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Abstract: We present a fully lensless single pixel imaging technique using mechanically
scanned interference patterns. The method uses only simple, flat optics; no lenses, curved mirrors,
or acousto-optics are used in pattern formation or detection. The resolution is limited by the
numerical aperture of the angular access to the object, with a fundamental limit of a quarter
wavelength and no fundamental limit on working distance. While it is slower than some similar
techniques, the lack of a lens objective and simplification of the required optics could make it
more applicable in difficult wavelength regimes such as UV or X-ray.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

We demonstrate a lensless, single-pixel imaging techinque which uses interference patterns to
sample the spatial frequency components of an object or a lightfield/hologram. It is related to
a set of techniques [1–15] we refer to as interference pattern structured illumination imaging
(IPSII), as well as the more general field of synthetic aperture imaging. Our method, mechanical
angle scan IPSII (MAS-IPSII), does not require any lenses for pattern projection or imaging, uses
a reduced set of optics, requires only a single pixel detector, is capable of arbitrary pixel counts
(limited only by precision of the automated mirrors), and is simpler in theory and operation
than other IPSII techniques. These properties make MAS-IPSII a good candidate for IPSII at
sub-optical wavelengths, where many of the optics needed for other IPSII techniques, such as
lenses or acousto-optics, are unavailable, costly or of poor quality [10]. Its relative simplicity
also makes MAS-IPSII a good tool for understanding and studying IPSII generally.
Like other lensless methods MAS-IPSII is not subject to many of the limits of conventional

imaging [16,17], such as the inverse relationships between resolution, optic size, working distance,
and depth-of-field (DOF). But all lensless methods have their own advantages and limitations.
Shadow imaging techiques [18,19], for example, require the detector be near the object. Generally
the working distance must be less than the desired resolution squared over the wavelength, though
phase reconstruction and back propagation algorithms soften this limitation [20]. The lack
of magnification means the field-of-view (FOV) and resolution are limited by the detector’s
pixel size an number. Despite these drawbacks, shadow imaging has been extremely usefully in
applications including on-chip microscopy and x-ray radiography.
Computational imaging using diffraction patterns (i.e. measuring the Ewald sphere) [21–25]

requires no imaging optics, has no fundamental DOF or working distance limitation, and its
resolution is theoretically only limited by wavelength and the solid angle of light captured.
However, among other difficulties, methods such as digital holography [26,27], phase retrieval
algorithms [28], or light-field imaging [29, 30] are needed to determine the phase of the detected
light.
Structured illumination (SI) methods, in which different basis patterns are projected onto an

object, also allow lensless imaging. Examples of SI include raster scan approaches such as
LIDAR or confocal microscopy, as well as methods using the Fourier basis [31], Hadamard
functions [32], or pseudo-random patterns [33]. SI is well suited to single pixel imaging and
compressive sensing [25, 34, 35]. But while an imaging lens is not required, to avoid constraints
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equivalent to those mentioned above for shadow imaging, most SI methods utilize lenses for
pattern formation and projection [36–38].
With IPSII, interfering coherent beams make high-resolution patterns without the need for a

projection lens and with no fundamental limit on working distance. However, for various reasons,
most forms of IPSII employ lenses or other limiting optical elements. In structured illumination
microscopy (SIM) [3, 5], interference patterns are projected through the microscope objective
of a conventional microscope, effectively making each pixel a 2 × 2 IPSII image, doubling the
resolution [4] and improving optical sectioning [39]. Later research created interference patterns
directly on the target, without passing through a lens, decoupling resolution and DOF [1,7, 8].
These experiments used a small number of fixed beam angles, limiting the FOV for a single-pixel
detector. As such, it was augmented by traditional imaging to increase the number of pixels in
the image.
Further research with structured illumination includes techniques such as SPIFI [37, 38] and

CHIRPT [12,13] that multiplex spatial information into the signal frequency spectrum. A similar
technique, DEEP [9,10,12], shows that spatial frequency can also be effectively multiplexed onto
the signal time frequency spectrum. More recently, F-basis [11] demonstrated single-step 3D
imaging with all information stored in the temporal frequency spectrum of the temporal signal
of a single detector. DEEP and F-basis use acousto-optics to split the illumination into two or
more beams [40] that can be quickly scanned, but are still limited by an objective lens used to
recombine the beams. Axial structured imaging [14] was developed as an alternative to optical
sectioning or light-sheet microscopy.

In this paper we present theory and proof-of-principle experiments of a truly lensless, single-
pixel mechanically scanned IPSII technique that requires only flat mirrors and flat beam-splitters.
Our design is based on an interferometer with computer controlled mirrors, used to form variable
interference patterns which illuminate the object. This allows measurement of arbitrary spatial
frequency components, resulting in a pixel count limited only by the precision of the mirrors, and
an FOV limited only by the size of our laser beams. The resolution is limited by the numerical
aperture of a single beam splitter. We show how this design could be used to measure phase as
well as intensity of light passing through an object, essentially allowing for digital holography
with a single pixel detector and an arbitrary FOV and working distance. With straightforward
back-propagation methods, this would produce 3D images of absorptive, transparent, or complex
objects.
It has been noted that the speed of mechanical scanning methods would be limited [10], and

this is indeed the case with our design. We have not attempted to optimize the speed of our
method, as fast optical IPSII technologies already exist (such as F-basis), and our method is not
a good candidate for high speed optical microscopy. However, reasonable imaging speeds should
be obtainable since the mechanical requirements of our system are similar to some widely-used
mechanically-scanned implementations of LIDAR and confocal laser scanning microscopy.
The key advantage to MAS-IPSII is the lack of focusing elements, which should make it

better suited than similar methods to UV and x-ray imaging at high resolutions. Even with
small angles, x-ray IPSII could push the state of the art in x-ray resolution, as IPSII can achieve
wavelength-scale resolution with an angle scan range of just 15◦ per beam. Another advantage of
MAS-IPSII is that it reduces IPSII to its simplest form, with two directly controllable beams
with well defined, separate, measurable, and manipulatable beam modes that stay consistent
throughout the measurement process. This allows us to experiment with issues of concern with
all IPSII methods, such as the effects of wavefront distortions, errors in fringe angle and spacing,
and the effect of wavenumber-dependent shadows and glare.
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2. IPSII signal equation

In this section we derive the signal measured by the detector. This derivation applies to many
forms of IPSII. It does not apply to methods which use more than two beams at a time [5] without
modulating the signal generated from individual beam pairs at different frequencies (as in DEEP
and F-basis) such that they can still be considered separately.
In IPSII, coherent beams overlap to create an interference pattern. A photodetector with a

uniform response over the scale of the object measures reflection off or transmission through the
object, yielding information about the overlap between the interference pattern and the object.
This signal is measured for different interference patterns, generated by varying the angle between
the beams. We assume two beams (laser beams in our case) with the same wavelength λ, aside
from a small frequency offset ∆ω, which is negligible except where explicitly included in the
following equations. The frequency offset sweeps the phase, causing fringes to move across
the object and giving measurements of each spatial frequency at variable phases. An alternate
method is to make a measurement at four discrete phases [31].
We assume a 2D object-light interaction m(x, y), which describes the object’s response in

amplitude and phase to an incident wave. For example, depending on whether the detector
is placed in front or behind the object, m(x, y) may represent the complex Fresnel reflectivity
or transmissivity, respectively, of the object at a given point into the solid angle subtended by
the detector from that point. We also define M(x, y) = |m(x, y)|2. In the case of reflectivity
or transmissivity, for example, this is the function that would be measured in conventional
imaging—all phase information is lost in M(x, y).

The two lasers beam profiles are described by the complex transverse mode functions

Ã1,2(x, y) = A1,2(x1,2, y1,2)eiϕ1,2(x1,2,y1,2) (1)

where x1,2 and y1,2 are the transverse beam coordinates, the real functions A1,2 are the transverse
field amplitudes of the modes, and the ϕ1,2 functions represent the position dependent phases of
the modes. If the wavefronts are flat, the resulting patterns will be sinusoidal in nature, such that
individual measurements obviously correspond to spatial frequency components of the object. If
the wavefronts are not flat, we show that the signal equation may still be put in terms of a Fourier
transform.

We assume imaging occurs within a small enough volume that we can ignore diffraction of the
beam mode (i.e. we have dropped the axial dependence of the transverse amplitude and phase
profiles aside from the phase propagation). The resulting models for the electric fields of the two
beams are,

E1(x1, y1, t) = Ã1(x1, y1)ei
®k1 ·®r+iωt (2)

E2(x2, y2, t) = Ã2(x2, y2)ei
®k2 ·®r+i(ω+∆ω)t (3)

where ®k1,2 are the individual beam wave vectors, and differ from each other only in direction
(neglecting the small frequency shift noted earlier) such that

| | ®k1 | | = | | ®k2 | | = kl =
2π
λ
. (4)

The lasers overlap on the object at an angle θ1+ θ2 from each other (see Fig. 1) and are oriented
at an azimuthal angle φ. For this derivation, we assume they are symmetrically oriented around
the z-axis of the object plane (i.e. θ1 = θ2 = θ) such that the difference between the k1,2 vectors
is in the x, y plane at an angle of φ from the x-axis. They are also positioned such that the centers
of each mode are overlapping (i.e. x1,2 = y1,2 = 0 at x = y = 0). The mode of each laser is
projected onto the object plane, resulting in a transform from x1,2 and y1,2 to x and y that is a
function of θ and φ, though for small values of θ the transform is trivial (x1,2 ≈ x and y1,2 ≈ y).

                                                                                                Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 14971 



Fig. 1. Two beam IPSII diagram. Two waves (vectors ®k1 and ®k2) overlap, creating
interference fringes on an object.

The intensity profile I of the interference pattern resulting from the overlapping beams contains
a term constant in time plus an oscillating portion that is the product of an oscillating sinusoidal
interference pattern and the individual modes,

I(x, y; kx, ky) = A2
1 + A2

2 + Re
{

Ã1 Ã2ei(kx x+kyy+∆ω t)
}
, (5)

where kx = 2kl sin θ cos φ and ky = 2kl sin θ sin φ. The spacing of the fringes in the interference
pattern (ignoring the contributions from Ã1,2) is given by

d =
λ

2n sin θ
=

2π√
k2
x + k2

y

, (6)

where n is the index of refraction of the medium. These interference fringes may be characterized
by another vector kx x̂ + ky ŷ (not to be confused with the k-vectors of the lasers, ®k1,2).

The measured signal is proportional to the total power reflected from the object, or transmitted
through the object,

s(kx, ky, t) =
∫ ∞

−∞

∫ ∞

−∞
|m(x, y)(E1 + E2)|2dxdy

=

∫ ∞

−∞

∫ ∞

−∞
M(x, y)I(x, y; kx, ky; t)dxdy

=Re
{
ei∆ω t

∫ ∞

−∞

∫ ∞

−∞
M Ã1 Ã∗2ei(kx x+kyy)dxdy

}
+ C(A1, A2, M).

(7)

where C is a constant in time. (Note that M and Ã1,2 are functions of x, y, though we have
stopped explicitly calling that out in our notation for brevity.)
This signal is further processed by performing dual-phase demodulation to extract the

quadrature oscillating components of the signal. This results in the complex time averaged signal
s̃(kx, ky) (note that the complex phase of s̃ represents the phase of s instead of the phase of the
electric field waves). We also define a function combining the object with the beam profiles
M̃ ′(x, y) = M(x, y)A1(x, y)A∗2(x, y). The signal equation then simplifies to

s̃(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
M̃ ′(x, y)ei(kx x+kyy)dxdy (8)

                                                                                                Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 14972 



which is easily recognizable as the Fourier transform of M̃ ′(x, y) evaluated at (kx, ky) in k-space.
The transform in Eq. (8) becomes significantly more complicated if there is a non-negligible

dependence on kx,y in M̃ ′, and we are not aware of any general method of inverting such a
transform, even if this dependence is known. Such k-dependence arises in Ã1,2 because of the
angle dependence of the transform from x1,2, y1,2 to x, y. It may also arise when M(x, y) itself
is dependent on kx,y which may occur if sampling only the light scattered in a single direction
because of changes in the ‘glare’ off of the object as the direction of the illumination changes.
The kx,y dependence of Ã1,2 can be made negligible under appropriate experimental conditions
discussed latter. The kx,y dependence of M(x, y) can be made negligible by sampling a large solid
angle. For example, a large detector can be placed directly behind the object for transmission
imaging, or for reflection imaging an integrating sphere (with slots cut for beam access) or the
average signal from multiple detectors at various angles could be used.
This treatment also applies to purely intensity dependent (i.e. incoherent) interactions such

as fluorescence imaging or diffuse reflection, with a slight modification. If the object function
is better described directly as an intensity response M(x, y) (e.g. describing a fluorophore
density and response, which would be inappropriate to describe with a complex response m
including phase shifts) then the object-light interaction is better modeled by directly multiplying
the function M and the intensity of the interference pattern (instead of the electric fields). In this
case, however, the derivation above proceeds identically from the second line in Eq. (7). While
the end result is the same in this case, some modifications of the experiment, such as placing the
object in just one beam, give different results.

3. IPSII imaging methods

There are several imaging opportunities readily apparent in Eq. (8). The process directly measures
spatial frequency components of M̃ ′(x, y) in k-space. After measuring sufficient information in
k-space, a simple inverse transform gives you M̃ ′(x, y), which is the product of three functions
M(x, y), Ã1(x, y), and Ã2(x, y). Any one of these three may be effectively measured if the other
two are known, or constant with respect to x and y. Any such method must also deal with the
kx,y dependence of the beam profiles.
One such method is to make an intensity image of an object (i.e. M(x, y)). This could be a

measurement of transmission or reflection, or even of incoherent processes such as fluorescence.
This would be done using known, smoothly varying beam profiles. If the beam intensity is
roughly constant over the object, the kx,y dependence of Ã1,2 is removed, up to an overall cos θ
intensity dependence, which may be exactly compensated for. A demonstration of this method is
discussed in section 5.

Another imaging opportunity apparent in Eq. (8) is the possibility to measure complex fields.
By setting m(x, y) and Ã2(x, y) to be constants, one can measure Ã1(x, y). This could be used
to characterize the wavefronts of a laser beam. Or, by inserting an object into the beam, the
complex transmission or reflection of the object, propagated to the measurement location, can be
measured. By back propagating the result (which may be done with the full phase information),
the full 3D complex object could imaged. Similar to other structured illumination holographic
methods (see [41–44] for example), this could be useful as a single pixel method of acquiring
high resolution digital transmission holograms of an object without a high resolution detector
array.
Ideally, for hologram measurements only the angle of the reference beam would be scanned

relative to the detector screen to avoid changing the projection of the light-field to be measured
during the scan. Because only one beam is scanned and the beams are no longer symmetric
about the z-axis, the fringe spacing given in Eq. (6) would be modified to d = λ/(n sin θ cos θ),
decreasing the maximum resolution of this light field imaging by a factor of 2 relative to the
object imaging resolution given in Eq. (9).
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A third possible use of Eq. (8) is a simple method to characterize the intensity profile of a laser.
While this could also be done with full phase information, using the aforementioned holographic
imaging technique, doing so would require a quality reference beam (e.g. from spatial filtering,
or using a separate, phase-locked laser with a clean mode). If only the intensity profile is needed,
both beams can be simply derived from the same source (as in the interferometers described
in section 5), such that Ã1(x, y) = Ã2(x, y). If M(x, y) is set to a constant M̃(x, y) simplifies to
|A1(x, y)|2 = |A2(x, y)|2. This method is illustrated in section 5.

4. IPSII imaging properties

The resolution in IPSII is related to the minimum fringe width, which depends on the maximum
beam angle used. The pixel size dxmin for a maximum angle between the interfering waves θmax
is

dxmin =
1

2kmax
=

λ

4n sin(θmax)
. (9)

In IPSII, any point within the volume where the beams overlap for all beam angles will be
imaged and in focus [10]. The fringes in an interference pattern are planar, and do not change in
the z direction, so everywhere in the imaging volume is equally ‘in focus’ [1]. There is, however,
an effective FOV due to the properties of Fourier transforms. Objects within the interference
volume but outside of the FOV will be aliased onto the FOV [45]. The FOV of the reconstructed
image depends on the spacing of measured points in k-space dk, and is given by

FOV =
2π
dk
. (10)

The FOV may also be limited by the response region of the detector or the beam size. In fact,
by intentionally limiting the field of view (using an aperture, for example), aliasing can be
eliminated.

One problem which could impose similar constraints as a DOF could occur when an object with
protruding features casts shadows in the interference pattern, blocking one of the beams in some
areas of illumination. The illumination in these areas will not oscillate, and will not contribute to
the k-space measurement. Unfortunately, these shadows change with each k-space measurement,
so the effect is more complicated than shadows in conventional imaging. Numerical calculations
suggest that this tends to add distortions around protruding features. While this could be useful
for identifying height changes, it may also distort an image beyond the point of being useful.
This effect, which should be manifest in other forms of IPSII, appears to be an unexplored topic,
and further work is needed to fully understand it.
The speed of image acquisition can be limited by mechanical limitations (as in our current

implementation, discussed later), or by photon noise. Because each measurement collects light
from the entire object, the photon noise limits in IPSII are equivalent to those of conventional
wide-field imaging. If imaging speed is limited by photon noise, and if local intensity is limited
to prevent photodamage or photobleaching, IPSII can, in principle, be much faster than rastering
techniques. For an N pixel image, wide-field techniques like IPSII can be a factor of N faster
than methods in which light is collected only from one region at a time. For 3D imaging, IPSII
has an advantage over traditional optical sectioning [11], which must reject out-of-focus light
with each measurement. Furthermore, because a multi-pixel detector is not needed, a wider
variety of detector technologies are available, potentially reducing detector noise and shortening
integration times.
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(a)

(b)

Fig. 2. Experimental implementations of MAS-IPSII. Two designs based on a Mach-Zehnder
interferometer are presented. Both use computer controlled mirrors and a single piezo-
mounted mirror for a phase sweep. The Mach-Zehnder layouts allow the angle between
beams to vary from positive to negative and through the zero point. The first (a) requires a
minimal number of optics, but the maximum angle is limited by the beam size, as the beam
overlap diminishes with angle (demonstrated in by the picture on the right). This was the
setup used to generate the 1D images shown in Fig. 3. The second implementation (b) adds
another pair of mirrors to keep the beams centered during the angle scan. It also includes a
bowtie configuration after the first beam splitter to simplify balancing the path lengths using
the translation stages indicated by white arrows. This was the setup used for the 2D images
shown in Fig. 4.

5. Experiment

IPSII requires (at least) two overlapping coherent beams, with spatial and temporal coherence
lengths greater than the desired DOF and FOV, and a method to control the angles of the beams.
We also need a way to scan and measure the relative phase of the two beams. To avoid aliasing,
IPSII also needs a method to mechanically limit the FOV. Figure 2 shows two schematics we have
implemented, both based on a Mach-Zehnder interferometer. The designs allow measurement of
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both positive and negative spatial frequencies. This can be helpful in practice to compensate
for some beam wavefront imperfections, and would be necessary to implement holography as
discussed in section 3. They also produce two outputs which are equal up to a π phase shift. We
use one pattern to illuminate the object, and the other to illuminate a pinhole used as a phase
reference. Separating the pinhole from the target object is convenient, but not strictly necessary.
The frequency difference in our setup is generated by linearly scanning the length of one

arm of the interferometer with a mirror mounted on a piezo-electric transducer. Other similar
phase scanning methods [46] could be used. Alternatively, acousto-optics or moving diffraction
gratings could be used, as in other IPSII related methods. The advantage of acousto-optics is
that the modulation is at a much higher frequency, which allows data to be taken faster. Higher
frequency modulation also avoids noise at lower frequencies, which generally leads to a better
signal-to-noise ratio. Some other methods using acousto-optics also use it as an angle scanning
method [9–11], but in this case a high-NA lens is needed to reconverge the beams and amplify
the angle, which diminishes some of the advantages of IPSII.
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Fig. 3. 1D imaging process. An example of extracting an image using the setup shown in
Fig. 2(a) is shown. Top left: raw data from pinhole reference and transmission signals for
a single k-space point. Top right: power spectrum of all k-space data acquired. Bottom:
reconstruction of the image, showing both the beam profile, and the shadow of the two wires
in the beam.

To take an image, the mirrors are set to produce a particular interference pattern. Then the
phase of the interferometer is ramped using the piezo-mounted mirror. Digital lock-in detection
is applied to determine the quadrature components of the object signal relative to the signal from
the detector behind the pinhole. These give the phase and amplitude of the spatial frequency
component for the given interference pattern. The mirrors are then repositioned to create a
different pattern, and this process is repeated. Once all Fourier coefficients have been measured,
a simple inverse Fourier transform reconstructs the image. The data gathering and interpreting
process is demonstrated in Fig. 3 using the simple 1D imaging setup shown in Fig. 2(a). The
figure shows both an ‘image’ of a 1D object (a pair of vertically oriented wires) as well as a
measurement of the laser beam profile, using the beam measurement method described in Sec. 5.
The raw data for one pattern and the power spectrum of the resulting k-space measurements are
shown, along with the image reconstructions.
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The speed of our setup was mainly limited by the equipment available to us. We take data at a
rate of about 1 k-space point/second, so that 2D image scans can take hours or days depending on
the pixel count (the 2D images presented in this paper were taken in about a day). However, with
better equipment and engineering the speed of the process could be reduced to just the speed
of the raster scan of the mirror setup. For example, commonly available rotation stages with
sufficient precision for 103 pixels per row could scan at least one k-space row/second, or about 15
minutes for a 1 megapixel image. Use of galvos or spinning mirrors could also be used to greatly
increase the speed, but would also increase the engineering complexity.

Other ways to speed up image acquisition in our method (and other IPSII techniques) include
various techniques developed for magnetic resonance imaging (MRI), such as partial Fourier
reconstruction [47], parallel imaging [48], and compressive sensing [49]. Parallel imaging with
IPSII has been demonstrated using conventional imaging optics [1]. Parallel imaging could be
improved using the algorithms developed for MRI, such as SENSE [50] or GRAPPA [51]. These
schemes only require the detectors to have slowly varying and different spatial response functions.
These auto-calibrating algorithms could be implemented to perform parallel imaging without a
lens, or with a low quality or poorly focused lens, as aberrations and focal blur mainly affect
the individual detector responses (i.e. the object area contributing to the signal for each sensor),
which are ‘stitched’ together by the auto-calibration. The speed up would be proportional to the
number of sensors (e.g. the number of pixels in a sensor array) .

1 mm 200 µm 50 µm

Pixel Count: 271x271 px 191x191 px 161x161 px
Pixel Size: 24µm 6.3 µm 2.1 µm
FOV: 6.5 mm 1.2 mm 0.33 mm

Fig. 4. Images of a USAF 1951 resolution test target. All images were made with a working
distance of 100 mm. The first was done with a 532 nm green laser, while the second and
third were done with a 407 nm blue laser. The test target contains groups of lines containing
6 elements, with each element containing a set of 3 equally spaced horizontal and vertical
lines. A practical resolution limit may be estimated by picking the first element in which the
lines completely blur together. The smallest lines that can be distinguished are about the
size of a pixel, as expected. The largest fully blurred element in each image are, left to right,
4-5 (20µm), 6-4 (5.5µm), and 7-4 (2.8µm).

6. Results

Figure 4 shows the 2D image reconstructions resulting from imaging a USAF 1951 test target
with varying FOV and resolution. These data were taken with the setup shown in Fig. 2(b),
with a working distance (i.e. between the last beam splitter and the object) of about 100 mm.
The measured resolutions agree with theoretical expectations for the maximum angle used. We
tested resolutions to about 2µm, corresponding to an effective NA of .12. As resolution appears
only limited by the range of our motorized mounts and mirror size, higher resolution should be
possible with a setup that allows for larger angles.
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The combination of effective NA and working distance are about at the limit of commercially
available ultra-long working distance microscope objectives. Pushing past that mark with a setup
like the one we used would only require larger mirrors. Optically flat mirrors are commercially
available with diameters much greater than the commercially available lenses with an NA>.1.
The signal to noise ratio (SNR) in the images we took was limited by amplitude noise

in our laser and technical noise in our digitization equipment (all of which were limited by
equipment budget), and could be readily improved by better equipment and greater attention
to signal engineering and noise isolation. Another limitation was the small range of our piezo
actuator, which limited the signal to only 5-10 phase oscillations averaged over in our digital
lock-in method. These limitations could be overcome by using other mechanical phase scanning
methods [46]. Alternatively, use of an AOM could easily push ∆ω into the MHz or GHz
range, where demodulation could be done with analog electronics, greatly improving the lock-in
detection and enhancing SNR. In this case imaging speed would only be limited by the scan
speed of the beam angle.

7. Conclusion

We have presented a method for lensless, single pixel, interference pattern structured illumination
imaging using a mechanical angle scan. We derived a signal equation for our technique (and
generally applicable to most two beam IPSII techniques) that includes effects from distortions in
the wavefronts of the illumination. Our derivation describes how IPSII effectively measures the
Fourier transform of the product of an object and two beam mode functions. We also discussed
how this could be used to measure either an object, the mode of a laser, or to hologhically measure
a 3D complex object. We demonstrated imaging of objects and the intensity of a laser by imaging
1D profiles of a laser, the shadow of a 1D test target, and 2D imaging of a resolution test target.

Our technique varies from related IPSII techniques in that it only requires simple flat optics
(beam-splitters and mirrors). It does not require a lens, acousto-optics or custom engineered
diffraction gratings. We generate the variable angles needed for IPSII instead by using a
mechanical angle scan. This severely limits the speed of the process, making it an inferior
candidate for many optical imaging applications. However, the lack of lens or other complicated
optics could make it useful for a variety of cases and make it an appealing candidate for imaging
with deep UV, X-rays, or other waves for which focusing elements are unavailable or impractical.
Because it removes many of the technical complications that exist in related IPSII techniques,
it may also be used to more easily isolate and study issues related to IPSII imaging, such as
wavefront distortions, shadows, positioning errors in k-space, etc. It is relatively easy and
inexpensive to implement compared to other IPSII techniques, and could be useful for low-cost
high-resolution imaging applications where speed is less critical.

Funding

Brigham Young University’s College of Physical and Mathematical Sciences; The National
Defense Education SMART Fellowship program.

Acknowledgments

We would like to acknowledge contributions to this project from Dionicio Sauer, Carter Day and
David McKenna.

References
1. J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination

as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006).

                                                                                                Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 14978 



2. J. Ryu, B. K. P. Horn, M. S. Mermelstein, S. Hong, and D. M. Freeman, “Application of structured illumination in
nano-scale vision,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (IEEE, 2003),
pp. 17–24.

3. M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photon. 7, 241–275 (2015).
4. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination

microscopy,” J. Microsc. 198, 82–87 (2000).
5. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the rayleigh limit achieved by standing

wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232–7236 (2000).
6. O. Gliko, W. E. Brownell, and P. Saggau, “Fast two-dimensional standing-wave total-internal-reflection fluorescence

microscopy using acousto-optic deflectors,” Opt. Lett. 34, 836–838 (2009).
7. M. S. Mermelstein, “Synthetic aperture microscopy,” Ph.D. thesis, Massachusetts Institute of Technology (1999).
8. M. S. Mermelstein, “Multiple beam pair optical imaging,” U.S. Patent 6,016,196 (Jan 18, 2000).
9. D. Feldkhun, “Fourier domain sensing,” U.S. Patent 8,184,279 (May 22, 2012).
10. D. Feldkhun and K. H. Wagner, “Doppler encoded excitation pattern tomographic optical microscopy,” Appl. Opt.

49, H47–H63 (2010).
11. D. Feldkhun and K. H. Wagner, “Single-shot afocal three-dimensional microscopy,” Opt. Lett. 41, 3483–3486 (2016).
12. J. J. Field, D. G. Winters, and R. A. Bartels, “Plane wave analysis of coherent holographic image reconstruction by

phase transfer (CHIRPT),” J. Opt. Soc. Am. A 32, 2156–2168 (2015).
13. J. J. Field and R. A. Bartels, “Digital aberration correction of fluorescent images with coherent holographic image

reconstruction by phase transfer (CHIRPT),” Proc. SPIE 9713, 97130B (2016).
14. B. Judkewitz and C. Yang, “Axial standing-wave illumination frequency-domain imaging (SWIF),” Opt. Express 22,

11001–11010 (2014).
15. V. I. Mandrosov, “Panoramic microscope with interfering illuminating beams,” Proc. SPIE 3568, 167–178 (1999).
16. A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan,

“Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,
889 (2012).

17. A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Rev. Biomed. Eng. 18, 77–102 (2016).
18. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution

on-chip optofluidic microscopes for caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U. S. A. 105,
10670–10675 (2008).

19. S. Pang, X. Cui, J. DeModena, Y. M. Wang, P. Sternberg, and C. Yang, “Implementation of a color-capable optofluidic
microscope on a RGB CMOS color sensor chip substrate,” Lab Chip 10, 411–414 (2010).

20. A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height
lensfree on-chip microscopy,” Opt. Express 20, 3129–3143 (2012).

21. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,”
Opt. Lett. 31, 1211–1213 (2006).

22. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using
pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).

23. K. S. Raines, S. Salha, R. L. Sandberg, H. Jiang, J. A. Rodríguez, B. P. Fahimian, H. C. Kapteyn, J. Du, and J. Miao,
“Three-dimensional structure determination from a single view,” Nature 463, 214–217 (2010).

24. J. Miao, C.-C. Chen, Y. Mao, L. S. Martin, and H. C. Kapteyn, “Potential and Challenge of Ankylography,” arXiv
1112.4459 (2011).

25. M. Mutzafi, Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based ankylography for recovering 3d
molecular structures from single-shot 2d scattered light intensity,” Nat. Commun. 6, 7950 (2015).

26. P. W.-M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital
holograms,” IEEE Trans. Ind. Inf. 12, 886–901 (2016).

27. T. Tahara, X. Quan, R. Otani, Y. Takaki, and O. Matoba, “Digital holography and its multidimensional imaging
applications: a review,” Microscopy 67, 55–67 (2018).

28. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
29. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held

plenoptic camera,” Comput. Sci. Tech. Rep. CSTR 2, 1–11 (2005).
30. T. Shimano, Y. Nakamura, K. Tajima, M. Sao, and T. Hoshizawa, “Lensless light-field imaging with fresnel zone

aperture: quasi-coherent coding,” Appl. Opt. 57, 2841–2850 (2018).
31. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6,

6225 (2015).
32. Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus fourier single-pixel imaging,”

Opt. Express 25, 19619–19639 (2017).
33. T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, “Fast and efficient compressive sensing using structurally random

matrices,” IEEE Trans. Signal Process. 60, 139–154 (2012).
34. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new

compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
35. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging

via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).

                                                                                                Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 14979 



36. V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, J. M. Girkin, P. M. W. French,
M. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array
light emitting diode,” Opt. Express 15, 11196–11206 (2007).

37. G. Futia, P. Schlup, D. G. Winters, and R. A. Bartels, “Spatially-chirped modulation imaging of absorbtion and
fluorescent objects on single-element optical detector,” Opt. Express 19, 1626–1640 (2011).

38. D. J. Higley, D. G.Winters, G. L. Futia, and R. A. Bartels, “Theory of diffraction effects in spatial frequency-modulated
imaging,” J. Opt. Soc. Am. A 29, 2579–2590 (2012).

39. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811 (2011).
40. Methods like CHIRPT do something similar, but with a spinning custom mechanical grating instead of acousto optics.
41. J. J. Field, D. G. Winters, and R. A. Bartels, “Single-pixel fluorescent imaging with temporally labeled illumination

patterns,” Optica 3, 971–974 (2016).
42. P. A. Stockton, J. J. Field, and R. A. Bartels, “Single pixel quantitative phase imaging with spatial frequency

projections,” Methods 136, 24–34 (2018).
43. P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,”

Phys. Rev. A 86, 041803 (2012).
44. L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography

with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
45. E. Pusey, C. Yoon, M. L. Anselmo, and R. B. Lufkin, “Aliasing artifacts in MR imaging,” Comput. Med. Imaging

Graph. 12, 219–224 (1988).
46. O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt.

25, 3137–3140 (1986).
47. G. McGibney, M. R. Smith, S. T. Nichols, and A. Crawley, “Quantitative evaluation of several partial fourier

reconstruction algorithms used in MRI,” Magn. Reson. Med. 30, 51–59 (1993).
48. M. Blaimer, F. Breuer, M. Mueller, R. M. Heidemann, M. A. Griswold, and P. M. Jakob, “SMASH, SENSE, PILS,

GRAPPA: how to choose the optimal method,” Top. Magn. Reson. Imaging 15, 223–236 (2004).
49. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,”

Magn. Reson. Med. 58, 1182–1195 (2007).
50. K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: sensitivity encoding for fast MRI,”

Magn. Reson. Med. 42, 952–962 (1999).
51. M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and A. Haase, “Generalized

autocalibrating partially parallel acquisitions (GRAPPA),” Magn. Reson. Med. 47, 1202–1210 (2002).

                                                                                                Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 14980 




