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In this work, we study the generation of photons inside an ideal cavity with resonantly oscillating boundaries
in the presence of a two-level atom. We make use of Lie algebraic techniques to obtain an approximate time-
evolution operator and not only evaluate the resonant and dispersive regimes but also explore different regions of
parameters. We have found a very good agreement between our approximate results and those obtained by
numerical means. © 2018 Optical Society of America
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1. INTRODUCTION

Creation of photons from vacuum fluctuations is one of the
many fascinating effects in quantum theory. In a seminal paper
dealing with the quantum theory of linearly polarized light
propagating in a one-dimensional cavity bounded by two ideal,
infinite, parallel, plane mirrors that move with arbitrary
trajectories, Moore [1] predicted the creation of real photons
generated from vacuum due to nonadiabatic variations in
the boundary conditions of the field. This effect is now known
as the dynamical Casimir effect (DCE); see Refs. [2–4] for
recent reviews on the status of the DCE. For the generation
of the effect, it is necessary to rapidly modulate the boundary
conditions of the electromagnetic field with velocities close to
the speed of light, which, for a physical mirror, may not be
experimentally feasible. In order to circumvent these difficul-
ties, experiments with analogous systems such as superconduct-
ing circuits consisting of coplanar transmission line resonators
with tunable electrical length have been performed. In these
experiments, the rate of change of the electrical length can
be done very fast by modulating the inductance of a super-
conducting quantum interference device (SQUID) at high
frequencies [5,6]. A different proposal, based on a trapped-
ion implementation, has been made recently [7].

Interestingly, it was shown in Refs. [8,9] that one might ex-
pect a significant rate of photon generation inside ideal cavities
with resonantly oscillating boundaries. The simplest model de-
scribing this effect takes into account a single resonant cavity
mode whose frequency is rapidly modulated [10,11]. A quite
different scenario can take place when featuring a secondary

system (a detector) inside a nonstationary cavity where the
DCE is manifested. Along this line of research, the problem
of the back action of different detectors on the rate of photon
generation has been considered describing the detector as a
two-level atom (or several atoms) [12,13] or by means of a har-
monic oscillator tuned in resonance with the selected field
mode [14,15]. More recent results have shown that DCE
can also manifest if one allows the Zeeman splitting of the qubit
or the atom-field coupling to be time-dependent [16–22].

Here, we are in line with the aforementioned studies of tack-
ling the problem of exploring the effect of adding a secondary
system viewed as a two-level atom on the evolution of the
field in a nonstationary cavity. To do this, we put forward
an alternative approach based on Lie algebraic techniques,
since the constituent operators of the proposed unperturbed
Hamiltonian model, the starting point of our treatment, turns
out to generate a closed Lie algebra. This fact enables us to
express the corresponding evolution operator of the whole sys-
tem as a product of exponentials according to the well-known
Wei–Norman theorem, as will be outlined in Section 2. Our
algebraic procedure, therefore, allows us to derive closed-form
semianalytical expressions for exploring, in Section 3, some
quantities of physical interest to the problem at hand, such
as the average value of Casimir photons, the variance of the
field quadratures, and the evolution of the field on phase space
in terms of its Q function; the extent to which our approximate
solutions are applicable is also stated by comparing them with
the corresponding entirely numerical results. And finally, in
Section 4, some conclusions are given.
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2. MODEL AND ITS APPROXIMATE SOLUTION

Consider the case of a closed cavity with a moving wall
executing a periodic motion and a two-level atom inside it.
The simplest Hamiltonian describing this system can be
written as (in units of ℏ )

Ĥ � ω�t�n̂� χ�t��â2 � â†2� �Ω
2
σ̂z � g�â� â†��σ̂� � σ̂−�,

(1)

where n̂, â, and â† are the usual number, annihilation, and
creation operators, respectively, while σ̂z , σ̂� refer to the
Pauli matrices representing the two-level atom, Ω is the atomic
level spacing, and g is the atom-field coupling constant with
units of frequency. We have chosen χ�t� ≡ 1

4ω�t�
dω�t�
d t and

ω�t� � ω0�1� ϵ sin�ηt��, with jϵj ≪ 1 being the modulation
amplitude and η the frequency of the modulation. It is known
that in the absence of the atom-field interaction, the mean
number of photons grows exponentially if η ≃ 2ω0 and
ϵω0t ≥ 1 [8,9].

Since jϵj ≪ 1, we take ω�t� ≃ ω0 and set the unperturbed
Hamiltonian as

Ĥ 0 � ω0n̂�
Ω
2
σ̂z � χ�t��â2 � â†2�, (2)

with χ�t� � �ϵω0∕2� cos�2ω0t�, and the atom-field interac-
tion Hamiltonian is given by

V̂ � g�â� â†��σ̂� � σ̂−�: (3)

By virtue of the fact that the constituent field operators of H 0,
namely, fn̂, â†2, â2g, form the basis of an su(1,1) Lie algebra, it
is well known that the time-evolution operator corresponding
to such a Hamiltonian can be cast in terms of a product of
exponentials of the aforesaid operators [23]:

Û 0 � e−i
Ω
2 tσ̂z eγ1n̂eγ2 â†2eγ3 â2eγ4 , (4)

with complex, time-dependent functions γi�t� to be deter-
mined. Substitution of Eq. (4) into Schrödinger’s equation
yields the set of ordinary differential equations:

_γ1 � −iω0 − 4ie2γ1χ�t�γ2, (5)

_γ2 � �−ie−2γ1 � 4ie2γ1γ22�χ�t�, (6)

_γ3 � −ie2γ1χ�t�, (7)

_γ4 � −2ie2γ1χ�t�γ2, (8)

with the initial conditions γi�t0� � 0, so that U 0�t0, t0� � 1.
The maximum value for the function χ�t� is ϵω0∕2
and jϵj ≪ 1, so that at the beginning of the evolution
γ1 ≃ −iω0�t − t0�, and the functions γ2, γ3, and γ4 have small
initial derivatives.

The time-evolution operator of the whole system in the
interaction picture generated by Û 0 satisfies

i∂t Û I � Ĥ I Û I , (9)

with Ĥ I � Û †
0V̂ Û 0 being the interaction picture

Hamiltonian, and Û I �t0, t0� � 1. This representation entails
applying a Bogoliubov transformation to the annihilation and
creation operators, namely,

Û †
0âÛ 0 � t1â� t2â†,

Û †
0â

†Û 0 � t3â� t4â†,

where t	1 � t4 and t	2 � t3, since the transformation is unitary.
The transformation coefficients are given in terms of the γi
terms as

t1 � eγ1 − 4eγ1γ2γ3, (10)

t2 � 2eγ1γ2, (11)

t3 � −2e−γ1γ3, (12)

t4 � e−γ1 : (13)

Thus, the interaction picture Hamiltonian takes the form

Ĥ I � g ���t1 � t3�â� �t2 � t4�â†��σ̂�eiΩt � σ̂−e−iΩt��: (14)

The Hamiltonian Ĥ I is Hermitian. If we call z1 � �t1 � t3�
and z2 � �t2 � t4�, we have z1 � z	2 and jz1jeiϕ1 � jz2je−iϕ2 ,
so ϕ1 � −ϕ2. From Eq. (5), we know that at the early stages of
the evolution γ1 ≃ −iω0t , then ϕ1 ≃ −iω0t and ϕ2 ≃ iω0t.

Taking the products in the equation above, one obtains
terms that conserve the total number of excitations âσ̂�,
â†σ̂−, and terms that do not conserve it, âσ̂−, â†σ̂�. The term
âσ̂− corresponds to a transition from the upper level jei to the
lower level jgi and the annihilation of a photon; the second
describes the reverse process. The terms that conserve the total
number of excitations have an initial phase �i�Ω − ω0�t,
while those that do not conserve it have an initial phase
�i�Ω� ω0�t. The terms that oscillate rapidly will make a
smaller contribution than those that oscillate slowly; then in
what follows we will keep only the terms that conserve the total
number of excitations (an approximation that will be grounded
on comparing its predictive accuracy with the corresponding
numerical results based upon the whole Hamiltonian) to get
a Jaynes–Cummings-type interaction of the form [24]

H̃ I ≈ g �âσ̂��t1 � t3�eiΩt � â†σ̂−�t2 � t4�e−iΩt �: (15)

Now we find it convenient to define the operators [25–28]:

b̂ � âσ�ffiffiffiffiffi
M

p , b̂† � â†σ−ffiffiffiffiffi
M

p , (16)

with M � n� 1
2
�1� σz� being the total number of excita-

tions in the corresponding ladder, so that the interaction
Hamiltonian [Eq. (15)] can be recast as

H̃ I ≈
ffiffiffiffiffi
M

p
g ��t1 � t3�b̂eiΩt � �t2 � t4�b̂†e−iΩt �: (17)

The number of excitations for a given ladder is a constant,
since the operators b̂ and b̂† generate transitions between states
of the same ladder (fixed M � n� 1). The action of such
operators upon the states je, ni and jg , n� 1i is given by

b̂je, ni � 0, b̂jg , n� 1i � je, ni,
b̂†je, ni � jg , n� 1i, b̂†jg , n� 1i � 0,

from which one can deduce the commutation relations,

�b̂, b̂†� � σ̂z , �σ̂z , b̂� � 2b̂, �σ̂z , b̂†� � −2b̂†:
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Again, the Lie algebra generated by the set of operators
fb̂, b̂†, σ̂zg enables us to apply the Wei–Norman theorem
and to write the time-evolution operator for the interaction part
in a product form as

Û I � eβz σ̂z eβ� b̂
†
eβ− b̂ : (18)

Substitution of this evolution operator into Schrödinger’s equa-
tion [Eq. (9)] allows us to arrive at the following set of coupled
differential equations for the complex, time-dependent func-
tions βz�t� and β��t�:

_βz � −ieiΩt−2βz g
ffiffiffiffiffi
M

p
�t1 � t3�β�, (19)

_β� � −ig
ffiffiffiffiffi
M

p
�e−iΩt�2βz �t2 � t4� � eiΩt−2βz �t1 � t3�β2��,

(20)

_β− � −ieiΩt−2βz g
ffiffiffiffiffi
M

p
�t1 � t3�: (21)

The solution to these equations must be obtained by numerical
means. Nonetheless, having established the evolution operator
of the whole system, Û � Û 0Û I , the algebraic scheme enables
us to readily proceed to the calculation of any physical
observable.

Let us consider first the case when the atom is in its ground
state and the field has no photons, that is, jΨ�t0�i � jg , 0i, the
total number of excitations is M � 0, and application of the
evolution operator Û I upon the initial state does not modify it;
that is, Û I �t, t0�jg , 0i � jg , 0i. This is due to the fact that H̃ I
has only terms that conserve M . The state at time t is then
given by jΨ�t�i � U 0�t, t0�jg , 0i, and the atomic state will
not change during this evolution. There is however, generation
of photons due to the Hamiltonian H 0.

Consider now the case when the state of the system at time
t0 is jΨ�t0�i � αje, ni � βjg , n� 1i, where jei, jgi refer to the
excited and ground atomic states, respectively, and jni corre-
sponds to a field with n photons. Since the state is normalized,
we require jαj2 � jβj2 � 1. At time t, the system has evolved
into jΨ�t�i � Û 0Û I jΨ�t0�i. Once obtained in its explicit
form, one can evaluate almost straightforwardly the average
value of a given observable Ô�t�:

hÔ�t�i � hΨ�t�jÔjΨ�t�i � hΨ�t0�jÛ †
I Û

†
0ÔÛ 0Û I jΨ�t0�i:

(22)

Consider, for instance, the case where the operator Ô is the
number operator. Application of Û I to the initial state jΨ�t0�i
yields

jΨI �t�i � eβz �α� ββ−�je, ni
� e−βz �αβ� � β�1� β�β−��jg , n� 1i, (23)

� Ce,nje, ni � Cg ,n�1jg , n� 1i, (24)

and the interaction picture representation of the number oper-
ator is

n̂I �t� � U †
0â

†U 0U
†
0âU 0 � �t3â� t4â†��t1â� t2â†�,

which may be written as

n̂I �t� � �1 − 8γ2γ3�n̂� 2γ2â†2 � 2γ3�4γ2γ3 − 1�â2 − 4γ2γ3,
� g11n̂� g20â

†2 � g02â
2 � g00: (25)

So, based upon Eq. (22), the average value of the number
operator is

hΨI �t�jn̂I �t�jΨI �t�i � g11�njCe,nj2��n� 1�jCg ,n�1j2�� g00,

(26)

where we have made use of the relation jCe,nj2�
jCg ,n�1j2 � 1 that follows from the normalization condition
hΨI �t�jΨI �t�i � 1. We shall apply this prescription in the fol-
lowing section to explore the effectiveness of our semianalytic
approach, comparing our results with the entirely numerical
solution for the whole Hamiltonian [Eq. (1)]. As a remark,
we should mention that the algebraic approach described above
can also be suitable for the study of initial multiphoton
Gaussian states of the electromagnetic mode, such as coherent
and squeezed states.

3. SEMIANALYTICAL AND NUMERICAL
RESULTS

Let us now focus on reviewing to what extent the semianalytical
approach outlined above can be used to explore the effect of the
atom on features of physical relevance concerning the dynamics
of the cavity field, viz., the expectation value of the number of
Casimir photons, the variances of its quadratures, and its evo-
lution in phase space based upon the Q function.

Since we are primarily interested in the aforesaid features
when the state of the system at the initial time is jΨ�t0�i �
je, 0i, it is found that the average number of Casimir photons
is given by

hΨI �t�jn̂I �t�jΨI �t�i � g11jβ�j2e−2Rfβzg � g00, (27)

with Rf·g denoting the real part of the corresponding time-
dependent complex function. The influence of the atom-field
interaction on photon creation is encapsulated in the time-
dependent functions β� and βz . The outcome of Eq. (27)
is depicted in the top panel of Fig. 1 for parameters
Ω � 0.2ω0, ϵ � 0.02, and g � 0.05ω0, chosen in a way such
that the atom-field interplay falls into the dispersive regime in
which ω0 ≫ Ω and jΩ − ω0j ≫ g ; unless otherwise specified,
we shall make use of red and black lines to label the numerical
and approximate results, respectively, in subsequent descrip-
tions. So, on the basis of the numerical result, we see that
our approach works very well within the time interval displayed
in the plot. Although a slightly oscillatory conduct is exhibited
at the very beginning of the evolution, the archetypal exponen-
tial growth of such a quantity rules its overall profile. On the
other hand, as far as the atom is concerned, the probability
of finding it in its excited state turns out to be given by the
expression

Pe�t� �
e2Rfγ4�βz g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4jγ2j2e4Rfγ1g

p , (28)
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which is calculated from the trace operation Trfρ̂Ajeihejg, with
ρ̂A � TrF fρ̂AF g being the reduced density operator of the atom
(TrF means tracing over the degree of freedom of the field) and
ρAF � jΨ�t�ihΨ�t�j the density operator of the composite
system. This quantity is displayed in the bottom panel of
Fig. 1. One can see that its spiky behavior in the early stages
of the system’s evolution is in agreement with the correspond-
ing numerical result; this conduct is also in accord with the
fact that the state of the atom, being out of resonance with
the field, remains almost unchanged around the state it
started up (Pe�t� ≈ 1).

Neglecting the terms âσ̂− and â†σ̂� from the Hamiltonian
given in Eq. (1), we obtained a Jaynes–Cummings-like
Hamiltonian whose time-evolution operator we constructed
in an exact form. The differences found between the purely
numerical computation using the full Hamiltonian, and the
results obtained with our semianalytical method are due only
to the terms we have neglected. In the case far from resonance,
we have found that the effect of these terms is negligible.
However, when the interaction between the atom and the field
is in resonance (Ω � ω0), we can see that for long enough
times, their effect is no longer negligible, as can be seen in
Fig. 2, where the photon production is plotted as a function
of time for the set of system parameters indicated in the figure
caption. In this regime, one can see, again, a preponderant
exponential growth in photon production, whereas our
approximation starts displaying, as time elapses, a conspicuous
oscillatory profile around the value given by the entirely
numerical solution using the full Hamiltonian.

At this stage, it is worth mentioning that our semianalytical
approach goes beyond the algebraic treatment reported in
Ref. [12], where the coupling strength of the cavity field with
the atom is regarded as a small perturbation parameter in com-
parison with the modulation amplitude, i.e., g ≪ ϵω0. Indeed,
besides being applicable in this limit, the present approach
encompasses both dispersive and resonant regimes and allows
the aforesaid parameters to have values of the same order of
magnitude [as those used for Fig. 2].

Before proceeding to explore the evolution of the field on
phase space, let us compute the variances of the field quadra-
tures, labeled as X̂ � �â� â†�∕ ffiffiffi

2
p

and P̂ � �â − â†�∕ ffiffiffi
2

p
i,

that can be determined from Eq. (22) by using the expres-
sions hΨI �t�jâ†I jΨI �t�i � �ββ	�α	 − 2β	β�αγ3�e−2Rfβzg−γ1

and hΨI �t�jâ†2I jΨI �t�i � −2γ3e−2γ1�2jαβ�j2e−2Rfβzg � 1�, to-
gether with Eq. (27). For the same set of parameters and initial
conditions as in Fig. 2, the outcome of the variance h�ΔX̂ �2i �
hX̂ 2i − hX̂ i2 as a function of time is displayed in the top panel
of Fig. 3, along with the corresponding numerical result for the
sake of comparison. Again, the short time behavior of the
approximate result matches that of the converged numerical
one, as seen in the inset of the figure, revealing a small degree
of squeezing (i.e., h�ΔX̂ �2i < 1∕2, see the blue dashed line in
the figure as a reference) at certain values of time. Discrepancies
between the approximate and the numerical results become
noticeable for times larger than ω0t ≃ 40, where, unlike the
numerical outcome, our approximation still predicts squeezing
in both quadratures around the interval 60 < ω0t < 80 and a
more pronounced dispersion at certain periods of time. A sim-
ilar behavior is observed for the dispersion in the conjugate
quadrature P̂, as seen in the bottom panel.

In order to make a link between the previous results and the
evolution of the field on phase space let us consider the Husimi
Q function, which is defined as the diagonal matrix element of
the field density operator ρ̂F � TrAfρAF g (the trace is now over
the atomic variables) between standard coherent states, i.e.,

Q�z� � 1

π
hzjρ̂F jzi, (29)

where jzi � exp�−jzj2∕2�Pkz
k∕

ffiffiffiffi
k!

p
jki. For the particular

case we have been focused on (Ψ�t0� � je, 0i), substitution

Fig. 1. (Top) Average value of the number operator and (bottom)
the probability of finding the atom in its excited state as functions of
time (in units of τ0 � 1∕ω0 ). The initial state is taken to be
ρAF �0� � je, 0ihe, 0j. Parameter set (dispersive regime): fΩ, η, gg �
f0.2, 2.0, 0.05gω0, ϵ � 0.02.

Fig. 2. Average value of the number operator as a function of
time (in units of τ0 � 1∕ω0 ). The initial state is taken to be
ρAF �0�� je,0ihe,0j. Parameter setting (resonant regime): fΩ, η, gg �
f1.0, 2.0, 0.02gω0, ϵ � 0.02.
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of ρ̂F into this expression allows us to arrive at the sought
result:

Q�z� � 1

π
e−jzj2�2Rfγ4�z	2γ2e2γ1 g�e2Rfβzg � jzβ�j2e2Rfγ1−βzg�:

(30)

This distribution function is portrayed as a density plot in the
upper row of Fig. 4 (the lower row corresponds to the numeri-
cal result) at the time instants ω0t � 0, 20, 40, 60, and 80,

which, in turn, are indicated by the dashed black vertical lines
labeled as a, b, c, d , and e, respectively, in Fig. 3. At ω0t � 0,
the state of the field starts as a minimum-uncertainty state. It
evolves and at, say, ω0t � 20, it attains a somewhat more elon-
gated form along the vertical axis whose dispersion, given by
h�ΔP̂�2i (see right panel of Fig. 3) is duly quantified to be
slightly above the coherent-state value. We also see that the
presence of the atom fosters the formation of what seems to
be well localized two-phase components [see frames (d) and
(e)], which in fact begin to be barely observable at ω0t �
40 [frame (c)]. Although our approach assesses a wider spread-
ing effect of the state’s phase-space distribution, reflected in the
dispersion relations of Fig. 3, than the one observed for the
numerical outcomes for ω0t > 40, it correctly predicts (quali-
tatively) the foregoing cat-like splitting behavior on short time
scales. In Ref. [29], we calculated the Husimi function for a
single nonstationary cavity mode immersed in a nonlinear
Kerr medium, and we found a similar pattern, that is, the for-
mation of distinguishable quantum superpositions arising from
the vacuum state due to the presence of the nonlinear medium.

4. CONCLUDING REMARKS AND OUTLOOKS

In this work, we have developed an approximate method for the
study of a closed cavity with a moving wall executing periodic
motion with a two-level atom inside the cavity. We take as un-
perturbed Hamiltonian that of the atom, the field, and the part
arising from the motion of the mirror. The interaction part of
the Hamiltonian is that corresponding to the atom-field inter-
action, which is treated within the rotating wave approxima-
tion, and we thus have an interaction that preserves the
total number of excitations. This approximation is valid when-
ever the atom-field coupling g ≪ Ω. In order to test the validity
of our method, we considered the same set of parameters as
those used in Ref. [12], where analytical expressions were ob-
tained in the dispersive and the resonant limits, and we found a
good agreement with their results. We also considered cases far
from the resonance and the dispersive regimes, and we made a
numerical evaluation in order to test our approximate results.
We want to stress the fact that in the numerical evaluation, we
did not make use of the rotating wave approximation. One of
the main effects due to the presence of the atom inside the cav-
ity is an enhancement in the generation of Casimir photons.

Finally, it is worth underlining the possibility of adapting the
present algebraic scheme to carry out the assessment of quan-
tum fluctuations of physical interest that, as far as we know, has
not been undertaken in this context, such as time-dependent
spectrum of light [30], phase- and intensity-intensity correla-
tion measurements [31], which involves the calculation of
standard correlation functions, provided we restrict ourselves
to the short-time behavior of the system. Another potential
application would be to provide a protocol and/or scheme
to the thermalization of the cavity through a random injection
of atoms into it (see, e.g., Refs. [32,33]) like the micromaser
scenario; this would open up the possibility of implementing
quantum heat engines in the context of nonstationary cavities.
A modest step toward tackling the problem of an empty non-
stationary lossy cavity where the DCE in its bounded regime is
manifested can be found in Ref. [34].

Fig. 3. (Top) Plot of the variance of the field quadratures X̂ � �â�
â†�∕ ffiffiffi

2
p

and (bottom) P̂ � �â − â†�∕ ffiffiffi
2

p
i as functions of time for the

same set of parameters as in Fig. 2. The inset focuses on the shortened
time interval, 0 < ω0t < 30, within which a good agreement between
the numerical (red line) and semianalytical (black dashed line) results
can be observed.

Fig. 4. Evolution of the Q function of the field density operator at
time (in units of 1∕ω0 ) at instants t � 0, 20, 40, 60, and 80 when the
initial state of the composite system is such that ρAF �0� � je, 0ihe, 0j.
The numerical and semianalytical results correspond, respectively, to
the upper and lower rows. The set of system parameters is the same as
in Fig. 2 (resonant regime).
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