. This is consistent with our earlier observation
that EMD, for different values of the coupling α0, has a
phenomenology that interpolates between charged and
neutral black holes. Indeed, we could well have inferred
the comparable QNM decay rates between EMD and GR
from this observation and the known QNM spectra for
weakly charged black holes [51–54].

B. Binary black holes

We now turn our attention to binary black hole systems
both with equal and unequal masses. From our single black
hole results, it is clear that observations made with small

FIG. 3. Dilaton behavior for a single, electrically charged,
nonspinning black hole with qe ¼ 0.001, M ¼ 1, and
ϕ0 ¼ −10−10. These quantities have been extracted at late times
when the solution settled down to a roughly stationary solution.
(Top) The dilaton scalar charge along with the analytic value,
expression (38), for qe ¼ 0.001 andM ¼ 1. (Bottom) The central
value of the scalar field at late times.
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φ  x 100  [α0=10]

φ  x 10  [α0=100]

φ  x 1  [α0=1000]
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FIG. 4. The profile of the scalar field for different values of α0
(with qe ¼ 0.001;M ¼ 1, and ϕ0 ¼ 10−10). The profiles are
rescaled assuming a linear increase with the coupling. For
α0 ⪅ 100, this linear scaling is apparent.
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values of the coupling α0 have a simple scaling until α0 ≈
103 for the cases where the charge is qe ¼ 10−3. We have
studied the dynamics of binaries for a broad set of α0
values and confirmed this expectation. In what follows, we
thus concentrate on discussing the particular cases
α0 ¼ f1; 103; 3 × 103g. Note that because of (i) the limi-
tations of our initial data, (ii) a desire to take a conservative
approach in this first study, and (iii) the expectation that
astrophysical black holes are likely close to neutral—-even
if the gauge field is not the one that couples to the Standard
Model—we choose a small value of qe.
For the nondimensionalized electric charge of qe ¼ 10−3,

the binaries orbit for four to five cycles before merging into
a single spinning black hole. Figures 5 and 6 summarize
our results for both equal and unequal mass (mass ratio
m1=m2 ¼ 3=2) cases. In each figure, the top panel shows
the real part of the radiative Newman-Penrose scalar Ψ4 for
different values of α0, and the middle panel displays the
differences of their magnitudes with respect to the α0 ¼ 1
case. The differences as indicated in the middle panels of
Figs. 5 and 6 are small even for α0 ≫ 1. They are clearly on
the order of a few percent in amplitude (this has been
confirmed through higher resolution runs, though we note
the difference in phase is significantly larger up to values of
≃π across the resolutions employed in our tests).
The angular frequency of the dominant gravitational

wave mode is shown in the bottom panel. Again, the
differences with variations in α0 are small. However, that
the cases with larger coupling merge earlier (albeit very
slightly) is consistent with the expectations that larger
coupling will result in increased energy loss through scalar
radiation.

Of course, even these small differences are possibly
degenerate with other parameters. That is to say that the
signals we find, were they to be measured by LIGO, would
likely bemistaken for GR signals for a black hole binarywith
parameters somewhat different than thosewe adopt here. The
binary mass in particular could probably be adjusted to
generate GR waveforms that would be indistinguishable
from these EMD waveforms. Recent examples proposing
that LIGO’s detections are perhaps more exotic than simply
binary black hole mergers within GR include Refs. [55,56].
The observations that differences are small can also be

inferred from multiple points of view; to wit:
(i) As noted in Appendix A, static black holes in EMD

become neutral in the α0 → ∞ limit. It is natural
then to expect a similar limit for black holes in
binaries, and this decreasing charge has implications
for merger time. As demonstrated in Ref. [57],
which studied the particular case of black hole
binaries with the same sign of charge with α0 ¼ffiffiffi
3

p
(following Ref. [58]), the estimated radius of the

effective innermost stable circular orbit increases as
the black hole charge increases. Following our
observation that larger couplings have effectively
smaller black hole charges, one expects that, for
fixed charges of equal sign, black holes will
merge sooner (i.e. at lower frequencies) for smaller
coupling.

(ii) It is interesting to consider the behavior of binary
neutron stars in scalar-tensor theories. In particular,
the clearest differences in those simulations from
those of GR occurred for scalar charges of the order
ϕ1 ≈ 10−1. However, here the charges are a couple

FIG. 5. The gravitational radiation of an equal mass binary
black hole with an electric charge qe ¼ 0.001 for different values
of α0. Top: The real part of the l ¼ m ¼ 2 mode of the Newman-
Penrose scalar Ψ4. Middle: The percent difference in magnitude
of the l ¼ m ¼ 2 mode of Ψ4 relative to the α1 case normalized
by the maximum of the signal. Bottom: The angular frequency of
the gravitational wave mode.

FIG. 6. The gravitational radiation of an unequal mass binary
black hole with an electric charge qe ¼ 0.001 for different values
of α0. Top: The real part of the l ¼ m ¼ 2 mode of the Newman-
Penrose scalar Ψ4. Middle: The percent difference in magnitude
of the l ¼ m ¼ 2 mode of Ψ4 relative to the α1 case normalized
by the maximum of the signal. Bottom: The angular frequency of
the gravitational wave mode.
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orders of magnitude smaller, only ϕ1 ≈ 10−3, and
one expects dynamical differences to scale with ϕ2

1.
And so perhaps it is natural that the differences we
see for these parameter choices are as small as we
report. Scalarization levels comparable to those
neutron star mergers would require BH charges
α0q2M ≈ 10−1 (qM ≃ 10−1) for small (very large)
values of α0.

Because EMD allows for scalar radiation, we can gain
additional understanding by extracting it in addition to the
gravitational wave signal. As discussed in Appendix B, the
computation of the Newman-Penrose scalar Φ22 indicates
that the scalar radiation is expected to scale as Φ22 ≈ α0ϕ;tt

(evaluated asymptotically). One can thus estimate that
this radiation in the early inspiral phase scales as
Φ22 ≈ α0ϕ1Ω2. This scaling is assumed in Fig. 7, which
shows Φ22 as a function of time for both the equal and
unequal mass cases. In particular, because the orbital
frequency differs only slightly with changes to α0, the
rescaling depends only on the coupling and scalar charge.
The coupling value is straightforward, but the black hole
scalar charge is chosen as the scalar charge of individual
black holes in isolation. Thus, the scalar charges for equal
mass binaries are chosen as ϕ1 ¼ f−4.8 × 10−7;−4 ×
10−4;−6.9 × 10−4g while for unequal mass binaries, we
choose masses and scalar charges to be (m1, m2): ϕ1¼
fð−3;−2Þ×10−7;ð−2.4;−1.6Þ×10−4;ð−4.2;−2.7Þ×10−4g
for α0 ¼ f1; 103; 3 × 103g respectively [which are well
approximated by the analytical expression Eq. (38)].
As shown in Fig. 7, reasonably good agreement with the

expected scaling is obtained during the inspiral phase, but
the scaling overestimates the magnitude of the radiation
during the merger. The failure of the scaling during the
merger indicates that the nonlinear behavior is less radiative

than otherwise expected from simple superposition argu-
ments and is consistent with the observations made in the
isolated black hole cases where the scalar charge shows a
trend toward saturation at high coupling values.
This saturation is evident in Fig. 8, which shows the

l ¼ m ¼ 1 and l ¼ m ¼ 2 modes for the scalar radiation
corresponding to the unequal mass binary for α0 ¼ 1000
and 3000. In contrast with Fig. 7, however, both cases here
are scaled linearly by their respective value of α0, ignoring
the dilaton charge. Focusing only on the merger, this simple
scaling in α0 works quite well, supporting our assertion that
the scalar charges saturate at large coupling.
An interesting aspect of gravitational radiation in EMD

is that it could contain a dipolar component in contrast to
GR, which disallows dipolar radiation. Although one
generally expects the dipolar component, when allowed
by the theory, to dominate over higher multipoles, here the
strength of the dipolar component depends on the differ-
ence in the scalar charges of the black holes. As a result, the
equal mass case produces no dipolar radiation. For the
unequal mass binary with m1=m2 ¼ 3=2 considered here,
the scalar charges are different but nevertheless are suffi-
ciently close to each other that the resulting
l ¼ m ¼ 1 mode is weaker than the l ¼ m ¼ 2 mode.
We comment on two further conclusions that can be

drawn from our studies as well as leave open a question
deserving of investigation. First, we find the ringdown of
the merger remnant appears largely insensitive to the value
of the coupling. As mentioned in the previous section
concerning the ringdown of the head-on remnant, small
values of the electric charge produce correspondingly small
differences in ringdown versus GR.

FIG. 7. The (real part of the) l ¼ m ¼ 2 mode of the scalar
gravitational radiation Φ22 of a binary black hole with an electric
charge qe ¼ 0.001 for different values of α0. Top: The equal mass
case. Bottom: The unequal mass case.

FIG. 8. The (real part of the) l ¼ m ¼ 1 and l ¼ m ¼ 2 modes
of the scalar gravitational radiation Φ22 of a binary black hole
with an electric charge qe ¼ 0.001 for different values of α0
corresponding to the unequal mass binary case. Here, we have
scaled up the case α0 ¼ 1000 by a factor of 3 in accordance
with expected scaling if the dilaton charge is ignored. Top: The
l ¼ m ¼ 1 mode. Bottom: The l ¼ m ¼ 2 mode.
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Second, we also studied the merger of black holes with
electric charges of opposite sign. For the small electric
charges considered here, no significant effect was observed
on the black hole dynamics, indicating, as one might
expect, that electromagnetic forces are subleading with
respect to gravitational ones.
Finally, recall that the dilaton permits EMD black holes

to have electric or magnetic charge (or both), and, as a
result, these black holes have different properties. It could
be interesting to consider the interaction of a binary black
hole system comprised of one electrically charged and one
magnetically charged black hole and investigate the impact
on the dynamics and radiation. In particular, the black holes
in such a binary would have scalar charges of opposite sign,
which might maximize the resulting dipole scalar radiation.
However, a preliminary investigation with the small charge
used here did not reveal any dramatic effects.

V. FINAL DISCUSSION

We have examined the dynamics of black holes, both in
isolation and in binaries, within Einstein-Maxwell-dilaton
theory. We have focused on the differences between these
dynamics and those in General Relativity.
This theory is parametrized by a coupling constant, α0.

For α0 ¼ 0, the theory describes Einstein-Maxwell with a
free scalar field, and its black hole solutions include
Reissner-Nordstrom. The low energy limit of string theory
is described by α0 ¼ 1, which includes hairy black hole
solutions. In the infinite coupling limit α0 → ∞, the single,
spherically symmetric, black hole solution is simply the
Schwarzschild solution of pure vacuum General Relativity,
and the electromagnetic field is essentially “screened” out.
Our results for binary mergers appear consistent with

these same limits for isolated black holes. Of course, for
α0 ¼ 0, our black holes merge, producing a charged,
hairless black hole. As α0 is increased, the remnant black
hole displays a scalar charge (in addition to its angular
momentum and Maxwell charge).
The dynamics of both the dilaton and the gauge field are

important and can impact the behavior of the dynamics of
the binary. This influence is primarily governed by the
strength of the scalar charge of the black hole which scales,
at small coupling, as α0Q2. At large coupling, however, the
scaling is such that the dilaton charge scales linearly with
Q. For small values of Q, as we have seen, the effects are
minor, while we expect large effects for larger values of Q.
Interestingly, because the scalar charge in EMD does not

depend sensitively on the asymptotic value of the dilaton or
the nearby charge of a companion (as opposed to the case in
scalar-tensor theory [11,42]), its main role in equal mass
binaries can be approximated by charged binary black hole
mergers. Note that recent work argues that such black holes
can undergo scalarization for sufficiently large values of the
asymptotic value of the dilaton [59].

Considering again the case of large coupling, it is worth
pointing out that theα0 → ∞ limit is essentially a decoupling
limit such that the gravitational dynamics and the matter
(Maxwell and dilaton) dynamics have decreasing effects on
one another. For large α0, the matter fields are increasingly
radiated away, while the scalar and electromagnetic contri-
butions to the final black hole go to zero in this limit.
As discussed, for black holes in EMD, little has been

known with regard to their stability properties, perturbation
spectra for arbitrary coupling values, rotating solutions, etc.
Our studies have shown that black holes in EMD have
stability properties similar to those in GR. These results
extend the analytical studies of Ref. [31] and highlight the
small and subtle differences involved in distinguishing BHs
in EMD and GR theories.
Finally, an immediate conclusion of our work is that for

small charges differences with respect to waveforms in GR
and EMD are quite small. Larger charges may well produce
significant differences, and their main characteristics could
be bracketed by analyzing charged/uncharged collisions in
GR [60,61]. While one does not expect significantly
charged black holes in the Universe, it is important to
stress that the gauge field in EMD need not be the physical
one coupled to the Standard Model.
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APPENDIX A: EMD BLACK HOLE SOLUTIONS
IN ISOTROPIC COORDINATES

Given our use of the BSSN formalism, isotropic coor-
dinates are particularly useful. We present the spherically
symmetric, static EMD black hole solutions here for
reference. Defining a radial, isotropic coordinate, r̄, via

r ¼ 1

r̄

��
r̄þ rþ þ r−

4

�
2

−
rþr−
4

�
ðA1Þ
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for which

rþ ¼ M

�
1þ

�
1 − ð1 − α20Þ

Q2

M2

�
1=2

�
ðA2Þ

r− ¼ Q2

M
ð1þ α20Þ

�
1þ

�
1 − ð1 − α20Þ

Q2

M2

�
1=2

�
−1
; ðA3Þ

we can write the metric for both the magnetic and electric
cases as

ds2 ¼ −α2dt2 þ χ−1½dr̄2 þ r̄2dΩ2� ðA4Þ

¼ −
ðr̄ − r̄HÞ2ðr̄þ r̄HÞ2ð1−α1Þ
ðr̄þ r̄1Þ2−α1ðr̄þ r̄2Þ2−α1

dt2

þ 1

r̄4
ðr̄þ r̄1Þ2−α1ðr̄þ r̄2Þ2−α1ðr̄þ r̄HÞ2α1

× ½dr̄2 þ r̄2dΩ2�: ðA5Þ

Here, we have defined

r̄1 ¼
1

4
ð ffiffiffiffiffi

rþ
p

−
ffiffiffiffiffi
r−

p Þ2 ðA6Þ

r̄2 ¼
1

4
ð ffiffiffiffiffi

rþ
p þ ffiffiffiffiffi

r−
p Þ2 ðA7Þ

r̄H ¼ 1

4
ðrþ − r−Þ ðA8Þ

with r̄H the radial location of thehorizon in these coordinates.
If we consider the magnetic case, then Q2 ¼ Q2

me−2α0ϕ0 ,
while for the electric case, Q2 ¼ Q2

ee2α0ϕ0 .
In the magnetic case, the EM and dilaton fields take the

form

Fθϕ ¼ Qm sin θ ðA9Þ

Br̄ ¼ Qmr̄4

ðr̄þ r̄HÞ3α1
½ðr̄þ r̄1Þðr̄þ r̄2Þ�3ðα1−2Þ=2 ðA10Þ

e−2α0ϕ ¼ e−2α0ϕ0
ðr̄þ r̄HÞ2α1

ðr̄þ r̄1Þα1ðr̄þ r̄2Þα1
: ðA11Þ

In the electric case, the EM and dilaton fields take the form

Ftr̄ ¼ Qe
ðr̄2 − r̄2HÞ

ðr̄þ r̄1Þ2ðr̄þ r̄2Þ2
ðA12Þ

Er̄ ¼ −
Qer̄4

ðr̄þ r̄HÞα1
½ðr̄þ r̄1Þðr̄þ r̄2Þ�ðα1−6Þ=2 ðA13Þ

e2α0ϕ ¼ e2α0ϕ0
ðr̄þ r̄HÞ2α1

ðr̄þ r̄1Þα1ðr̄þ r̄2Þα1
: ðA14Þ

For an illustration of the properties of the solution
and a demonstration of the scaling with the coupling α0,
we plot the radial profile of ϕ versus the radius for dif-
ferent values of α0 ¼ f1; 101; 102; 103; 3 × 103g with fixed
qe ¼ 10−3;ϕ0 ¼ 10−10. To simplify the comparison, we
scale all profiles linearly in α0. As shown in Fig. 9, that
the rescaled profiles for small α0 coincide demonstrates that
the solution does scale linearly in α0, but the dependence
of the solution on α0 is milder at larger values.
The charge of these black holes is given by Eq. (38) and is

plotted in Fig. 3 along with the charge obtained in our three-
dimensional evolutions (in different coordinates). The figure
makes clear that the charge saturates at large coupling.

APPENDIX B: CALCULATING RADIATIVE
PROPERTIES OF THE SOLUTION

We recall that the physical frame is the Jordan one (the
one with respect to which particles travel along geodesics).
However, in our numerical studies, we find it convenient to
compute the evolution in the Einstein frame. It is thus
important to compute the radiative behavior in the Jordan
frame, which, in particular, facilitates the comparison
across the different cases considered.
Let us then analyze what a Jordan-frame observer would

measure with respect to the Newman-Penrose radiative
scalars obtained in the Einstein frame. First, recall our
conformal transformation from the Jordan to the Einstein
frame,

gEab ¼ gJabe
−2α0ϕ ≡ gJabΦ; ðB1Þ

FIG. 9. Radial profile for the scalar field obtained in iso-
tropic coordinates with different values of α0 (all with
qe ¼ 10−3;ϕ0 ¼ 10−10). The solutions have been rescaled in
the same way as the solutions in Fig. 4. This linear scaling holds
only up to roughly α0 ≈ 100.
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where we introduce as a shorthandΦ≡ e−2α0ϕ. Next, given
the standard null tetrad chosen in the Einstein frame TE

α

(with α ¼ 0..3 labeling the different null vectors of the
tetrad), the Jordan frame tetrad is trivially related to the
Einstein one by

TE
α ¼ TJ

α

ffiffiffiffi
Φ

p
: ðB2Þ

Now, to find the radiative (spin-2) scalar Ψ4 in the Jordan
frame computed from the Weyl tensor, we exploit the fact
that the Weyl tensor, Cd

abc, is invariant with respect to
conformal transformations; therefore, CE

abcd ¼ CJ
abcdΦ and,

since Ψ4 involves contractions with four tetrad members,
we have—schematically—

ΨE ¼ CE
abcdT

ETETETE

¼ CJ
abcdΦTJTJTJTJðΦÞ−2

¼ ΨJðΦÞ−1: ðB3Þ

Thus, ΨJ ¼ ΨEe−2α0ϕ.
We turn our attention now to the (spin-0) scalar radiation,

which in the Newman-Penrose formalism is represented by
the real scalarΦ22 and is obtained from the Riemann tensor.
Recall that this tensor transforms under conformal trans-
formations as

RE
ab ¼RJ

ab−2∇a∇b lnΦþ2∇a lnΦ∇b lnΦþgabS; ðB4Þ

where S contains derivatives of Φ but will not contribute
since Φ22 ≡ Rabnanb=2 and na is a null vector (the same
appearing in the calculation of Ψ4). Proceeding as before,
we obtain

ΦE
22 ¼ RE

abT
ETE=2

¼ RE
abT

JTJ=2ðΦÞ−1
¼ ðΦJ

22 − naJn
b
J∇a∇b lnΦþ � � �ÞðΦÞ−1; ðB5Þ

where we denote with … terms proportional to ðlnΦÞ2
which will be subleading. Consequently, we have

ΦJ
22 ¼ e−2α0ϕðΦE

22 − 2α0naEn
b
E∇a∇bϕÞ: ðB6Þ

To estimate ΦE
22, we can make use of the trace-reversed

form of the Einstein equations in the Einstein frame (in
what follows, we restrict to the Einstein frame, and we do
not include a subindex) to obtain

ΦE
22 ¼ Rabnanb=2 ¼ nanbð∇aϕ∇bϕþ 2e−2α0ϕFacFc

bÞ;
ðB7Þ

where we have dropped terms involving nanbgab.
Furthermore, nanbFacFc

b ∝ r−2 as it can be written in
terms of the Newman-Penrose scalar ϕ2ϕ̄2. Therefore,
the contribution of the Einstein-frame Φ22 is subleading
with respect to the second term in the right-hand side of
Eq. (B6). To leading order then, the scalar radiation,
measured in the Jordan frame, scales as

ΦJ
22 ≃ α0ϕ;tte−2α0ϕ: ðB8Þ

As we have seen, for small values of the coupling α0, the
magnitude of the scalar charge ϕ1 grows, but such growth
saturates, and then it reverses at α0 ≃ 3000.
For a last step, one should be mindful of whether the

asymptotic times measured in the different frames coincide.
In all our simulations, we have chosen the asymptotic value
of the scalar field to be (a small) constant ϕ0. Upon
transformation to the Jordan frame, this implies asymptotic
observers carry clocks ticking at different rates given by
κ ≡ eα0ϕ0 . Thus, we perform one last transformation to a
single, common time, defined by t≡ R

κdt0, but for the
couplings considered and the value of ϕ0 ¼ 10−10 adopted
here, the correction is negligible.
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