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Model-scale jet noise analysis with a single-point, frequency-
domain nonlinearity indicator
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A single-point, frequency-domain nonlinearity indicator is calculated and analyzed for noise from a

model-scale jet at Mach 0.85, Mach 1.8, and Mach 2.0. The nonlinearity indicator, �N, has been pre-

viously derived from an ensemble-averaged, frequency-domain version of the generalized Burgers

equation (GBE) from Reichman, Gee, Neilsen, and Miller [J. Acoust. Soc. Am. 139, 2505–2513

(2016)]. The indicator gives the spatial rate of change due to nonlinear processes in sound pressure

level (SPL) spectrum, and two other indicators from the GBE—�S and �a—give the same quantity

due to geometric spreading and absorption, respectively. Trends with frequency, angle, distance, and

jet condition—supported both by spectral analysis and by calculation of the GBE-derived indica-

tors—reveal a concentration of nonlinear effects along radials close to the plume with large overall

SPLs. The calculated indicators for nonlinearity and absorption effects far from the source combine

to give the same decay predicted by nonlinear theory for monofrequency sources. Trends in the �N

indicator are compared with trends observed for other indicators such as pressure-derivative skew-

ness and bicoherence, revealing both the qualitative and quantitative advantages of the �N indicator.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5041741
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I. INTRODUCTION

The role of nonlinear propagation effects in the propaga-

tion of high-amplitude jet noise has been a topic of discussion

for several decades and has been examined for jets of various

scales. Laboratory-scale jets have been studied to examine

cumulative nonlinear effects,1–4 coalescence in the sound

field,5 dependence on Reynolds number,6 pressure skewness

and pressure-derivative skewness values,7,8 as well as analysis

with other nonlinearity metrics.9,10 The nonlinear evolution11

and annoyance12 of legacy commercial transports have also

been characterized using a normalized quadspectral nonline-

arity indicator. Noise waveforms from military jets have been

used both to characterize near-field shock formation13,14 and

to model far-field shock formation,15–17 along with compari-

son of computationally predicted and experimentally mea-

sured data.18,19 Launch vehicles such as rockets have been

studied to determine their acoustic noise characteristics20 and

shock formation growth,21 in addition to predicting the noise

propagation using model equations.22

Although most of these studies point to the presence of

far-field nonlinear propagation effects, quantifying the phys-

ical significance of these effects remains a challenge. Many

studies have been qualitative, creating difficulty in compar-

ing results across different experiments. The studies that

have been quantitative often present differing conclusions.

For example, studies of model-scale jets for the prior Mach-

1.92 jet,2 heated supersonic jet,8 Mach-2.0 jet,7,9 Mach-1.5

heated and unheated jets,2 and Mach-3.0 unheated jet1,3,5

differ significantly in their description both of the spatial

regions where cumulative nonlinear effects cause waveform

distortion as well as the cause of such distortions.

Two main approaches have been used to unify the vari-

ous types of analyses and experiments. One approach is to

develop an ad hoc metric (e.g., average steepening factor,23

pressure derivative skewness,7,13 bicoherence,9 etc.) that

responds to nonlinear propagation phenomenon, then to study

the metric behavior for different cases. For example, the

pressure-derivative skewness and wave steepening factor

have been used in conjunction to identify nonlinear trends in

military jet noise24 and laboratory-scale jet noise.1 However,

such metrics do not carry inherent physical meaning, but are

instead used only in hopes of finding a correlation with physi-

cal phenomena. The second approach is to directly use a

model equation to characterize the nonlinear propagation.

For example, comparisons can be made between well-defined

linear propagation—assuming spherical spreading and atmo-

spheric absorption—and actual propagation, revealing the

important physical differences between the two.2 However,

such a comparison requires a balance of large propagation

distances and large measurement bandwidth to accurately

detect differences between linear and nonlinear processes. If

measurements are not made in the far-field, then the assump-

tions of linear propagation may be invalid due to other com-

pounding effects (e.g., frequency-dependent source location

and directivity).9

The generalized Burgers equation (GBE) is another

model equation which has been used extensively to charac-

terize nonlinear propagation, and comparisons between com-

putational propagation with the GBE and actual propagation

have shown good agreement.17,25 The effective Gol’dberg

number, derived from the GBE, considers known or assumed

source and medium conditions to determine the relativea)Electronic mail: kglenmiller@gmail.com

J. Acoust. Soc. Am. 143 (6), June 2018 VC 2018 Acoustical Society of America 34790001-4966/2018/143(6)/3479/14/$30.00

https://doi.org/10.1121/1.5041741
mailto:kglenmiller@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5041741&domain=pdf&date_stamp=2018-06-01


importance of cumulative nonlinearity in propagation.1,10

The GBE has also been used to determine local rates of spec-

tral changes due to nonlinearity and other linear effects.26–28

The local analysis stems from the use of the “Morfey-

Howell” indicator,11 which has been previously studied for

connection to nonlinear effects.1,2,29 Specifically, this paper

builds on the work of Reichman et al.26 and Miller et al.,27

both of which lay the groundwork for using a local,

frequency-dependent nonlinearity indicator derived from the

GBE.

This paper uses a derived quadspectral nonlinearity indi-

cator to directly compare the effects of nonlinear propaga-

tion in model-scale jet noise to those of geometric spreading

and atmospheric absorption. From known medium and prop-

agation conditions, three GBE-derived indicators are calcu-

lated from a waveform to give the local rate of change in

sound pressure level (SPL) due to spreading, absorption, and

nonlinearity, respectively. The dataset analyzed in this paper

has been previously studied for cumulative nonlinear propa-

gation effects with bicoherence analysis,9 along with the

calculation of pressure derivative skewness7 and other quad-

spectral nonlinearity indicators.30 The previous results

provide a benchmark for understanding trends in the GBE-

derived indicators used here, as well as a comparison which

highlights the additional insight gained from using the GBE-

derived indicators.

First, to provide context for the use of the GBE-derived

indicators—see previous works26–28—the indicator values are

calculated for a computationally propagated sinusoid with

conditions and amplitude analogous to the model-scale jet

noise experiment. Next, trends with frequency, angle, and dis-

tance are examined in the spectra of noise from a Mach-2.0

jet, followed by a nonlinearity analysis of the same jet. The

Mach-2.0 jet noise is compared to noise from Mach-0.85 and

Mach-1.8 jets. From the spectral analysis, transfer of energy

to frequencies above the peak-frequency region is observed

for the Mach-1.8 and Mach-2.0 cases at angles near the prin-

cipal propagation radial. The nonlinearity analysis matches

the findings from the spectral analysis, showing quantitatively

the high-frequency nonlinear growth and the peak-frequency

nonlinear decay at angles near the principal propagation

radial. For measurements made farthest from the source, the

separate effects of nonlinear growth and absorption losses

combine to give an effective reduction in the decay due to lin-

ear absorption alone.

II. METHODOLOGY

A. Indicators from the spectral GBE

While seeking a model equation to describe the nonlinear

evolution of the power spectral density (PSD) for acoustic

pressure, Morfey and Howell11 found that an ensemble-

averaged form of the GBE included a spectral quantity that

could be used as a nonlinearity indicator. The Morfey and

Howell-derived Q/S is defined as

Q

S
¼

Qpp2

prmsSpp
¼

Im E F� p tð Þ
� �

F p2 tð Þ
� �h in o

prmsSpp
; (1)

where Qpp2 is the imaginary part of the cross-spectral density

(or quadspectral density) between the pressure and pressure-

squared waveforms, prms is the root-mean-square (rms) pres-

sure, and Spp is the autospectral or PSD. In addition, E denotes

expectation value and F denotes a Fourier transform.

Because Q/S involves the quadspectral density between pres-

sure and squared pressure, it reveals phase coupling between

two different frequencies that occurs in nonlinear harmonic

generation as a result of quadratic nonlinearity.9,31 The Q/S
indicator has been variously applied to military aircraft

noise,12,32,33 model-scale jet noise,2,30,34 rocket noise,21 plane-

wave tube data,30 and numerically propagated waveforms.31

While the Q/S indicator has been used in many qualita-

tive nonlinearity analyses,2,12,21,30–34 a quantitative interpreta-

tion requires an understanding of its magnitude relative to

other propagation mechanisms. To this end, the Q/S metric is

used here in conjunction with the other GBE terms. Though

several forms of the GBE exist, e.g., arbitrary spreading, strat-

ified medium, etc., the frequency-domain version of the GBE

is used here in order to work with frequency-domain nonline-

arity indicators. The spectral GBE has separate terms for the

effects of geometric spreading, absorption, and nonlinearity,

respectively,

@~p

@r
þ m

r
~p þ a0~p ¼ i

2

b

q0c3
0

x~q ; (2)

where � denotes a complex Fourier spectrum; r is the dis-

tance from the source; m takes on values of 0, 0.5, or 1 for

planar, cylindrical, and spherical waves, respectively; a0 is a

combination of the linear attenuation and dispersion coeffi-

cients for progressive plane waves; b is the coefficient of

nonlinearity; q0 is the equilibrium density of the medium; c0

is the equilibrium sound speed, and ~q is the Fourier trans-

form of p2ðtÞ. If Eq. (2) is ensemble averaged, it can then be

manipulated to include the Q/S term as defined in Eq. (1). As

such, an ensemble-averaged version of the frequency-

domain GBE yields an expression for the change in SPL

over distance26

@Lp

@r
¼ �10 log10 eð Þ �

2m

r
þ 2aþ xbprms

q0c3
0

Q

S

 !

� �S þ �a þ �N � �; (3)

where Lp is the SPL spectrum (in decibels), 10 log 10ðeÞ
� 4:34, and a ¼ <fa0g is the linear absorption coefficient.

In addition, the indicators listed on the right-hand side of

Eq. (3), by observation, are defined as

�S � �10log10 eð Þ �
2m

r
;

�a � �10log10 eð Þ � 2a;

�N � �10log10 eð Þ �
xbprms

q0c3
0

Q

S
: (4)

That is, Eq. (4) gives expressions as functions of frequency

for the change in SPL spectrum over distance due to
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geometric spreading, absorption, and nonlinearity, respec-

tively. When calculated and compared in conjunction, the

three indicators quantitatively relate three separate effects,

with each indicator carrying explicit physical meaning.

Positive values of the quantities in Eq. (4) indicate growth

and negative values indicate decay. Note that for the nonlin-

ear term, �N, the sign convention is opposite that used for the

Q/S indicator,11,34 for which a positive value signifies a loss

of energy at a particular frequency.

B. Sinusoid propagation analysis

Before analyzing experimental data with the �N indicator,

analysis of a numerical test case is useful to determine general

trends and expected behavior of the indicator. For a simple

test case, an initially sinusoidal waveform with amplitude

similar to the model-scale jet noise was numerically propa-

gated in air using a hybrid time-frequency domain algorithm

for the GBE.35 Unlike the jet noise case, which exhibits range

and frequency-dependent geometric spreading in the near

field, spherical spreading (m¼ 1) was assumed at all distan-

ces. For ease of subsequent comparison, the distance was

scaled with respect to a jet nozzle diameter (Dj)—equal to

3.5 cm—and the atmospheric conditions were taken to be the

same as in the experiment discussed in Sec. III, with tempera-

ture at 22.9 �C, atmospheric pressure at 96.8 kPa, and relative

humidity at 53%. In order to approximate the peak frequency

and rms amplitude of the jet data at 10 Dj, the sinusoid fre-

quency and amplitude at 1 Dj were set to 4 kHz and 22 kPa,

respectively. Since use of the GBE assumes kr 	 1, emphasis

is placed on distances of 10 Dj and greater, for which kr> 25

for all frequencies in the sinusoid propagation. For accuracy

in the calculations, a sampling frequency of 88 MHz was

used with 216 waveform samples.

The nonlinearly and linearly propagated waveforms at 75

Dj are compared in Fig. 1(a), with the linear wave including

only spherical spreading and atmospheric absorption effects.

Relative to linear propagation, significant wave steepening

has occurred in the nonlinear wave, along with a slight ampli-

tude decrease. In addition, atmospheric dispersion36 is evident

by the rounded peak of the nonlinear waveform. The evolu-

tion of the harmonic amplitudes with distance is shown in

Fig. 1(b), where the delayed onset of the higher harmonics

corresponding to nonlinear wave steepening is visible. The

fundamental always decreases in amplitude, but each sequen-

tial harmonic reaches a maximum amplitude at a successively

larger distance from the source.

The calculation of �S, �a, and �N from Eq. (4) are carried

out using the distance, frequency, assumed atmospheric con-

ditions, and numerically propagated waveform. The �S indica-

tor for spherical spreading as a function of distance and the �a

indicator as a function of frequency are shown in Fig. 2, with

circles showing the harmonics of the fundamental frequency.

A line showing the slope of classical thermoviscous absorp-

tion (e�a with a / f 2) is overlaid to show that for the mod-

eled conditions, nitrogen and oxygen vibrational relaxation

effects fall largely outside the 4–40 kHz bandwidth of interest.

Note the logarithmic ordinate of logarithmic quantities, which

serves to better observe the slopes of the absorption curves.

The similarity between high-frequency atmospheric and ther-

moviscous absorption trends is important in Sec. IV, where

comparisons are made with analytical thermoviscous-medium

behavior. As observed in Fig. 2, losses due to geometric

spreading dominate absorption losses at all frequencies and

distances, though past �40 Dj the effects of spreading and

absorption are of similar magnitude for the higher harmonics.

The effects of spreading and absorption in Fig. 2 can be

combined with the waveform-calculated �N to determine �,

the complete spatial rate of change in Lp as defined in Eq.

(3). Then � can be compared with the numerically calculated

derivative of Lp, DL/DDj, which is calculated for each har-

monic from the curves in Fig. 1(b). Shown in Fig. 3 are the

three indicators, their sum (�), and DL/DDj as functions of

distance. The error between � and DL/DDj is less than 1%

for all values shown. Very close to the source, �N is positive

for each harmonic as the harmonics are initially generated.

In fact, approaching 0 Dj (not pictured), the total indicator

value approaches � ! þ1. However, as shocks begin to

form, energy is transferred from the low harmonics to even

higher frequencies; this nonlinear energy transfer causes �N

FIG. 1. (Color online) (a) Comparison of the nonlinearly and linearly propa-

gated waveforms at 75 Dj. (b) Spectral amplitudes of the first six harmonics.

Each sequential harmonic peaks at a successively larger distance from the

source with the fundamental always decaying. The introduction of higher

harmonic numbers corresponds to waveform steepening.
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to go negative for some of the lower harmonics, as seen in Fig.

3(b). For the tenth harmonic, �N decreases but remains positive

away from the source. As pointed out by Blackstock,37 the har-

monic amplitudes of a nonlinear wave that undergoes unsteep-

ening in the “old age” region decay more slowly than do

harmonics of a linearly propagating wave. This difference is

given by �N, which must therefore remain nonzero and posi-

tive out to very large distances. If the computational example

is propagated to sufficient distance, �N becomes asymptotically

positive for each harmonic other than the fundamental, which

always remains negative. The asymptotic behavior of the �N

indicator is explored in detail for the planar and diverging case

by Miller et al.,27 which corroborates the trends observed here.

In summary, the general behavior of the three indicators

for this example is as follows: �S is independent of frequency

and is generally large in magnitude compared to the effects of

absorption and nonlinearity for the distances shown in Fig. 3.

The �a indicator shows that absorption becomes increasingly

negative with frequency, almost at the same rate as predicted

by thermoviscous absorption for the frequencies of interest.

The �N indicator is always negative for the fundamental fre-

quency, indicative of energy loss from the peak region. For

harmonics of the fundamental, �N is positive and infinite close

to the source, then positive and small far from the source.

The sign of �N at an intermediate distance from the source

depends on the waveform amplitude, harmonic number, and

atmospheric conditions. The trends explored in this section

are useful for interpreting the analysis of the experimental

model-scale data in subsequent sections.

III. MODEL-SCALE JET NOISE SPECTRAL ANALYSIS

This section examines the frequency content, directivity,

spectra, and pressure-squared spectra of model-scale jet

noise, followed by a comparison of jet conditions.

A. Experiment description

The jet noise waveform data were taken at the

National Center for Physical Acoustics’ anechoic jet facil-

ity and have been previously reported and analyzed.7,9,29,38

The measured jet conditions were subsonic Mach-0.85,

overexpanded Mach-1.8, and ideally expanded Mach-2.0.

Waveforms, sampled at 192 kHz, were acquired between

10 and 75 jet nozzle diameters (Dj¼ 3.5 cm) and between

80� and 150� (relative to upstream axis) in intervals of 5�,
with a 3.18-mm and 6.35-mm microphone array whose

origin was located 4 Dj downstream of the nozzle exit.

This origin is upstream from the expected overall noise

source region,39 but facility size constrained this position-

ing. Section IV contains additional detail on source

location.

FIG. 2. (Color online) Comparison of losses due to spherical spreading and

atmospheric absorption. The �S indicator for spherical spreading (m¼ 1) is

given as a function of distance, and the �a indicator—calculated from atmo-

spheric conditions reported in the text—is given as a function of frequency.

The dashed line shows the slope of classical thermoviscous absorption

(a / f 2), for which �a is closely aligned at the frequencies of interest

(4–40 kHz). Circles indicate harmonics of the sinusoid, including the funda-

mental. Note that absorption losses are of similar magnitude as the spreading

losses only for the high frequencies and far from the source.

FIG. 3. (Color online) Comparison of the three indicators, their sum (�), and

the numerically calculated derivative of sound pressure level spectrum (DL/

DDj) for (a) the fundamental at 4 kHz, (b) the second harmonic at 8 kHz, and

(c) the tenth harmonic at 40 kHz of the nonlinearly propagated waveform.

Very close to the source (<10 Dj, not pictured), harmonic strength is domi-

nated by nonlinearity. Geometric spreading becomes the dominant effect at

larger distances. For the tenth harmonic in (c), all three effects are of similar

magnitude at 75 Dj.
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B. Mach-2.0 data

The experiment layout and overall sound pressure level

(OASPL) for the ideally expanded Mach-2.0 jet condition

can be observed in Fig. 4(a). Linear interpolation was used

for this and subsequent figures to fill in values between mea-

sured data points. The measurement locations are repre-

sented by hollow circles and filled diamonds, with circles

representing 3.18-mm microphones and diamonds represent-

ing 6.35-mm microphones. The OASPL map shows that the

principal radiation radial occurs along 145�, or one set of

microphones in from the edge nearest the jet flow. A peak

frequency map created in the same fashion as Fig. 4(a) is

shown in Fig. 4(b). The peak frequency was calculated by

finding the geometric mean of the frequency range over

which Lp was within 3 dB of the maximum level measured at

a particular microphone. Figure 4(b) shows a general trend

of high (low) peak frequencies in the near (far) field. In addi-

tion, a very high peak-frequency region is observed close

to the source around �140� and projecting out to �40 Dj,

and the lowest peak-frequency region is observed in the far

field at 150�. This is due to the directivity and frequency-

dependent source locations of the jet: lower frequencies are

projected at angles closer to the jet flow axis9 and high-

frequency sources are generally located closer to the nozzle

exit than low-frequency sources.9,39 The combination of

frequency-dependent source locations and directivities

means that very close to the jet, the directivities at low and

high frequencies remain distinct and have not overlapped.

This distinction accounts for the region of 9-kHz peak fre-

quencies at 10 Dj, with the peak frequency values becoming

nearly identical everywhere past 60 Dj as the directivities

overlap. Section IV discusses the impact of source location

on the nonlinear analysis.

The jet directivity can also be understood by examining

SPL spatial maps at certain narrowband frequencies. Figure 5

shows the SPL for (a) 4 kHz, (b) 20 kHz, and (c) 40 kHz. A

bin width of 187.5 Hz was used in the analysis. The directiv-

ity can be seen to change for each frequency, with higher fre-

quencies radiating at shallower upstream angles (i.e., farther

from the jet flow). In addition, the maximum level is seen to

decrease for each higher frequency, which corresponds well

with peak frequencies under 10 kHz. In Fig. 5(a), the low fre-

quencies are seen to radiate at especially steep upstream

angles, and perhaps the maximum radiation radial for this fre-

quency is at an angle larger than 150�, i.e., too close to the jet

FIG. 4. (Color online) (a) OASPL and (b) peak frequency maps of the

Mach-2.0 data. Color schemes were created using linear interpolation of

data points. Data points are represented by hollow circles (3.18-mm mics)

and filled diamonds (6.35-mm mics).

FIG. 5. (Color online) Narrowband SPL plots at three different frequencies.

A bin width of 187.5 Hz was used to make these plots. The directivity

changes for each plot, with lower frequencies radiating closer to the jet.
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to be captured by the microphones. To compare the jet noise

to the propagated sinusoid in Sec. II, the difference between

jet noise levels at 4 kHz and 20 kHz at 145� and 75 Dj is

15.1 dB, and the difference in levels between the fundamental

and fifth harmonic of the sinusoid at 75 Dj is 14.6 dB, as seen

in Fig. 1(b). The correspondence signifies a similar spectral

shape between the two signals at this distance. At 75 Dj, the

individual harmonic spectral density levels are about 8 dB

higher for the initial sinusoid than for the experimental noise

(along 145�) due to the broadband nature of the noise. In

addition, the OASPL at 75 Dj is about 5 dB higher for the ini-

tial sinusoid than for the experimental noise (along 145�).
Other source characteristics are found by examining the

PSD along a certain radial (arc) of constant angle (distance).

Figure 6 shows PSDs along radials at (a) 135� and (b) 145�. A

downward shift in peak frequency is observed along both radi-

als in Fig. 6 due to the inner microphones being close to the

geometric near field of a source with frequency-dependent

source location, directivity, and spreading rate. It is important

to note that this downward shift in peak frequency along

a measurement radial is unrelated to nonlinear effects (see

discussion regarding Fig. 4 of Ref. 9). For example, low-

frequency noise is generated farther downstream from the

nozzle than is high-frequency noise,39 so low- and high-

frequency propagation radials differ—both from each other

and from the microphone array—before converging at �60 Dj.

At 145� in Fig. 6(b), the frequency roll-off between 10 and

20 kHz changes from �28 dB/octave at 10 Dj—close to

expected 27.8 dB/octave decay rate for large-scale structure

radiation40—to �20 dB/octave at about 40 Dj—typical of

shock-containing noise.41 The high-frequency spectral shape

remains fairly constant with distance after about 40 Dj, indicat-

ing that the energy losses due to absorption and energy gains

due to nonlinearity are of similar magnitude; this is shown

quantitatively in Sec. IV.

Changes in spectral shape and amplitude can be

observed by viewing the spectra along an arc, as shown at 40

Dj in Fig. 7(a). As the angle approaches 145�—the principal

radiation angle—the amplitude increases, but the spectra

also become more peaked, with the 1=f 2 high-frequency

slope typical of supersonic jet noise becoming evident at

145�. Because the calculation of Q/S (and thus �N) requires

computing the quadspectral density between the pressure

and pressure squared waveforms, the PSDs of the waveform

squared along the 40-Dj arc is also shown in Fig. 7(b).

Irregularities such as nulls in the PSD of the squared

FIG. 6. (Color online) Measured spectra along radials at (a) 135� and (b)

145� for the Mach-2.0 data, showing the downward frequency shift. The

principal radiation radial for this condition occurs along 145�.

FIG. 7. (Color online) The PSDs of (a) the waveform and (b) the waveform

squared from five microphones along an arc at 40 Dj. The PSDs of the wave-

form squared in (b) appear to be fairly smooth.
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pressure can limit the predictive accuracy of �N,42 but the

PSDs in Fig. 7(b) appear to be fairly smooth and regular.

Section IV describes additional details regarding accuracy of

the �N calculation. The spectra for the other two jet condi-

tions are briefly examined next.

C. Spectral comparison of jet conditions

In this section, spectral trends with jet Mach number are

explored, building on previous characterizations of subsonic

and supersonic jets.43–45 The overexpanded Mach-1.8 and

ideally expanded Mach-2.0 jet condition spectra are shown

to be similar, whereas spectra for the subsonic Mach-0.85 jet

condition behave differently in amplitude, peak frequency

values, and high-frequency decay rate. The spectra along the

maximum radiation radial of 150� is shown for both the (a)

Mach-0.85 and (b) Mach-1.8 data in Fig. 8. In Fig. 8(a), the

peak frequencies are nearly constant with distance and are

seen to be lower than in Fig. 8(b). This is likely due to a

low-frequency, compact noise source region located near the

microphone array center (4 Dj from the nozzle exit) for the

Mach-0.85 condition,39 with a low-frequency directivity that

lines up with the 150� radial. The low-frequency source

location and directivity are much different for the supersonic

jets, as inferred from the peak-frequency shifts in Figs. 8(b)

and 6.

The high-frequency spectral slopes are also different for

the two jet conditions, a product of the different overall

source strengths. The Mach-0.85 spectra in Fig. 8(a) have a

high-frequency spectral roll-off of about �27 dB/octave, the

decay rate for large-scale structure radiation.39,40,46 The

Mach-1.8 spectra in Fig. 8(b) have a much shallower high-

frequency roll-off of about �23 dB/octave. The slope is

steeper than the 20 dB/octave roll-off typical of acoustic

shock-containing noise41 and observed at Mach 2.0 in Fig.

6(b), but the decreased roll-off suggests some nonlinear gen-

eration of high frequencies at the Mach-1.8 jet condition.

This shallow slope is roughly constant with distance after

about 40 Dj, suggesting that significant nonlinear effects are

occurring at distances closer than 40 Dj.

The model-scale jet serves as an extended source with

frequency-dependent directivity evident in the noise spectra.

Trends with distance show that the frequency-dependent

directivity is more varied for high Mach numbers than for

the low Mach number. Trends with angle show much higher

levels close to the jet plume than at large angles; the peak

radiation radial is 150� at Mach 0.85 and Mach 1.8 (or possi-

bly greater than 150�, where we have no measurements), and

145� at Mach 2.0. The changes in peak frequency visible

along some radials in the Mach-1.8 and Mach-2.0 jet condi-

tion spectra are likely products of the frequency-dependent

directivity, while the shallow high-frequency roll-off results

from nonlinear wave steepening. To further investigate the

nonlinear behavior, the calculated indicator values from Eq.

(4) are examined in the following section, along with a short

discussion of the accuracy of the �N indicator.

IV. NONLINEARITY ANALYSIS

Nonlinear effects can be observed by analyzing trends

in spectral slopes, such as those in Fig. 6. However, a more

direct method of quantitatively observing nonlinearity from

the spectra is to calculate the instantaneous change in sound

pressure level spectrum, Lp, with distance due to nonlinear-

ity. In addition, the strength of nonlinear effects can be

directly compared with the effects of geometric spreading

and atmospheric absorption. This quantitative nonlinear

analysis is done through the use of the indicators �S, �a, and

�N as defined in Eq. (4). The �N indicator is calculated and

examined to find nonlinear trends with distance and angle.

For the Mach-1.8 and Mach-2.0 jets, assuming spherical

spreading is an oversimplification of the extended sources

that could reduce the predictive accuracy of the �S indicator.

Thus in this analysis, �S is only computed (assuming spheri-

cal spreading) to compare the predicted change in Lp with

measured numerical derivatives as part of a rough bench-

mark of the � indicator in Sec. IV A 3. The indicator values

is compared with those found from the computationally

propagated sinusoid in Sec. II B, and also to the strength of

absorption calculated from �a.

FIG. 8. (Color online) Measured spectra along 150� for the (a) Mach-0.85

and (b) Mach-1.8 data. The Mach-0.85 data observes a high-frequency spec-

tral slope of about �27 dB/octave and constant peak frequency with dis-

tance. The Mach-1.8 data observes a high-frequency spectral slope of about

�23 dB/octave and decreasing peak frequency with distance. The shallower

slope results from a smaller overall spectral level.
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Due to the high-amplitude, extended nature of the

source with frequency-dependent directivity, low-frequency

propagation radials close to the source differ markedly from

the microphone measurement radials. Care must be taken

when applying the models presented in Sec. II, which

assume spherical spreading from a single point source for all

frequencies. To properly interpret the �N calculations, two

related conditions must be met. First, the GBE assumes

kr 	 1. Second, the propagation radials should be approxi-

mately parallel with the measurement radials, i.e., the

frequency-dependent source location must appear close to

the array origin of 4 Dj. In Fig. 7 of Gee et al.,47 the

frequency-dependent source locations of a Mach-1.8, ideally

expanded jet with frequency-to-Strouhal number scaling of

24.44 kHz are shown. The peak-frequency source locations

of the Mach-1.8 jet are similar to those of the Mach-1.9 jet

studied by Tam et al.,39 and are used to draw comparisons

with the Mach-2.0 jet in this work. The source location for

the Mach-1.8 jet from Ref. 47 is 4 Dj at �15 kHz. Given that

the frequency-to-Strouhal number scaling for the Mach-2.0

jet in this paper is 14.8 kHz, the corresponding frequency

with a 4–Dj source location for this experiment is �9 kHz.

Extrapolating the results from Fig. 7 of Ref. 47 to 1 kHz

(corresponding to �600 Hz for this Mach-2.0 jet) gives a

source location of about 17 Dj. Given these apparent source

locations, we place a lower limit on valid frequencies for

nonlinear analysis at 9 kHz for 10 Dj. and 600 Hz for 75 Dj,

respectively. Data shown for intermediate distances have a

low-frequency limit varying between 9 kHz and 600 Hz,

with kr> 29 for all data shown in this section.

We place an upper frequency limit on valid frequencies

for nonlinear analysis at 40 kHz—about 25% of the sam-

pling frequency—where we expect the calculation of Qpp2 in

Eq. (1) to be accurate42 based on the doubling of frequency

components due to the waveform squaring and relationship

with the Nyquist frequency.

A. Mach-2.0 data

1. Trends with distance and angle

The Mach-2.0 jet exhibits frequency-dependent source

locations and directivities, which are evidenced by the spec-

tra along propagation radials and arcs (see Figs. 6 and 7).

However, past 60 Dj, the peak frequency appears to remain

fairly constant. Nonlinear processes are evident in Fig. 6(b)

from the constant high-frequency spectral slope along 145�

and after about 40 Dj. The changes in peak frequency and

spectral slope observed in the PSDs can be correlated with

values of the �N indicator along the same radials. Figure 9

shows the calculated �N indicator along radials at (a) 135�

and (b) 145�, with negative and positive values of �N indicat-

ing losses and gains in energy, respectively. Along 135�, the

peak frequency ranges from 3.4 to 8.9 kHz. However, the

frequency at which �N is most negative—signifying the larg-

est nonlinear reduction in energy to generate higher frequen-

cies—ranges from about 8.8 to 28 kHz. Similarly, the peak

frequencies along the 145� radial range from 2.9 to 7.5 kHz,

and the most negative value of �N ranges from about 7.9 to

15 kHz. The bulk of the energy required for nonlinear

harmonic generation is coming from frequencies appreciably

higher than the PSD peak frequencies. This also reflects the

factor of x in the �N calculation shown in Eq. (4), where the

multiplication of amplitude and frequency partially determine

the nonlinear “cascading” in the formation of a 1=f 2 slope.

Since nonlinear processes are dependent on both fre-

quency and amplitude, spectral peak frequency shifts also

change the frequency region where nonlinear effects are the

largest. Visible at both angles in Fig. 9 is a transition from

nonlinear loss to nonlinear gain in energy. The frequency at

which this occurs decreases with distance along both radials,

tracking the downward shift in peak frequency from the

PSDs in Fig. 6. In addition, the frequency at which �N

changes from negative to positive occurs at much higher fre-

quencies along 135� in Fig. 9(a) than along 145� in Fig. 9(b).

This matches the overall higher peak frequencies along 135�

compared to 145�, as seen from Figs. 4(b) and 6. The down-

ward shift along both radials and the higher transition fre-

quencies along the 135� radial indicate that the general

region of the spectrum with greatest amplitude at a given

FIG. 9. (Color online) The �N indicator values for radials along (a) 135� and

(b) 145�. The frequency where �N transitions from negative to positive

decreases with distance, tracking the downward shift in peak frequency seen

in Fig. 6. In addition, the same transition frequency is overall higher along

135� than for 145�, matching the higher peak frequencies along 135� as

seen from Figs. 4(b) and 6. To uphold model assumptions based on esti-

mated frequency-dependent source locations, only certain frequencies are

shown.
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location drives nonlinear energy transfer to higher frequen-

cies. Similarly, Sec. II B showed that the harmonic of

greatest amplitude for the sinusoidal case—the fundamen-

tal—continually drives nonlinear harmonic generation,

i.e., �N is always negative for the fundamental. In addition,

along the principal radiation radial in Fig. 9(b), the energy

loss rate (��0.01 to �0.05 dB/Dj) at 10 kHz and gain rate

at 40 kHz (�þ0.03 to þ0.1 dB/Dj) for the experimental

data are very similar in magnitude to the �N values for the

second harmonic (��0.01 to �0.04 dB/Dj) and tenth har-

monic (�þ0.03 to þ0.11 dB/Dj) of the initial sinusoid

between 15 and 75 Dj, as seen in Figs. 3(b) and 3(c).

The relative strength of nonlinearity along the various

radials can be observed by viewing �N along an arc at a fixed

distance. Figure 10 shows �N along five different radials,

with the magnitude of the indicator increasing with angle.

Though nonlinear processes are observed along both the

135� and 145� radials in Fig. 9, Fig. 10 shows that the non-

linear processes along the 145� radial are greater than twice

the strength than those along the 135� radial. In addition, �N

transitions from negative to positive at a much lower fre-

quency along the 145� radial, corresponding to a lower peak

along that radial.

The nonlinear growth and decay can be seen across all

microphones through spatial maps of the �N indicator. The

�N spatial maps are shown for various frequencies in Fig. 11,

with data omitted within 40 Dj in Fig. 11(a) to uphold the

model assumptions in Sec. II. The frequencies were chosen

to show the indicator values for frequencies near the peak

frequency, near the transition frequency where �N changes

from negative to positive, and at high frequencies where sig-

nificant nonlinear growth occurs. At low frequencies, such

as in Fig. 11(a), energy is being lost due to nonlinearity at all

locations. However, the loss is only significant between

about 135� and 150�. At more shallow angles, not enough

acoustic energy is available to drive nonlinear generation of

higher frequencies. In fact, nonlinear effects are confined to

angles between about 135� and 150� in each plot in Fig. 11.

Similarly, Fig. 1 of Ref. 7 shows that the pressure derivative

skewness values for the same Mach-2.0 dataset are only

significantly above zero at the same angles. In addition, the

bicoherence for the same dataset along 60 Dj, shown in Fig.

3 of Ref. 9, reveals no quadratic phase coupling (QPC),

some QPC, and significant QPC at angles of 120�, 135�, and

150�, respectively. The trends from the calculated �N indica-

tor agree well with trends from the pressure derivative skew-

ness and bicoherence calculations.
FIG. 10. (Color online) The �N indicator values for various angles along an

arc of 40 Dj. The nonlinearity increases significantly with angle.

FIG. 11. (Color online) Spatial maps of �N for various frequencies. The fre-

quencies were chosen to show �N values for frequencies near the peak fre-

quency, near the transition frequency where �N changes from negative to

positive, and at high frequencies where significant nonlinear growth occurs.

Data are omitted within 40 Dj in (a) to uphold model assumptions.
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In Figs. 11(b) and 11(c) of this paper, �N is seen to spa-

tially transition from positive to negative with decreasing

angle. The change from nonlinear growth to nonlinear decay

tracks the overall transition from low to high peak frequency

with decreasing angle—as seen in Fig. 4(b)—with low peak

frequencies corresponding to nonlinear growth at relatively

low frequencies (�16 kHz). In Fig. 11(d), the frequency is

high enough that nonlinear growth occurs at all locations.

The only exception is very close to the source, where �N is

slightly negative due to a very high peak frequency in that

region, as seen in Fig. 4(b). The �N indicator serves not only

to show the presence of nonlinearity, but it also shows

whether the transfer of energy is positive or negative at a

particular frequency, giving insight into the nonlinear pro-

cesses occurring based on peak frequency.

2. Nonlinearity and absorption

One specific benefit of the �N indicator is that it allows

for the direct comparison of the effects of absorption and non-

linearity. The spectra in Fig. 6(b) appear to preserve a con-

stant high-frequency slope, even though the overall amplitude

is decreasing due to spreading. In order to compare the high-

frequency effects of absorption and nonlinearity without

including spreading, the sum �Nþ �a is calculated. The sum

is shown along 145�, the principal radiation radial for Mach

2.0, in Fig. 12. Note that the sum appears to be about zero

above 20 kHz at 40 Dj, the distance where the high-frequency

spectral slopes in Fig. 6(a) appear to remain constant. The

trend indicates that overall growth has ceased for frequencies

of 20–40 kHz past 40 Dj. To the contrary, pressure-derivative

skewness analysis from the same dataset seen in Fig. 1 of

Ref. 7 show increasing derivative skewness values out to 75

Dj, indicating continued shock growth at the farthest measure-

ment distance. Similar pressure-derivative skewness results

are seen from a Mach-3.0 jet observed by Baars et al.,1 where

the derivative skewness values peak at about 145 Dj. It is pos-

sible that the Mach-2.0 waveform shocks are still

strengthening at 75 Dj, but that the nonlinear harmonic

growth is visible in the �N values for frequencies above 40

kHz. Conducting this analysis would require measurements at

farther distances and with a greater sampling frequency than

was possible in this experiment.

Despite the somewhat contrasting trends from the �N indi-

cator and derivative skewness, important far-field behavior for

the measured frequencies can be drawn from the �N calcula-

tions. In Fig. 12, the 75–Dj curve appears to converge to a line

with linear exponential decay (e�a with a / f ). The �a curve

as defined in Eq. (4) is also plotted for comparison. As shown

in Fig. 2, the slope of �a above about 4 kHz closely follows a

quadratic exponential decay (e�a with a / f 2), typical of ther-

moviscous absorption. For initially sinusoidal nonlinear wave-

forms in the old-age region (ar 	 1), the asymptotic decay of

the nth harmonic due to absorption for both plane waves and

spherically diverging waves in a thermoviscous medium goes

as e�na0r—a linear exponential decay.37 It is not surprising that

a linear exponential decay is reached for noise waveforms as

well. However, the asymptotic decay appears to be reached

much more quickly for noise than for initial sinusoids. For

example, at 75 Dj in Fig. 12, the rate of change appears to

observe a linear exponential decay rate for some frequencies.

Assuming a peak frequency of 4 kHz at 75 Dj and atmospheric

absorption gives a0r � 7:2� 10�3, which is far from the old-

age region for initial sinusoids (which occurs at more than 100

times this distance for the sinusoid discussed in Sec. II B).

Previous work shows that shocks occur more quickly for noise

waveforms than for sinusoids,48 but more work is required to

determine the behavior of the � indicators near the onset of the

old-age region for spherically spreading noise waveforms–in-

cluding analysis at higher frequencies and larger distances

from the source.

3. Indicator accuracy

To determine the accuracy of the �N calculation, which

gives the predicted change in the sound pressure level spectrum,

Lp, over distance, the indicator is compared against numerical

derivatives of Lp. However, the minimum spacing between

microphones is 10 Dj, so the spatial derivatives are approxi-

mate. Near-field effects from frequency-dependent source loca-

tions and directivities cause changes in Lp not predicted by �N,

as discussed at the beginning of this section. In addition, spec-

tral changes at large distances, such as those seen from 60 to 75

Dj in Fig. 6, are only a few decibels large—on the order of the

spectral noisiness. Nonetheless, such a comparison provides a

qualitative benchmark verification of the indicator.

The �N indicator gives an instantaneous derivative of Lp,

whereas numerical derivatives taken between microphones

are a centered-difference. Figure 13 compares the predicted

change in sound pressure level—�, or the sum �Sþ �aþ �N—

with numerical spatial derivatives of the PSD levels between

microphones. A bin width of 3 kHz was used for this analysis

to better observe the general trends. The numerical derivative,

DLp/Dr, in Fig. 13 is a centered-difference between spectra

taken by microphones at (a) 20 and 30 Dj and (b) 40 and 60

Dj. Since the � values are instantaneous derivatives and the

numerical derivative is centered between the microphones,

FIG. 12. (Color online) The sum �N þ �a calculated along the 145� radial at

Mach 2.0. The sum approaches zero at frequencies above about 20 kHz at 40

Dj. At 75 Dj, the sum for high frequencies converges to a slope of e�a with

a / f —a linear exponential decay—rather than a slope with a / f 2—a qua-

dratic exponential decay, given approximately by �a as defined in Eq. (4).
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the red DLp/Dr curve in each plot is expected to lie some-

where between the two black � curves.

Though the estimated source location at 9 kHz is near the

4–Dj origin of the microphone array (see beginning of this sec-

tion), there is a discrepancy at low frequencies in Fig. 13(a).

This is most likely due to the frequency-dependent directivity

of the source, especially evident in the near field,9,39 as well as

the large step size of the approximate spatial derivatives. In

addition, spherical spreading is assumed for the �S metric,

which may or may not be accurate for measurements near a

model-scale jet.5 However, from about 10 to 40 kHz in Fig.

13(a), the agreement between the predictions and actual deriv-

atives is good, indicating that the lower limit of 7 kHz used at

this distance is a reasonable estimate for the valid frequency

range. The agreement is good across nearly all frequencies

shown (lower limit of 3 kHz) between 40 and 60 Dj in Fig.

13(b), where the actual numerical derivative lies between the

prediction from the �N indicator calculated at each distance.

B. Nonlinear comparison of jet conditions

The strength of nonlinear effects increases with wave-

form amplitude, and this section compares the nonlinearity

from data collected at Mach 0.85 and Mach 1.8 with the

Mach-2.0 data. The OASPL is shown at (a) Mach 0.85 and

(b) Mach 1.8 in Fig. 14. In Fig. 14(a), the levels are seen to

be much smaller than for either the Mach-1.8 or Mach-2.0

cases, and negligible nonlinearity is expected in the data.9

Note the secondary radiation lobe occurring in the Mach-1.8

data at about 125�, as seen in Fig. 14(b). This corresponds to

a transition region from low to high peak frequency.7

Comparing the OASPL maps between the Mach-1.8 and

Mach-2.0 data, the Mach-2.0 case only has values 2–4 dB

higher than the Mach-1.8 case. The directivity has changed,

with the main lobe being located more downstream at Mach

1.8. The �N values at 150� and 60 Dj are compared together

for the three engine conditions in Fig. 15. As expected, neg-

ligible nonlinearity is observed for the Mach-0.85 case. The

�N curve for this condition is extremely small in amplitude,

with only noisy fluctuations. At the physical location dis-

cussed in Fig. 15, the OASPL level at Mach 2.0 is about

2 dB higher (factor of about 1.3) than at Mach 1.8. Similarly,

the high-frequency �N values are about 1.25 as large at Mach

2.0 for each frequency, which agrees well with the difference

in OASPL levels.

To examine the decay due to the effects of nonlinearity

and absorption combined, the same plots as in Fig. 12 are

shown for the (a) Mach-0.85 and (b) Mach-1.8 jet conditions

in Fig. 16. The sum �Nþ �a is given at each distance, along

with �a as defined in Eq. (4) (approximately a quadratic

exponential decay of e�a with a / f 2) and a linear exponen-

tial decay (e�a with a / f ). Each is along a 150� radial,

which is the principal radiation radial for both conditions.

FIG. 13. (Color online) Predicted change in sound pressure level—�, or the

sum �S þ �a þ �N—with numerical derivatives of the PSD levels between

microphones, DLp/Dr. The derivatives are taken along 145� at Mach 2.0

between (a) 20 and 30 Dj and (b) between 40 and 60 Dj. Some discrepancy

is expected due to the extended, frequency-dependent nature of the source.

FIG. 14. (Color online) OASPL spatial maps of the (a) Mach-0.85 and (b)

Mach-1.8 data. Note the much smaller levels in (a) and the secondary radia-

tion lobe at about 125� in (b).
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For the Mach-0.85 data, there is essentially no contribution

to the sum from �N; the decay simply follows that of atmo-

spheric absorption. For the Mach-1.8 data, however, the

decay is similar to that of the Mach-2.0 data in Fig. 12: a lin-

ear exponential decay at 75 Dj.

In summary, as the jet condition increases, the OASPL

increases and the directivity of the principal lobe moves

upstream. Different from the other conditions, Mach 1.8

shows a secondary radiation lobe at about 125�. The OASPL

for Mach 0.85 is about 25 dB less than Mach 1.8, which in

turn is about 3 dB less than Mach 2.0. The nonlinearity

observed from the �N indicator is negligible at the lowest

condition, and about 1.25 times as large at Mach 2.0 com-

pared to Mach 1.8. The sum of the effects of absorption and

nonlinearity produce a nearly quadratic exponential decay

(a / f 2) in the far field at Mach 0.85, but the far-field decay

is that of a linear exponential (a / f ) for Mach 1.8 and

Mach 2.0. (Note that �a was shown in Fig. 2 to decay with

quadratic frequency dependence for frequencies above about

4 kHz.) The linear exponential decay at 75 Dj for Mach 1.8

and Mach 2.0 shows that nonlinearity is significant enough

for these two conditions to change the far-field nature of the

waveforms. This confirms the expected results from theory37

and from the calculations in Sec. II B, namely that a nonlin-

ear waveform experiences a smaller decay in the far field

than does a linear waveform. In fact, the far-field limit of the

reduced absorption decay appears to be the same for initially

sinusoidal waveforms as for noise waveforms, namely, a lin-

ear instead of quadratic exponential decay.

V. CONCLUSIONS

A quadspectral, frequency-domain nonlinearity indica-

tor, �N, has been used to quantitatively yield the spatial rate

of change in sound pressure level spectrum over distance for

unheated, model-scale jet noise. The �N nonlinearity indica-

tor gives a quantitative evaluation of nonlinearity from a

single-point measurement, and comparison with the �S and

�a indicators allows for direct comparison with spreading

and absorption effects. Whereas nonlinearity is negligible

for the subsonic Mach 0.85 jet, nonlinear effects for the

Mach 1.8 and Mach 2.0 jets are seen to be greater than or

comparable with absorption along measured peak radiation

radials, where the overall sound pressure level is greatest.

This complements, and better quantifies, prior analyses

involving the bicoherence and pressure derivative

skewness.

Although the results represent a fully quantitative analysis

of the effect of nonlinearity on jet noise spectral evolution,

they also point to directions and the need for additional

research. First, the geometric near-field—where the frequency-

dependent source, spreading, and directivity effects are com-

plex—needs to be more fully explored. Second, the noise

waveforms appear to approach the old-age region relatively

close to the source at only 75 Dj, where the effects of nonline-

arity and absorption combine to cause a linear (e�a with

a / f ), rather than a quadratic (e�a with a / f 2) exponential

decay. Additional research is needed to connect the frequency-

domain nonlinearity analysis with time-domain nonlinearity

indicators such as the derivative skewness, possibly with data

taken at a higher sampling frequency and farther from the

source. Finally, the old-age behavior and other quantitative

FIG. 15. (Color online) The �N spectral values for three engine conditions at

150� and 60 Dj. The nonlinearity in the Mach-1.8 and Mach-2.0 data are

comparable, whereas the nonlinearity for the Mach-0.85 data is negligible.

FIG. 16. (Color online) The sum �N þ �a along 150� for (a) Mach 0.85 and

(b) Mach 1.8. The contribution due to nonlinearity is essentially zero in (a),

where the roll off follows that of absorption only (close to a quadratic expo-

nential decay). For (b) Mach 1.8, the roll off approaches a linear exponential

decay, similar to the Mach-2.0 case in Fig. 12. The linear exponential decay

indicates a reduction in the expected absorption decay due to nonlinearity.
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insights presented here need to be investigated for supersonic

jets of other scales and conditions.
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