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At Brigham Young University, one of the acoustics courses taught in the Physics and Astronomy Depart-
ment focuses on resonance topics. This course is a graduate level course that uses a differential equation
approach to wave motion and resonances on strings, bars, membranes, and plates. This paper discusses the
theory of flexural, or bending, waves in free-free rods and describes a laboratory experiment to test the rod
thickness limits of the Bernoulli-Euler theory for rods. It is found that the fundamental frequency departs
from Bernoulli-Euler theory as the thickness exceeds 6% of a flexural wavelength, however the mode shape
above this limit remains unchanged (at least for the rods tested which included thicknesses up until the
thickness equals 16% of a wavelength).
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1. INTRODUCTION
There are several type of modes that can exist at low frequencies in a bar (also referred to as a rod or a

beam). These include longitudinal modes, torsional modes, and bending modes. A classic vibration topic 
in upper division physics or engineering undergraduate courses or introductory graduate level courses is 
the boundary value problem analysis of these modes (see chapter 3 in Ref. 1, Chapter 1 in Ref. 2, and 
chapter 5 in Ref. 3 for example coverage in textbooks aimed at this level). A bar is assumed to have cross 
sectional dimensions that are small compared to a wavelength, such that the vibrational dependence is 
strictly along the length of the bar.  

A basic demonstration of longitudinal waves in a bar is the so called “singing rods” demonstration.4-9 
The demonstrator takes a long and thin bar (typically aluminum and of about 2 m length) and supports the 
bar in the middle with their thumb and index finger (or middle finger). The demonstrator then grips the bar 
with their thumb and index finger and slides their fingers along one end of bar to excite a longitudinal mode. 
Anderson showed that torsional and bending modes may also be excited and a nonlinear interaction can be 
observed depending on the length of the bar.9 

Garrett described an electromagnetic excitation technique that allows independent excitation and 
sensing of longitudinal, torsional, and bending modes in free-free bars through the use of coils of wire that 
are bonded onto the ends of the bars.10 The coils are each placed between the poles of two permanent 
magnets. This work also demonstrated how the added mass of the coils could be accounted for in each type 
of mode. Shortly thereafter, Rossing and Russell described a similar, inexpensive experiment intended for 
classroom demonstrations and laboratory exercises in which a small magnet is attached to a bar and is also 
driven electromagnetically by a small coil of wire placed just above where the magnet is attached to the 
bar.11 The placement of the magnet (and coil) determines where the bar is pushed and pulled and thus 
different types of modes may be excited. A microphone was then suggested as the sensor to determine the 
resonance frequencies. Additional means of exciting resonances of the bar include eddy currents in 
electrically conducting bars,12 electromagnetic-acoustic transducers,13 and piezoelectric transducers. 

The purpose of this paper is to describe a laboratory experiment to explore the limits of Bernoulli-Euler 
theory in determining the resonance frequency of a transversely vibrating bar. An analysis can be done to 
compare the resonance frequency of the fundamental mode of the bar as a function of thickness and/or 
length. Additional experiments may include the use of a Scanning Laser Doppler Vibrometer (SLDV) to 
image the vibrational shapes of bending modes and explore the agreement between theoretical and 
experimental mode shapes as a function of the thickness or length of the bar.  

This paper will provide the theoretical equations for the resonance frequencies, nodal positions, and the 
relationship of the first four partials, relative to the fundamental frequency, for bars with many different 
combinations of boundary conditions. Then a discussion of laboratory exercises will be given and finally 
some concluding remarks. 

2. THEORY
Bernoulli-Euler theory is typically used to teach bending wave modes. As the thickness of the bar

becomes comparable to a wavelength, Timoshenko theory, which includes the effects of shear deformation 
and rotary inertia, should be used.14 The development of the wave equation for bending waves in a bar is 
given in several textbooks, including Kinsler et al.,1 Fahy and Gardonio,2 and Garrett.3 The wave equation 
is fourth order in space for the restoring force and second order in time for the inertial force 

డమ௬

డ௧మ = −𝜅ଶ𝑐ଶ డర௬

డ௫ర, (1)

where 𝑦 is the amplitude along the bar, which is a function of position, 𝑥, and time, 𝑡. Additionally, 𝜅 is the 

radius of gyration (𝜅 =
௛

√ଵଶ
 for a rectangular cross-section bar of thickness ℎ or 𝜅 =

ௗ

ସ
 for a circular cross-

section bar of diameter 𝑑), and 𝑐 is the bar longitudinal wave speed 
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 𝑐 = ට
ா

ఘ
, (2) 

where 𝐸 is Young’s modulus of elasticity and 𝜌 is the mass density of the bar material. 
There are three main types of boundaries for each end of the bar: free, simply supported (knife edge or 

hinged), or clamped, each with two boundary conditions. A free boundary implies that the end is 
unconstrained. A free end cannot cause that end to bend, meaning there is no resistance to angular 

acceleration (no moment), and thus at the boundary, 𝑥஻, 
డమ

డ௫మ 𝑦(𝑥஻ , 𝑡) = 0. A free end also cannot supply 

any vertical force, 
డయ

డ௫య 𝑦(𝑥஻ , 𝑡) = 0. A simply supported boundary is supplied by two constraining knife 

edges that hold onto the top and bottom of the bar. These constraints do not allow this end to be displaced 
and thus 𝑦(𝑥஻ , 𝑡) = 0. Similar to the free end, the simply supported boundary also cannot supply any 

resistance to angular acceleration and thus 
డమ

డ௫మ 𝑦(𝑥஻ , 𝑡) = 0. Finally, a clamped boundary is supplied by 

some portion of the length of the bar being clamped, where this segment that is clamped is not included in 
the specification of the bar’s vibrating length. Or a clamped boundary can be provided by gluing the end of 
the bar to a wall that is perpendicular to the bar’s end, such that the cross section always remains 
perpendicular to the bar’s axis. This means that the clamped boundary ensures no displacement of the end 
𝑦(𝑥஻ , 𝑡) = 0 and the end must have a slope of zero at the boundary to keep the cross section at the end 

perpendicular to the bar’s axis 
డ

డ௫
𝑦(𝑥஻ , 𝑡) = 0. 

If we assume time harmonicity, such that 𝑦(𝑥, 𝑡) = Ψ(𝑥)𝑒௝ఠ௧ where Ψ(𝑥) represents the spatial 
dependence of the amplitude along the bar, 𝑗 = √−1, and 𝜔 is the angular frequency, then the wave 
equation reduces to 

 
డరஏ

డ௫ర −
ఠమ

఑మ௖మ Ψ = 0. (3) 

The trial solution for Eq. (3) must include functions whose fourth derivatives are proportional to those same 
functions, such as the orthogonal set of sine, cosine, hyperbolic sine, and hyperbolic cosine, 
 Ψ(𝑥) = 𝐴 cosh 𝑔𝑥 + 𝐵 sinh 𝑔𝑥 + 𝐶 cos 𝑔𝑥 + 𝐷 sin 𝑔𝑥, (4) 

where 𝑔 = ±ට
ఠ

఑௖
 (the units of 𝑔 suggest that it is a wavenumber quantity). It should be noted that the phase 

speed of waves in the bar, sometimes called the bending wave speed, is often defined such that  

 𝑐௣௛ = ±√𝜅𝑐𝜔 = ±ඨ𝜔ℎට
ா

ଵଶఘ
.  (5) 

Application of the appropriate two boundary conditions for each end of the bar (for example at        
𝑥஻,ଵ = 0 and at 𝑥஻,ଶ = 𝐿, where 𝐿 is the length of the bar) yields a transcendental equation. Solutions to the 
transcendental equation provide allowable values of the product 𝑔௡𝐿 for the 𝑛th bending mode of the bar. 
The modal frequencies are then 

 𝑓௡ =
ଵ

ଶగ

఑௖

௅మ
(𝑔௡𝐿)ଶ. (6) 

In the course of solving for the transcendental equation for a given bar, the constants 𝐴, 𝐵, 𝐶, and 𝐷 are 
determined in relation to each other, leaving one constant that is determined by the initial conditions. 

The free-free bar’s transcendental equation is  
 (sinh 𝑔𝐿 + sin 𝑔𝐿)(sinh 𝑔𝐿 − sin 𝑔𝑙) = (cosh 𝑔𝐿 − cos 𝑔𝐿)ଶ, (7) 

and the first four solutions are  
 𝑔ଵିସ𝐿 = 4.73, 7.85, 11.00, and 14.14. (8) 
The first four modal frequencies of the free-free bar are  

 𝑓ଵିସ = 3.56
఑௖

௅మ
(1, 2.76, 5.40, and 8.93). (9) 

The spatial dependence for the free-free bar is  
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 Ψ(𝑥) = 𝐴[cosh 𝑔௡𝑥 + cos 𝑔௡𝑥] −
(ୱ୧୬୦ ௚೙௅ାୱ୧୬ ೙௅)

(ୡ୭ୱ ೙௅ିୡ୭ୱ ௚೙௅)
𝐴[sinh 𝑔௡𝑥 + sin 𝑔௡𝑥]. (10) 

For the first free-free bar mode, there are nodes at 0.224𝐿 and 0.776𝐿. For the second mode, there are 
nodes at 0.132𝐿, 0.5𝐿, and 0.868𝐿. For the third mode, there are nodes at 0.094𝐿, 0.356𝐿, 0.644𝐿, and 
0.906𝐿. For the fourth mode, there are nodes at 0.073𝐿, 0.277𝐿, 0.5𝐿, 0.723𝐿, and 0.927𝐿. 

The simply supported-simply supported bar’s transcendental equation is  
 sin 𝑔𝐿 = 0, (11) 

and the first four solutions are  
 𝑔ଵିସ𝐿 = 𝜋, 2𝜋, 3𝜋, and 4𝜋. (12) 
The first four modal frequencies of this bar are  

 𝑓ଵିସ =
గ

ଶ

఑௖

௅మ
(1, 4, 9, and 16). (13) 

The spatial dependence for the bar is  
 Ψ(𝑥) = 𝐴 sin 𝑔௡𝑥. (14) 
For the first mode, there are nodes at 0 and 𝐿. For the second mode, there are nodes at 0, 0.5𝐿, and 𝐿. For 
the third mode, there are nodes at 0, 0.333𝐿, 0.667𝐿, and 𝐿. For the fourth mode, there are nodes at 0, 
0.25𝐿, 0.5𝐿, 0.75𝐿, and 𝐿. 

The clamped-clamped bar’s transcendental equation is identical to that of the free-free bar and the first 
four solutions are also identical. The first four modal frequencies of this bar are also identical to the free-
free bar. The spatial dependence for the bar is  

 Ψ(𝑥) = 𝐴[cosh 𝑔௡𝑥 − cos 𝑔௡𝑥] +
(ୡ୭ୱ୦ ೙௅ିୡ୭ୱ ௚೙௅)

(ୱ୧୬୦ ௚೙௅ିୱ୧୬ ௚೙௅)
𝐴[− sinh 𝑔௡𝑥 + sin 𝑔௡𝑥]. (15) 

For the first mode, there are nodes at 0 and 𝐿. For the second mode, there are nodes at 0, 0.5𝐿, and 𝐿. For 
the third mode, there are nodes at 0, 0.358𝐿, 0.641𝐿, and 𝐿. For the fourth mode, there are nodes at 0, 
0.279𝐿, 0.5𝐿, 0.721𝐿, and 𝐿. 

The simply supported-free bar’s transcendental equation is  
 tan 𝑔𝐿 = tanh 𝑔𝐿, (16) 

and the first four solutions are 𝑔ଵିସ𝐿 = 3.93, 7.07, 10.21, and 13.35. The first four modal frequencies of 
this bar are  

 𝑓ଵିସ = 2.46
఑௖

௅మ
(1, 3.24, 6.75, and 11.54). (17) 

The spatial dependence for the bar is  

 Ψ(𝑥) = 𝐴 sinh 𝑔௡𝑥 −
ୡ୭ୱ୦ ௚೙௅

ୡ୭ୱ ௚೙௅
𝐴 sin 𝑔௡𝑥. (18) 

For the first mode, there are nodes at 0 and 0.736𝐿. For the second mode, there are nodes at 0, 0.446𝐿, and 
0.853𝐿. For the third mode, there are nodes at 0, 0.308𝐿, 0.617𝐿, and 0.898𝐿. For the fourth mode, there 
are nodes at 0, 0.235𝐿, 0.471𝐿, 0.707𝐿, and 0.922𝐿. 

The simply supported-clamped bar’s transcendental equation is the same as that for the simply 
supported-free bar and the first four solutions are also identical. The first four modal frequencies of this bar 
are also identical to the simply supported-free bar. The spatial dependence for the bar is  

 Ψ(𝑥) = 𝐴 sinh 𝑔௡𝑥 +
ୡ୭ୱ୦ ௚೙௅

ୡ୭ୱ ௚೙௅
𝐴 sin 𝑔௡𝑥. (19) 

For the first mode, there are nodes at 0 and 𝐿. For the second mode, there are nodes at 0, 0.442𝐿, and 𝐿. 
For the third mode, there are nodes at 0, 0.308𝐿, 0.614𝐿, and 𝐿. For the fourth mode, there are nodes at 0, 
0.235𝐿, 0.471𝐿, 0.705𝐿, and 𝐿. 

The clamped-free bar’s transcendental equation is 
 (sinh 𝑔𝐿 + sin 𝑔𝐿)(sinh 𝑔𝐿 − sin 𝑔𝑙) = (cosh 𝑔𝐿 + cos 𝑔𝐿)ଶ, (20) 

and the first four solutions are  
 𝑔ଵିସ𝐿 = 1.88, 4.69, 7.85 and 11.00. (21) 

The first four modal frequencies of this bar are  
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 𝑓ଵିସ = 0.56
఑௖

௅మ
(1, 6.22, 17.44, and 34.2). (22) 

The spatial dependence for the bar is  

 Ψ(𝑥) = 𝐴[cosh 𝑔௡𝑥 − cos 𝑔௡𝑥] +
(ୡ୭ୱ୦ ೙௅ାୡ୭ୱ ೙௅)

(ୱ୧୬୦ ೙௅ାୱ୧୬ ೙௅)
𝐴[− sinh 𝑔௡𝑥 + sin 𝑔௡𝑥]. (23) 

For the first mode, there is one node at 0. For the second mode, there are nodes at 0 and 0.784𝐿. For the 
third mode, there are nodes at 0, 0.504𝐿, and 0.868𝐿. For the fourth mode, there are nodes at 0, 0.358𝐿, 
0.644𝐿, and 0.906𝐿. 

In all cases the fundamental resonance frequency increases linearly with increasing thickness (or 
diameter), decreases as 1 𝐿ଶ⁄ , and increases linearly with increasing 𝑐. For a given length, the clamped-free 
bar has the lowest fundamental frequency, followed by the simply supported-simply supported bar, then 
the simply supported-free and the simply supported-clamped bars, and then the free-free and clamped-
clamped bars have the highest fundamental frequency. The bar with the highest amount of inharmonicity 
(deviation of upper partials with respect to integer multiples of the fundamental frequency) is the clamped-
free bar, followed by the free-free and clamped-clamped bars, and then the simply supported-free and 
simply supported-clamped bars have the least degree of inharmonicity. The simply supported-simply 
supported bar has partials that are integer multiples of the fundamental but they are not integer multiples, 
but rather the square of integer multiples, thus this bar is still considered to have inharmonic partials with, 
in fact, the highest degree of departure from integer multiples. It is worth noting that longitudinal and 
torsional vibration modes of a bar are harmonically related to their respective fundamental frequencies. 

It is interesting to ask students what they would expect to happen to the pitch of a transversely vibrating 
free-free bar if you have bars of the same length but different thicknesses (and the same widths). Almost 
always the student guesses that the thicker bar will have the lower fundamental frequency. Students must 
be relying on their intuition that suggests that an increased thickness means an overall increase in the mass 
of the bar, and an increase in mass should lower the resonance frequency, as it does for the single degree 
of freedom mass-spring system. The volume of the bar increases linearly with thickness and thus the mass 
of the bar would as well. However, in order to obtain the proportional relationship between the fundamental 
resonance frequency and thickness, the bending wave resonances of these bars increase linearly with 
increasing thickness, suggesting that the stiffness in the bar must be increasing as the cube of the thickness, 

while the mass is only increasing proportionally to the thickness, since 𝑓 ∝ ට
stiffness

mass
= ට

௛య

௛
= ℎ. In fact 

Fahy and Gardonio show that the bending stiffness is proportional to ℎଷ and the mass per unit area is 
proportional to ℎ.2 Students seem to always guess correctly that the pitch of the fundamental decreases with 
increasing length, since the pitch of most resonators decreases with increasing length. 

3. LABORATORY ASSIGNMENT 
For this suggested laboratory assignment, students should be provided with various bars of the same 

length and width but different thicknesses. For the laboratory exercise that was developed at Brigham 
Young University bars were purchased that were 30.48 cm in length (12 inches) and 7.62 cm in width (3 
inches). Ten aluminum bars of various thicknesses were purchased, as shown in Fig. 1. Assuming 𝐸 =
71 GPa and 𝜌 = 2700 kg m3⁄ , the fundamental resonance frequencies may be calculated for free-free 
boundary conditions using Eq. (9). Table 1 displays the thicknesses, calculated wave speeds, and calculated 
fundamental frequencies. 

 

 
Figure 1. Photograph of the 10 aluminum bars of different thicknesses. 
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Table 1. Thicknesses, wave speeds, and fundamental frequencies of the bars tested. 

Bar 
Thickness 

(cm) 

Bar 
Thickness 
(inches) 

Bending 
Wave 

Speed (m/s) 

Calculated 
Fundamental 

Frequency (Hz) 

Measured 
Fundamental 

Frequency (Hz) 

% Error in the 
Fundamental 

Frequency 
0.32 1/8 73 180 183 1.3 
0.63 1/4 146 360 355 -1.5 
0.95 3/8 219 540 528 -2.4 
1.25 1/2 292 721 728 1.0 
1.59 5/8 365 901 913 1.3 
1.90 3/4 438 1081 1100 1.8 
2.54 1.00 584 1441 1428 -0.9 
3.81 1.50 875 2161 2091 -3.3 
5.08 2.00 1167 2882 2666 -7.5 
7.62 3.00 1750 4323 3731 -13.7 

 
The measured frequencies can be determined by striking the bar near an antinode position while 

supporting it at the node positions for the fundamental mode or by driving the bar with a shaker using a 
sweep or random noise signal. Fishing line was used to support the bars in this experiment as shown in Fig. 
1 and driven with a shaker as shown in Fig. 2. We chose to drive the shaker at the middle of the bar, which 
is an antinode for the fundamental mode. An SLDV was aimed at an antinode position at the end of the bar 
(the laser spot is visible on the left side of the bar in Fig. 2. The bars were each driven with a sine sweep 
signal and the measured fundamental frequencies are tabulated in Table 1. The percent error between the 
calculated modal frequencies and the measured modal frequencies is also given in Table 1. Note that the 
error is sometimes above or below the expected value up until a thickness of about 3.81 cm and then the 
bars yield consistently lower measured fundamental frequencies than the calculated frequencies. Figure 4 
displays the calculated and measured fundamental frequencies as a function of thickness.  

 

 
Figure 2. Photograph of a bar under test suspended by fishing line at the nodal positions. 
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Figure 3. Photograph of the bar under test being driven by a shaker. 

 

 
Figure 4. Photograph of the bar under test being driven by a shaker. 

 
The SLDV was then used to scan along the center line of the bar from free end to free end while the 

shaker is driven by a sine wave at the measured fundamental frequency. The SLDV triggers off of the sine 
wave excitation signal so that the measurements at each position along the length of the bar can be 
synchronized to simulate measuring at every position along the bar length simultaneously. The mode shapes 
for the fundamental frequency are then plotted in Fig. 5, all with the same phase. The theoretical mode 
shape from Eq. (10) is also plotted in Fig. 5. As is clear from an observation of Fig. 5, all of the mode shapes 
match the theoretical mode shapes extremely well aside from background noise since all of the mode shapes 
are displayed on top of each other. It should be noted that the mode shapes have all been normalized to 
compare the shapes of the modes. 
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Figure 5. Measured fundamental frequency mode shapes for each of the ten bars measured (various thin 

solid lines of different colors) along with the theoretical mode shape (black dashed line), displayed as 
instantaneous amplitudes versus distance along the bars’ lengths. 

 
The laboratory assignment can ask the students to determine at what point the Bernoulli-Euler theory 

breaks down for the measured fundamental frequencies. The apparent departure from the theory increases 
with thickness beginning at a thickness of 3.81 cm (1.5 inches), meaning that above a thickness of 2.54 cm 
(1 inch) the theory breaks down. Students can also be asked to calculate the highest expected non-
dimensional product of the bending wave wavenumber, 𝑘 =

ఠ

௖೛೓
, and the bar thickness at which the theory 

still holds. In this case, Table 1 suggests that this product equals 𝑘ℎ =
ଶగ(ଵସସଵ Hz)

ହ଼ସ m s⁄
(0.0254 m) = 0.39. A 

common rule of thumb is that Bernoulli-Euler theory breaks down above a value of 𝑘ℎ = 1, but this exercise 
suggests that it breaks down at 0.39. This laboratory exercise also helps the students see that even though 
the measured fundamental frequencies are over predicted by Bernoulli-Euler theory, the mode shapes are 
still correct, at least for the bars measured here.  

Additional assigned work could ask the students to compare the measured modal frequencies for modes 
above the fundamental to those predicted by theory. In this case the students should change the position of 
the fishing line supports and the drive point location since the middle of the bar is a node for all of the even 
numbered modes and the two outer most nodal positions (ideal for stable support the bar) move towards 
the free ends with increasing mode number. 

4. CONCLUSION 
This paper has reviewed the Bernoulli-Euler theory for bars with various combinations of boundary 

conditions, providing the transcendental equations, eigenvalues of said equations, the first four modal 
frequencies, the mode shapes, and the nodal positions. Since the free-free end conditions are the easiest to 
realize experimentally, various bars are measured in a free-free state. Results were presented for ten free-
free bars of different thicknesses, including the measured fundamental frequencies and measured 
fundamental mode shapes. It was found that the Bernoulli-Euler theory breaks down at a value of 𝑘ℎ =
0.39. It was also found that the measured mode shapes agree very well with the theory, even though the 
Bernoulli-Euler theory does not predict the frequencies exactly. 
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