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Machine-learned multi-system surrogate models for materials
prediction
Chandramouli Nyshadham1, Matthias Rupp 2,7, Brayden Bekker1, Alexander V. Shapeev3, Tim Mueller 4, Conrad W. Rosenbrock1,
Gábor Csányi5, David W. Wingate6 and Gus L. W. Hart1

Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with
the accuracy of ab initio methods at a fraction of the computational cost. We demonstrate surrogate models that simultaneously
interpolate energies of different materials on a dataset of 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and
NbNi) with 10 different species and all possible fcc, bcc, and hcp structures up to eight atoms in the unit cell, 15,950 structures in
total. We find that the deviation of prediction errors when increasing the number of simultaneously modeled alloys is <1 meV/
atom. Several state-of-the-art materials representations and learning algorithms were found to qualitatively agree on the prediction
errors of formation enthalpy with relative errors of <2.5% for all systems.
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INTRODUCTION
Advances in computational power and electronic structure
methods have enabled large materials databases.1–4 Using high-
throughput approaches,5 these databases have proven a useful
tool to predict the properties of materials. However, given the
combinatorial nature of materials space,6,7 it is infeasible to
compute properties for more than a tiny fraction of all possible
materials using electronic structure methods such as density
functional theory (DFT).8,9 A potential answer to this challenge lies
in a new paradigm: surrogate machine-learning models for
accurate materials predictions.10–12

The key idea is to use machine learning to rapidly and
accurately interpolate between reference simulations, effectively
mapping the problem of numerically solving for the electronic
structure of a material onto a statistical regression problem.13

Such fast surrogate models could be used to filter the most
suitable materials from a large pool of possible materials and then
validate the found subset by electronic structure calculations.
Such an “accelerated high-throughput” (AHT) approach (Fig. 1)
could potentially increase the number of investigated materials by
several orders of magnitude.
Traditionally, empirical interatomic potentials were used to

reproduce macroscopic properties of materials faster than DFT.
Well-known empirical interatomic potentials for periodic solids
include Lennard–Jones potentials, the Stillinger–Weber potential
and embedded-atom methods (EAM) for alloys. A problem with
empirical interatomic potentials is that they are designed with a
fixed functional form and cannot be systematically improved. In
contrast, surrogate models which are empirical interatomic
models based on machine learning systematically improve with
additional data. This potential advantage over traditional

potentials has resulted in the proposal of many machine-learned
surrogate models for materials prediction.
We demonstrate the feasibility of machine-learned surrogate

models for predicting enthalpies of formation of materials across
composition, lattice types, and atomic configurations. Our findings
were motivated toward knowing whether different surrogate
models proposed in the literature are consistent in their
predictions of formation enthalpy rather than comparing the
performance of different surrogate models. We find that five
combinations of state-of-the-art representations and regression
methods (Table 1) all yield consistent predictions with errors of
~10meV/atom or less depending on the system. We also find that
when we combined the data from all 10 systems to build a single
model, the combined model is essentially as good as the 10
individual models.
A surrogate machine-learning model replaces ab initio simula-

tions by mapping a crystal structure to properties such as
formation enthalpy, elastic constants, or band gaps, etc. Its utility
lies in the fact that once the model is trained, properties of new
materials can be predicted very quickly. The prediction time is
either constant, or scales linearly with the number of atoms in the
system, with a low pre-factor, typically in milliseconds.
The two major parts of a surrogate machine-learning model are

the numerical representation of the input data11,14 and the
learning algorithm. We use the term “representation” for a set of
features (as opposed to a collection of unrelated or only loosely
related descriptors) that satisfies certain physical require-
ments12,13,15,16 such as invariance to translation, rotation, permu-
tation of atoms, uniqueness (representation is variant against
transformations changing the property, as systems with identical
representation but differing in the property would introduce
errors17), differentiability, and computational efficiency. The role of
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the representation is akin to that of a basis set in that the
predicted property is expanded in terms of a set of reference
structures.
To model materials, it is desirable that a representation enables

accurate predictions and is able to handle multiple elements
simultaneously. The materials community has proposed several
representations10–12,14,15,18–21 for crystal structures. Some do not
fulfill the above properties exactly or are restricted, in practice, to
materials with a single element. Consequently, surrogate models
based on these representations are limited in their accuracy, due
to the violation of any of the physical requirements mentioned
above (e.g., for the sorted and eigenspectrum variants of the
Coulomb matrix, continuity and uniqueness, respectively16,17).
We explore three state-of-the-art representations that fulfill

above properties for construction of general surrogate models:
many-body tensor representation12 (MBTR), smooth overlap of
atomic positions10,15 (SOAP), and moment tensor potentials11

(MTP). Each representation is employed as proposed and
implemented by its authors, including the regression method:
Kernel ridge regression13 (KRR) for MBTR, Gaussian process
regression22 (GPR) for SOAP, and polynomial regression11 for
MTP. Since predictions (but not necessarily other properties) of the
kernel-based KRR and GPR are identical, we will use the two terms
interchangeably here. We also employed cluster expansion23–26

(CE) and deep neural network27,28 (DNN) models. Our purpose is
not to compare the performance of these different surrogate
models. Consequently, the models were not optimized to
minimize the error; rather they were generated to maintain a
typical speed/accuracy balance.
CE models have been used for three decades to efficiently

model ground state energies of metal alloys, but require that the
atomic structure can be mapped to site occupancies on a fixed

lattice. They are therefore less suited to model different materials.
In this work, we use them as a baseline and build a separate CE
model for each alloy. The comparison is not between CE and other
models regarding performance, but our intention is to see how
consistent are these different models in predicting the formation
enthalpy of materials.
DNNs are essentially recursively stacked layers of functions, a

large number of layers being a major difference between DNNs
and conventional neural networks. They have been used to
predict energies29–33 and to learn representations.34,35 While
DNNs can learn representations (“end-to-end learning”, here from
nuclear charges, atom positions and unit cell basis vectors to
enthalpy of formation), this requires substantially more data than
starting with a representation as input.18–20 We, therefore, provide
the DNN with MBTR as input. MBTR is a manually designed
representation and works well with the Gaussian kernel. The idea
of using MBTR along with DNN is to explore whether a
representation-learning technique can improve upon a manually
designed representation in conjunction with the standard
Gaussian kernel (MBTR+ KRR).

RESULTS AND DISCUSSION
Energy predictions for single alloys
Prediction errors for enthalpies of formation of each of the five
surrogate models on each binary alloy subset of the data are
presented in Fig. 2a. Prediction errors of all surrogate models
agree qualitatively on all subsets of the data. We interpret this
consistency to be indicative of the validity of the machine-learning
approach to surrogate models of formation enthalpy of materials,
independently of the parametrization details of the models.
For four binary systems (AgCu, AlMg, CoNi, CuNi) predictions

errors are below 3meV/atom. The prediction errors of all surrogate
models on the remaining six systems (AlFe, AlNi, AlTi, CuFe, FeV,
NbNi) are consistent, and it is not obvious as to why these systems
are harder to learn. When generating the data, the same
methodology and parameters were used for all alloys, and similar
fitting procedures were employed for each surrogate model.
We point out that whenever the elements that constitute a

binary alloy system belong to the same column of the periodic
table or are close to each other in the periodic table in terms of
atomic number, the surrogate models’ predictions are good and
vice versa. Indeed, together these numbers explain 80% of the
variance in prediction errors (see supplementary material).
A complementary observation is that while absolute errors vary

from alloy to alloy, relative errors (δRMSE), expressed as a
percentage of the range of energies of an alloys’ subset of the
data, remains <2.5% for all systems (Fig. 2b).

Table 1. State-of-the-art surrogate machine-learning models investigated in this work

Abbrv. Surrogate model Description

CE Cluster expansion23–26+ Bayesian approach26 One of the early successful surrogate models developed in the materials
community. A material's ground state energy is expanded as an Ising-type model
with constant expansion coefficients.

MBTR +KRR Many-body tensor representation12+ kernel
ridge regression

Materials are expanded in distributions of k-body terms stratified by chemical
element species, using non-linear regression.

MBTR
+DNN

Many-body tensor representation+ deep neural
network (DNN)27,28

MBTR is used as input for DNN to learn a new representation and predict using a
parametric deep regression method.

SOAP +GP Smooth overlap of atomic positions15+Gaussian
process regression22

Atomic environments represented as smoothened Gaussian densities of
neighboring atoms expanded in a spherical harmonics basis, using non-parametric
regression.

MTP Moment tensor potentials (MTP)11+ polynomial
regression

Atomic environments expanded in a tailored polynomial basis, computed via
contractions of moment tensors.
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Machine learning
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1. Enthalpy
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Fig. 1 The accelerated high-throughput approach. Candidate
structures and properties are generated by surrogate machine-
learning models based on reference electronic structure calculations
in a materials repository. Selected structures are validated by
electronic structure calculations, preventing false positive errors
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General models trained on all alloys
We trained four of the five investigated surrogate models
simultaneously on all 10 alloy systems and compared the mean
absolute error (MAE) of these combined models with the average
MAE when trained on each alloy system separately (Table 2;
note that RMSE would differ from MAE due to its non-linear nature).
The quantitative agreement indicates that the deviation of the
prediction errors is <1meV/atom when trained on multiple systems.

For the cluster expansion, these results suggest that there is a single
set of parameters for generating a prior probability distribution over
effective cluster interaction (ECI) values (provided in the supporting
information) that works well across a variety of chemistries and lattice
types.
For CE, the representation is naturally tied to a particular lattice

(e.g. fcc, bcc), making it difficult to train on multiple alloy systems
with different lattices at the same time. Here we train a cluster
expansion on all alloys by constraining all 30 systems to use a
single set of hyperparameters for regularization (i.e. all use the
same prior probability distribution of ECI values). The machine-
learning surrogate models based on MBTR, SOAP, and MTP do not
suffer from the problem of representation being tied to a
particular lattice. They express energy as a continuous function
of atomic positions and can be trained on multiple materials
simultaneously.
We investigate simultaneous training of alloys in more detail for

the MBTR+ KRR model. Figure 3 presents deviations of the MAE of
a single model trained on k alloy systems from the average MAE
when the model is trained on each alloy system separately. In all

of the possible
P10

k¼1
10
k

� �

¼ 1023 cases, the deviation is below

1meV/atom. These deviations are on the order one would expect
from minor differences in hyperparameter values. We conclude
that prediction errors remain consistently unaffected when
increasing the number of simultaneously modeled alloys.
In the case of MBTR+ DNN model, we observe improvement in

prediction errors on the combined model when compared with
the average of separate models (Table 2 [see also Fig. 2 in
supplementary material]). This suggests that it might be possible
to learn element similarities between chemical element species
using a DNN to improve learning rates further.36

Caveat emptor
Are reported errors reliable estimates of future performance in
applications? It depends. We discuss the role of training and
validation set composition as an example of the intricacies of
statistical validation of machine-learning models.
In the limit of infinite independent and identically distributed

data, one would simply sample a large enough validation set and
measure prediction errors, with the law of large numbers ensuring
the reliability of the estimates. Here, however, data are limited due
to the costs of generating them via ab initio simulations, and are

Table 2. Performance of general models

Mean absolute errors (meV/atom)

Surrogate model Average of separate models Combined model

CE 4.7 4.8

MBTR+ KRR 5.1 5.3

MBTR+DNN 5.1 4.6

SOAP+GP 4.5 –

MTP 3.1 3.4

Shown are mean absolute errors (MAE) of models trained on all 10 alloy
systems simultaneously (right column) versus the average MAE of models
trained on individual alloy systems. The combined fit using SOAP+ GP was
not performed in this work

Fig. 3 Performance of MBTR+ KRR model for multiple alloy systems.
Shown are deviation of mean absolute error (MAE, vertical axis) of
an MBTR+ KRR surrogate model trained on k (horizontal axis) alloy
systems simultaneously from the average MAE of k models trained
on each alloy subsystem separately. Whiskers, boxes, horizontal line
and numbers inside the plot show the range of values, quartiles,
median and sample size, respectively. Difference in error between
individual and combined models is always <1meV/atom

Fig. 2 Consistency in prediction errors of formation enthalpy of five
machine-learning surrogate models on the DFT-10B dataset. a Root
mean squared error (RMSE) of predicted enthalpies of formation of
each surrogate model on each binary alloy subset in meV/atom
(colored bars). RMSE for MTP results is computed using pure atom
total energies obtained from DFT. The consistency of errors across
models indicates the validity of machine-learning surrogate models
to predict formation enthalpy of materials—prediction errors are
similar, independent of the details of model parametrization. b Root
mean squared error (RMSE) of predicted enthalpies of formation of
each surrogate model on each binary alloy subset as a percentage of
energy range. Note that relative errors are below 2.5% for all systems
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neither independent nor identically distributed. In such a setting,
part of the available data is used for validation, either in the form
of a hold-out set (as in this work) or via cross-validation, suited for
even smaller datasets.
Prediction errors in machine-learning models improve with data

(otherwise it would not be machine learning). This implies that if
only few training samples exist for a “subclass” of structures,
prediction errors for similar structures will be high. For example,
consider the number of atoms per unit cell in the 10 alloys dataset
(DFT-10B) used in this work: There are only 11 structures for each
alloy that have 1–2 atoms in the unit cell. Consequently,
prediction errors are high for those structures (see Fig. 3 in
supplementary material).
In addition to being sparse, smaller unit cells also have a

different information content than the larger unit cells. Small unit
cells are typically far away from the large unit cells and from each
other. Each structure is a point in the representation space and
interpolating between structures that are far apart is more prone
to error than in regions where the data is tightly clustered (see
Fig. 4 in supplementary material). Ideally, the data that the model
is trained on would be uniformly distributed in the representation
space. Because small unit cells are few in number and because
they have a different information content, it is best to include
them in the training set.
For combinatorial reasons, the number of possible structures

increases strongly with the number of atoms in the unit cell
(Table 3). This biases error statistics in two ways: As discussed,
prediction errors will be lower for classes with more samples. At
the same time, because these classes have more samples, they will
contribute more to the measured errors, dominating averages
such as the RMSE.
Figure 4 presents MBTR+ KRR prediction errors (RMSE in meV/

atom) for different but same-size splits of the data into training
and validation sets. On the left, all structures with kj j or fewer
atoms in the unit cell are excluded from the training set (and

therefore included in the validation set). This results in many high-
error structures in the validation set, with the effect decreasing for
smaller kj j. For k= 0, size does not influence the split. On the right,
structures with ≤k atoms are always included in the training set,
resulting in fewer high-error structures in the validation set. The
dashed line marks the value of k= 2 recommended in this work
(see supplementary material).
Retrospective errors reported in the literature should, therefore,

be critically assessed. The design of such studies should report on
“representative” validation sets instead of those tweaked to yield
lowest possible errors. For combinatorial datasets, the smallest
structures (those that can be considered to be outliers) should be
included in the training set.37

We showed that it is possible to use machine learning to build a
combined surrogate model that can simultaneously predict the
enthalpy of formation of crystal structures across 10 different
binary alloy systems, for three lattice types (fcc, bcc, hcp) and for
structures not in their ground state. In this, we find that the
concept of using machine learning to predict formation enthalpy
of materials to be independent of the details of the used surrogate
models as predictions of several state-of-the-art materials
representations and learning algorithms were found to be in
qualitative agreement. This observation also seems to be
congruent with recent efforts toward a unifying mathematical
framework for some of the used representations.38

The ability to use a single surrogate model for multiple systems
simultaneously has the potential to simplify the use of surrogate
models for exploration of materials spaces by avoiding the need
to identify “homogeneous” subspaces and then building separate
models for each of them. This also avoids problems such as
discontinuities at the boundaries of separate models.
Is it possible to do better? Recent results suggest that it might

be possible to exploit similarities between chemical element
species to improve learning rates further.36 This requires either to
explicitly account for element similarities in the representations or
to learn element similarities from the data, for example with a
DNN. While such alchemical learning is outside of the scope of this
work, we do observe an improvement in prediction errors for the
general MBTR+ DNN model (Table 2 [see also Fig. 2 in
supplementary material]).

METHODS
Data
We created a dataset (DFT-10B) containing structures of the 10 binary
alloys AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV, and NbNi. Each
alloy system includes all possible unit cells with 1–8 atoms for face-
centered cubic (fcc) and body-centered cubic (bcc) crystal types, and all
possible unit cells with 2–8 atoms for the hexagonal close-packed (hcp)
crystal type. This results in 631 fcc, 631 bcc, and 333 hcp structures,
yielding 1595 × 10= 15,950 unrelaxed structures in total. We refer to this
dataset as DFT-10B in this work. The cell shape, volume, and atomic
positions were not optimized and the calculations are all unrelaxed, for the
sake of efficiency. The crystal structures were generated using the
enumeration algorithm by Hart and Forcade.39

Lattice parameters for each crystal structure were set according to
Vegard’s law.40,41 Total energies were computed using DFT with projector-
augmented wave (PAW) potentials42–44 within the generalized gradient
approximation (GGA) of Perdew, Burke, and Ernzerhof45 (PBE) as
implemented in the Vienna Ab Initio Simulation Package46,47 (VASP). The
k-point meshes for sampling the Brillouin zone were constructed using
generalized regular grids.48,49 The details of the k-point density for all 10
alloys is mentioned in Table 1 of the supplementary material.

Models
All single-alloy surrogate models were trained using the same set of 1000
randomly selected crystal structures, including optimization of hyperpara-
meters, and the prediction errors are reported on a hold-out test set of 595
different structures, never seen during training. The same set of

Table 3. Size distribution in the DFT-10B dataset

Atoms/unit cell 1 2 3 4 5 6 7 8

No. of structures 4 7 12 48 56 210 208 1 050

Shown are the number of structures with k atoms in the unit cell, k ≤ 10
(per alloy; multiply by 10 for the total dataset)

Fig. 4 Influence of biased training and validation sets. Shown are
the root mean squared errors (meV/atom) as a function of training
and validation set composition obtained using MBTR+ KRR model.
See main text for discussion
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decorations are used as training and test sets for all binaries. Models
trained on multiple alloys use the union of the individual alloy’s splits.
Parametrization details of all surrogate models used in this work can be
found in the supplementary material.

DATA AVAILABILITY
The dataset (DFT-10B) generated and used for the current work is publicly available
as BA10-18 (DFT-10B) at https://qmml.org/datasets.html.
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