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Abstract

We develop an algorithm for i) computing generalized regular k-point grids, ii) reducing the grids to
their symmetrically distinct points, and iii) mapping the reduced grid points into the Brillouin zone.
The algorithm exploits the connection between integer matrices and finite groups to achieve a
computational complexity that is linear with the number of k-points. The favorable scaling means
that, at a given k-point density, all possible commensurate grids can be generated (as suggested by
Moreno and Soler) and quickly reduced to identify the grid with the fewest symmetrically unique
k-points. These optimal grids provide significant speed-up compared to Monkhorst—Pack k-point
grids; they have better symmetry reduction resulting in fewer irreducible k-points at a given grid
density. The integer nature of this new reduction algorithm also simplifies issues with finite precision
in current implementations. The algorithm is available as open source software.

1. Introduction

Codes that solve the many-body problem using density functional theory (DFT) use uniform grids over the
Brillouin zone in order to calculate the total electronic energy, among other material properties. The total
electronic energy is calculated by numerically integrating the occupied electronic bands. For metallic systems,
there exist surfaces of discontinuities at the boundary between occupied and unoccupied states, collectively
known as the Fermi surface. These discontinuities cause the accuracy in the calculation of the total electronic
energy to converge extremely slowly and erratically with respect to grid density. This is demonstrated in figure 1
where we compare the convergence of an insulator (silicon) with a metal (aluminum).

The poor convergence of the electronic energy means that DFT codes must use extremely dense grids [2, 3]
to achieve an accuracy of several meV /atom. To reduce computation time, it is common practice to evaluate
eigenvalues at symmetrically equivalent k-points only once. This is the essence of ‘symmetry reducing’ a
k-point grid.

In most DFT codes, even for very dense grids, the setup and symmetry reduction of the grid takes a few
seconds at most. Our motivation for an improved algorithm (despite the speed of current routines) is two-fold:
1) enable an automatic grid-generation technique that allows us to scan over thousands of candidate grids, ina
few seconds, to find one with the best possible symmetry reduction [4, 5] (in other words, enable a k-point
generation method in the same spirit as that of [2] but have the grid generation done on-the-fly [6]), and 2)
eliminate (or at least greatly reduce) the probability of incorrect symmetry reduction’ as the result of finite
precision errors (the danger of these increases as the density of the integration grid increases).

In this brief report, an algorithm for generating, and subsequently symmetry-reducing, k-point grids is
explained. This algorithm builds on concepts such as Hermite Normal Form, Smith Normal Form, and the
connection between finite groups and integer matrices. These concepts are briefly explained in the main text; for
more details, see the appendix and [8]. The algorithm has been implemented in an open-source code available at

3 . . . . .
Such errors are not uncommon in k-point reduction, but are not documented in the literature. The same errors are known to affect
symmetry analysis as discussed at length in [7].
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Figure 1. Total energy error versus k-point density for the cases of silicon and aluminum. Silicon does not have a Fermi surface so
there is no discontinuity in the occupied bands; convergence is super-exponential or O(e") where n is the number of k-points. (See
the discussion of example 1 in [1].) In contrast, the total energy of aluminum converges very slowly, and the convergence is quite
erratic. For typical target accuracies in the total energy, around 10> eV /atom, metals require 10-50 times more k-points than
semiconductors.

https://github.com/msg-byu/kgridGen and incorporated in version 6 of the VASP code [9]. The algorithm
has been incorporated into a code for generating generalized regular grids https://github.com/msg-byu/
GRkgridgen [6].

2. Generating grids

As demonstrated in figure 3, every uniform sampling of a reciprocal unit cell can be expressed through the
simple integer relationship

R = KN (1)

where R, K, and Nare3 x 3 matrices; the columns of R are the reciprocal lattice vectors, and the columns
of K are the k-point grid generating vectors. Put simply, N describes the integer linear combination of
vectors of K that are equivalent to R. One obtains Monkhorst—Packgrids (regular grids) when N isan
integer, diagonal matrix. More generally, when N is an invertible, integer matrix, one obtains generalized
regular grids. Examples of Monkhorst—Packand generalized regular grids are given in figure 2. We use R to
refer to the infinite lattice of points defined by integer linear combinations of R, and K to refer to the lattice of
points defined by K.

With no loss of generality, a new basis for the lattice K can be chosen (a different, but equivalent, K) so that N is
alower triangular matrix in Hermite normal form (HNF) [11]. (See section II-A of [8] for a brief introduction to
HNFEF.) HNF is a lower-triangular canonical matrix form, where the entries below the diagonal are non-negative
and strictly less than the diagonal entry in the same row. Code for converting integer matrices to Hermite Normal
Form is available at https: //github.com/msg-byu/symlibinthe rational_mathemematics module.

A k-point integration grid is the set of points of the lattice K that lie inside one unit cell (one fundamental
domain) of the reciprocal lattice R. We refer to this finite subset of K as K, (See figure 3; black dots are K, dots
inside the blue parallelogram comprise K,,.) The number of points that lie within one unit cell of R is given
by | det(N)| = n.

How then does one generate these # points? If N is in HNF, then the diagonal elements of N are three
integers, a, ¢, and f, such thata - ¢ - f = n. A set of n translationally distinct” points of the lattice K can be
generated by taking integer linear combinations of the columns of K:

_Iftwo points are translationally distinct, their difference cannot be an integer linear combination of the reciprocal cell vectors; that is,
ki — kj = n#R + m# + £7, for all integer values n, m, £. (7} are the columns of R.)

2
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Figure 2. Two-dimensional example of a Monkhorst—Packgrid (a) and a generalized regular grid (b). The two grids have the same
k-point density, but different grid-generating vectors & and k. Both grids are commensurate with the reciprocal unit cell, shown as a
black square. For Monkhorst—Packgrids, the matrix N in equation (1) is integer and diagonal. In contrast, for generalized regular
grids, N is not necessarily diagonal but is any invertible integer matrix.

Monkhorst—Pack [10] k-point grids.)
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Figure 3. An example of the integer relationship between the reciprocal lattice vectors R and the grid generating vectors K. In the
picture, the grid generating vectors, ; and K,, the columns of KK, define a lattice of points, four of which are inside the unit cell (blue
parallelogram) of R. Note that in the most general case, the relationship between the two lattices, N need not be diagonal (as it is for

k = piy + qia + i3,

where p, g, and r are nonnegative integers such that

0<p<a
0<g<c
o<r<f.

(@)

The n points generated this way will not generally lie inside the same unit cell, but they can be translated into the
same cell by expressing them in ‘lattice coordinates’ (fractions of the columns of R, instead of Cartesian
coordinates) and then reducing the coordinates modulo 1 so that they all lie within the range [0, 1). Thisis
illustrated by the dashed arrow in figure 4.
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Figure 4. An example of generating the points of K (black lattice) that lie within one unit cell (blue parallelogram) of the lattice R (blue

lattice). The lattice K is generated by the basis { K1, ®,} (columns of K). The four points of K, are generated by k = myr; + myR»,
where0 < m; < 2, 0 < my < 2. Note that the upper limits of m, and m, are the diagonals of N when it is expressed in HNF.

Expressed as fractions of the lattice vectors of R, these four points are:

ki=(0,0)
k= (0, l)
2
- 1 1Y mod1 (1 3
() =)
2 4 2 4
= 1,
L (34)
Initially, ks is not in the same unit cell as the other three points; its first coordinate is not between 0 and 1. After
reducing the first coordinate modulo 1, 123 moves to an equivalent position in the same unit cell as the other three
points.

In summary, this first part of the algorithm generates n translationally distinct points and translates them all
into the first unit cell of R. (It is not necessary to translate all the points into the first unit cell, but it is convenient
to do so as a first step to translating them into the first Brillouin zone. The translation into the first Brillouin zone
isless trivial and is discussed in section 4.)

3. Symmetry reduction of the grid

In many cases the crystal will have some point group symmetries, and these can be exploited to reduce the
number of k-points where the energy eigenvalues and corresponding wavefunctions need to be evaluated. The
grid is reduced by applying the point group symmetries” of the crystal to each point in the grid. For example, in

In addition to the rotations, reflections, and improper rotations of the crystal, inversion symmetry is also included by default. Even when
the crystal itself does not have inversion symmetry, the electronic bands generally will. If, as in the case of magnetism, the inversion symmetry
is broken, the inversion symmetry can be disabled in the code.

4



J. Phys. Commun. 3 (2019) 065009 GLW Hartetal

,'7’
Figure 5. An example of symmetry reducing a grid. The reciprocal unit cell is the blue square. This example assumes that the
wavefunctions have square symmetry (the D, group, 8 operations). The example gridisa3 x 3 sampling of the reciprocal unit cell.
The point at (0,0) is not equivalent to any of the other eight points. There are two sets of equivalent points, each set with 4 points in the
orbit, connected by red and green arrows, respectively. The points marked by red arrows are equivalent under horizontal, diagonal,

and vertical reflections about the center of the square. The green-marked points are equivalent by 90° rotations. Thus the nine points
are reduced (or ‘folded’) into three symmetrically distinct points.

figure 5, the points connected by green arrows will be mapped onto one another by successive 90° rotations.
These four symmetrically equivalent points lie on a 4-fold ‘orbit’ (as do the points marked by the red arrows).
The point at the origin maps onto itself under all symmetry operations and has an orbit of length 1.

For a grid containing N points and a group (of rotation and reflection symmetries) with N operations, a
naive algorithm for identifying the symmetrically equivalent points and counting the length of each orbit would
be as follows: For each point (O(INy) loop), compare all rotations of that point (a loop of O(]G])) to all other
points (another O(Ny) loop) to find a match; for a total computational complexity of O(NZ Ng). The algorithm is
shown in pseudocode in figure 6. N; will never be larger than 48, but Nj may be as large as 50° for extremely
dense grids, so the N complexity of this naive approach is undesirable. But using group theory concepts (see the
appendix for details), we can construct a hash table for the points that reduces the complexity from O(NZ Ng) to
O(N¢ N;) by eliminating the k;loop in algorithm 1. The hash table makes a one-to-one association between the
ordinal counter (the index) of each point and its coordinates.

The three coefficients p, g, r in equation (2) can be conceptualized as the three ‘digits’ of a 3-digit mixed-radix
number pgr or as the three numerals shown on an odometer with three wheels. The ranges of the values are 0 <
p <d;, 0<q<d,and0<r <d; whered,,d,, d;are the ‘sizes’ of the wheels, or in other words, the base of each
digit. Then the mixed-radix number is converted to base 10 by

x:p-dz'dl—l—q-dl—i—r. (3)

The total number of possible readings of the odometeris ds - d, - d;. So it must be the case that the number
of k-pointsinthecellisn = d; - d, - d. Each reading on the odometer is a distinct point of the # points that are
contained in the reciprocal cell. Via equation (3) it is simple to convert a point given in ‘lattice coordinates’
as (p, q, r) to abase-10 number x. The concept of the hash table is to use this base-10 representation as the index
in the hash table. Without the hash table, comparing two points is an O(IN;) search because one point must be
compared to every other point in the list to check for equivalency. But with the hash function, no search is
necessary—one simply maps the point (p, g, ) to the index x of the equivalent k-point in the hash table.

Itis not generally the case that the coefficients p, g, r for every interior point of the unit cell obey conditions:

0<p<d1, O<q<d2, 0<T<d3 (4)

(Figure 4 shows an example where the interior points do not meet these conditions.) These conditions hold only
for a certain choice of basis. That basis is found by transforming the matrix N in equation (1) into its Smith
Normal Form [11], D = ANB. By elementary row and column operations, represented by unimodular matrices
A and B, itis possible to transform N into a diagonal matrix [), where each diagonal element divides the ones
below it: dy|dy,|ds3, and dy; - dy; - d33 = n = |N|(the notation i| j means that is divisible by j). As explained in
the appendix (section A.1), when N is expressed in Smith normal form (SNF) and the interior points of the
reciprocal cell are expressed as linear combinations of the grid generating vectors K, then the coordinates
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Algorithm 1

uniqueCount <— 0
First[:] <+—0
Wtl[:] <+«—0
unique[:] <+—1
for each k; € K,
if unique[i] # 1 cycle #this
#point and all its symmetry equivalent
#points have already been indexed
uniqueCount++
First[uniqueCount] <+— 1
uniquel[i] +—0
Wt [uniqueCount] <+—1
# Now mark all equivalent points
for each k; € K,
for each ge (@
if kj :gkz
Wt [uniqueCount]; ++
uniquel[j] <—0

Figure 6. The typical algorithm for reducing a grid by symmetry. In the algorithm, uniqueCount is a running counter of the number of
unique points and serves as the index of the orbit, First is a list of the indices of the unique points, Wt (weight) is the number of
symmetrically equivalent versions of each k-point in First, unique is an array of ones and zeros where each element corresponds to a
k-pointin K,,. An element gets set to zero when the corresponding k-point is equivalent to another k-point, or when the k-point
becomes the representative k-point of an orbit. This algorithm scales quadratically with the number of points in K, and requires
floating point comparisons between k; and k;.

(coefficients) of the interior points will obey equation (4). When these conditions are met, the hashing algorithm
discussed above (in particular, equation (3)) becomes possible. This enables the O(IN;) algorithm, shown in
figure7.

4. Moving points into the first Brillouin zone

For accurate DFT calculations, it is best if the energy eigenvalues (electronic bands) are evaluated at k-points
inside the first Brillouin zone, so our algorithm includes a step that finds the translationally equivalent grid
points in the Brillouin zone. (In principle, the electronic structure E (k) should be the same in every unit cell, but
numerically the periodicity of the electronic bands is only approximate, becoming less accurate for k-points in
unit cells farther from the origin.)

The first Brillouin zone of the reciprocal lattice is simply the Voronoi cell centered at the origin—all
k-points in the first Brillouin zone are closer to the origin than to any other lattice point. Conceptually, an
algorithm for translating a k-point of the integration grid into the first zone merely requires one to look at all
translationally equivalent ‘cousins’ of the k-point and select the one closest to the origin. But the number of
translationally equivalent cousins is countably infinite, so in practice, the set of cousins must be limited only to
those near the origin.

How can we select a set of cousins near the origin that is guaranteed to include the closest cousin? The key idea
isillustrated in two-dimensions in figure 8. In three-dimensions, if the basis vectors of the reciprocal unit cell are
as short as possible (the so-called Minkowski-reduced basis [12]), then the eight unit cells that all share a vertex at
the origin must contain the Brillouin zone. In other words, the boundary of this union of eight cells is guaranteed
to circumscribe the first Brilloun zone (i.e., the Voronoi cell containing the origin). A proof of this ‘8 cells’
conjecture is given in the appendix (section A.1). The steps for moving k-points into the Brillouin zone are as
follows:

1. Minkowski-reduce the reciprocal unit cell [12] (i.e., find the basis with the shortest basis vectors®)

® Our Fortran code for computing the Minkowski reduced basis is available at https://github.com/msg-byu/symlib in the
vector_matrix_utilities module.
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Algorithm 2

uniqueCount <+— 0
hashTable[:] <+—0
First[:] +<+—0
wel:] <«—0
for each k; € K,
indx +— K 'AD - k;
if hashTable[indx] # 0 cycle #this
#point and all its symmetry equivalent
#points have already been indexed
uniqueCount++
hashtable[indx] <+— uniqueCount
First[uniqueCount] <+— 1
Wt [uniqueCount] +— 1
# Now mark all equivalent points
for each g€ G
krot — g- kz
indx +— K'AD - kot
if hashtable[indx] == 0
hashtable[indx] <— uniqueCount
Wt [uniqueCount]++

Figure 7. Our algorithm that reduces a grid to a set of symmetrically distinct k-points. In the algorithm, uniqueCount isarunning
counter of the number of unique points and serves as the index of the orbit, First isalist of the indices of the unique points, Wt
(weight) is the number of symmetrically equivalent versions of each k-pointin First,and hashtable isahash table that points
from the position of a k-point in K, to the index of its orbit. In contrast to algorithm 1, this algorithm scales linearly with the number
of points in the grid K,, and does not require floating point comparisons.

Figure 8. A two-dimensional example of the ‘closest cousin’ guarantee. The Brillion zone (blue) will be completely contained in the
union of 4 basis cells around the origin (shown in red) when the basis vectors are chosen to be as short as possible (the so-called
Minkowski basis). On the other hand, if the basis is not Minkowski reduced, regions of the Brillouin zone may lie outside the union of
the 4 basis cells (depicted by the cell in green). A proof is given in the appendix (section A.1).

2. For each k-point in the reduced grid, find the translation-equivalent cousin in each of the eight unit cells
that have a vertex at the origin.

3. From these eight cousins, select the one closest to the origin.

5. Conclusion

We have developed an algorithm that i) generates generalized regular k-point grids, ii) reduces the grids by
symmetry, and iii) maps the points of the reduced grids into the first Brillouin zone. Whereas the typical
algorithm for generating and reducing k-point grids scales quadratically with the number of k-points, this
algorithm scales linearly. The improved scaling becomes essential when one generates and symmetry reduces all
combinatorically possible generalized regular grids at a given k-point density, in order to select the one with the
fewest number of reduced k-points [6].
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The algorithm is also useful because it relies primarily on integer-based operations, making it more robust
than typical floating point-based algorithms that are prone to finite precision errors. Mapping the grid to the first
Brillouin zone is more efficient due to a proof that limits the search for translationally equivalent k-points to the
eight unit cells having a vertex at the origin. The algorithm has been incorporated into version 6 of VASP [9].
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Appendix

A.1.Prooflimiting Brillouin zone location
Given a point x in the space, we will use the term cousin for a point x” which differs from x by an element of the
lattice—i.e., a coset representative or a lattice-translation equivalent point.

Let R be a basis. Let Uy denote the union of 2 basis cells around the origin—the set of points which are
expressible in terms of the basis R with all coefficients having absolute value < 1. Let V denote the Voronoi cell
(Brillouin zone)—the set of all points in the space which are closer to the origin than any other lattice point. Note
that Uy depends on the basis R, but V depends only on the lattice. Note also that both Uy and Vare convex sets.

We claim (in two and three dimensions) that if R is a Minkowski basis, then V' C Ug. We shall argue by
contrapositive—if V' ¢ U, then the basis is not Minkowski reduced.

If V' ¢ Ug then Vmust intersect the boundary of Uy, so there exist points on the boundary of Uy which are
closer to the origin than to any other lattice points. Equivalently, those points are closer to the origin than any of
their cousins.

Note that among the cousins of any point on the boundary of Uy, there is always a closest to the origin. But
usually points on the boundary will have closer cousins in the interior. Butif V¢ Uy there must be points on the
boundary which have no closer cousins in the interior of Ug. In other words, there are points (at least one) on the
boundary such that all of its cousins in the interior of Uy are farther from the origin.

A.1.1.2D argument. Let 7 and 7 be basis elements of R. Assuming that V ¢ Uy there must be a point x on the
boundary of Ur whose cousins are all farther from the origin than x.

Without loss of generality (re-label the basis if necessary), we may express one of the bounding edges of Ur as
x = 7 + Ay where A € [—1, 1]. One ofits interior cousins is x’ = A7, which isillustrated in figure A1. We have
(since x" must be farther from the origin)

x? < x'?
(A + AB)* < (AB)?
74 20R - B+ N < NE

< —2M\R - B

Since the expression on the left-hand side is greater than zero, the expression on the right-hand side must be also
and taking the absolute value of both sides does not change the inequality:

) o o N S o
7] < |=2X7 - Bl =[5> < 2[5 - Al
Considering the worst case scenario of A = 1 gives

<22 (5)

which violates the condition of a Minkowski basis |7 - %|/|7| < |7]/2. The remaining three boundaries are
similar to the one just considered, the only differences being permutations of the basis elements 7 and 7

and possibly changes of sign. When applying the same reasoning to the other edges we arrive at the same
contradiction. Hence, the points on the boundary of U are closer to the origin than interior cousins, V ¢ Uy,
only when the basis R is not Minkowski reduced. If R is Minkowski reduced, all points on the bounday of Uy
have interior cousins that lie closer to the originand V C Ug.

8
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Figure Al. Each point along the boundary of U has at least one interior cousin closer to the origin when R is Minkowski reduced. For
the points along the edge in red, these interior cousins are the points along the dashed red line.

ATy + 67

71 + ATy + 073

Figure A2. Each point along the boundary of Uy, the edges of which are shown in black, has at least one interior cousin closer to the
origin when R is Minkowski reduced. For the points on the bounding plane in red, the interior cousins are the points on the plane in
blue. (The origin is contained in the blue plane.)

A.1.2.3Dargument. Let 7, 7,and 7 be the basis elements of R, and suppose (relabeling the basis vectors if
necessary) that x = 7 + A% + 07 (where Aand ¢ are elements of [—1, 1]) is a point on the boundary of Ug
which is closer to the origin than are its interior cousins.
One of those cousins is a plane through the origin x’ = A% + 6%. The boundary and cousin planes are
shown in figure A2. Thus
x? < x'?
(A + AP + 65)* < (A% + 675)%
Simplifying this expression gives
< —2M\R - — 267 (6)
Since the expression on the left-hand side is greater than zero, the expression on the right-hand side must be also
and taking the absolute value of both sides does not change the inequality:
[P < |=2MA - 7 — 267 - B| = |7 < |27 - 7 + 267 - 7| )

To simplify the right-hand side of equation (7) the triangle inequality is used, making it more likely that the
inequality is satisfied:
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[P <I2X%i - 7+ 20|17 - 7|
> < 2|17 - Bl +216117 - 3| ®)

Since the expression in equation (8) does not depend on the sign of A or §, we can restrict A and ¢ to positive
values within [0,1] without loss of generality. Consider now another cousin that lies within Ui and on the same
planeas x’: x" = (A — 1)% + (6 — 1)7. Repeating the same process for x’ with x' gives

A7 < 21N — 1I7 - Bl + 2[6 — 1|7 - A ©))
Combining equations (8) and (9) gives

A2 < AN+ A — 1DIR - [RS8 — D17 - 5l
N

il < (10)

[l 17l

Assuming {7, 7, 75} forms a Minkowski basis, and plugging in the largest possible values for all quantities under
this assumption on the right-hand side of equation (10) gives the contradiction |7| < |7]. The remaining seven
bounding planes are similar to the one just considered, the only differences being permutations of the basis
elements 7, 7, and 7 and changes of sign. We arrive at the same contradiction when applying the same reasoning
to the other planes. Hence, the points on the boundary of Uy are closer to the origin than interior cousins,

\% gz Uk, only when the basis R is not Minkowski reduced. If R is Minkowski reduced, all points on the boundary
of U have interior cousins that lie closer to the originand V C Ug.

A.2. Groups, matrices, and lattices in smith normal form

The discussion below is limited to three-dimensions though the arguments easily generalize to higher
dimensions. The purpose of the discussion below is to help the reader make the connection between groups and
integer matrices. The Smith Normal Form is a key concept to make this connection.

In this discussion, we show that we can associate a single, finite group with the lattice sites within one tile (i.e.,
one unit cell) of a superlattice. In our application, this tile is the unit cell of the grid generating vectors and the
superlattice is the reciprocal cell. The association between the group and the lattice sites is a homomorphism that
maps each lattice site to an element of the group. If two points are translationally equilavent (same site but in two
different tiles) they will map to the same element of the group. This homomorphism is the key ingredient to
constructing the hash function (see equation (3)) that enables a perfect hash table where points are listed
consecutively, from 1 to N. In what follows, we explain in detal how this association is made, i.e., we detail how
one finds this homomorphism.

A.2.1. Groups in smith normal form. Begin with the simplest case. Let N be anon-singular 3 x 3 matrix of
integers. Its columns represent the basis for a subgroup Ly of the group Z* (where Z is the set of all integers, and
the group operation is addition). The two latttices whose symmetries are represented by these two groups are the
‘simple cubic’ lattice of all points with all integer coordinates and its superlattice’ whose basis is given by the
columns of N. Since Z’ and its subgroups are Abelian, we know that all the subgroups are normal so there exists a
quotient group G = 73/ Ly, and that group is finite.

Note that the cosets which form the elements of that quotient group are simply the distinct translates of the
lattice £ within Z>. In fact, each coset has exactly one representative in each unit cell, so the order of G is equal
to the volume of a unit cell (the absolute value of the determinant of N). Since the quotient group G is finite, and
Abelian, it must be a direct sum of cyclic groups (by the Fundamental theorem of Finite Abelian Groups).

One canonical form for direct sums of groups is called Smith Normal Form, where the direct summands
are ordered so that each summand divides the next. In otherwords, G ~ Z,,, ® Z,,,, ® ---@® Z,, where
my|my)|... my_1|my and (of course) [] m; = |GJ. Any finite Abelian group can be uniquely written in this form.
(Isomorphic groups will yield the same ‘invariant factors’ m,, ms,...,m; when written in this form.)

Note that, since G = 7/ Ly, there must be a homomorphism from Z? onto G, having Ly asits kernel. In
otherwords, Ly = {p € Z*: (p) = 0}. Our task s to find the direct-sum representation of the quotient
group Z°/ Ly, and also to find the homomorphism ) which maps the points of Z* onto the group (in such a way
that(p) = 0iff p € Ly). This allows us to work with the elements of the group as proxies for the k-points
inside the reciprocal cell.

7 In the mathematical literature, and in some of the crystallography literature, these ‘superlattices’ are referred to as sublattices. The group
associated with a ‘superlattice’ is a subgroup of the group associated with the parent lattice. Although this nomenclature (subgroups,
sublattices) is more correct from a mathematical or group theory point of view, we follow the nomenclature typically seen in the physics
literature where a lattice or a structure whose volume is larger than that of the parent is referred as a superlattice.
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A.2.2. Matrices in smith normal form. There is a useful connection between the SNF for Abelian groups and the
SNF for integer matrices. As the reader may infer, the SNF form of the basis matrix N effectively tells one how to
represent the quotient group Z3/ Ly as a direct sum of cyclic groups in Smith Normal Form, and, as shown in
the following section, the row operations used to create the SNF of N give the homomorphism v suggested
above.

A.2.3. The connection between SNF groups and SNF matrices. In the matrix case, since the operations are
elementary row and column operations, we have ) = ANB where A and B are integer matrices with
determinant £1 representing the accumulated row operations and column operations respectively. The matrix
D is completely determined by N, but the matrices A and B depend on the algorithm used to arrive at the Smith
Normal Form of N. A different implementation might yield D = A’NB’ (same N and same I, but different A
and B).

Note that, since B represents elementary column operations, the product NB simply represents a change of
basis from N to a new basis N’ = NB. In other words, the columns of N’ are still a basis for £y. But the new
basis has the property that AN’ = D). That means that every element w = N'Z of Ly (where Z is some element

D11z
of Z?) will satisfy the equation Aw = DZ = | D,,z; |- In other words, Aw will be a vector whose entries are
D332
multiples of the corresponding diagonal entries in 1.
X x (mod Ibyy) !
To put it another way, define * to be the operation that maps X = [xz] in Z3 to ¥* = | % (mod D,,)
% x3 (mod Ds3)

Then we have shown w € Ly iff (Aw)* = (0, 0, 0) (the zero-element in the group Gy = Zp,, ® Zp,, ® Zp,,.

That suggests we let ) (w) = (Aw)*, ahomomorphism from Z? onto the direct-sum Gy. Then, since that
homomorphism is easily shown to be onto, and its kernel is Ly, we see (by the First Isomorphism theorem of
group theory) that Gy = Z*/ Ly, and v is precisely the homomorphism we sought.

Thus we have connected the two versions of SNF. The matrix algorithm provides the SNF description of the
quotient group by the diagonal entries in ID, and the transition matrix A provides the homomorphism which
maps the parent lattice onto the group.

A.2.3.1. An example

1 2 -1 1 2
LetN = (1 4 — 3]. This describes alattice £y which contains the points p, = [1 ], P, = [4], and
02 4 0 2

—1

Py = [ 3], and all the points which are integer linear combinations of those three points. The matrix N has
4

determinant 12, which must be the volume of each lattice tile—and it is also the order of the quotient

group Z3/ Ly

100
Using the SNF algorithm to diagonalize this basis matrix, we find D = ANB where D = (O 2 0], with

006
01 0 1 7 11
A= [0 0 1 ]and]B% = (0 -1 —2].
1 -1 =2 0 1 1
Thus we now know that the quotient groupis G = Z3/Ly = Z, D Zy B Zs = Z, O Zs.
Further, from the matrix A, we may obtain the homomorphism projecting Z° onto the quotient group, with

kernel Ln. If w = (;) then Aw = ( z ]and thus
z x—y—2z
Y(w) = (Aw)*
y (mod 1)
= z (mod 2)
x — y — 2z (mod 6)
= (z (mod 2), x + 5y + 4z (mod 6))

T

(noting that anything mod 1 is zero).
Note that this homomorphism provides a different, but convenient, way to describe the superlattice. Since
Ly is the kernel of 1), it is comprised of the points (x, y, z) € Z> which satisfy the simultaneous congruences

11
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z = 0(mod2)and x 4+ 5y 4+ 4z = 0 (mod 6). We note that all three basis points p;, p, and p; satisfy these
congruences, and thus so will all their integer linear combinations (all pointsin Ly).

A.2.3.2. Algorithmic variation
In the example we computed above, a different application of the SNF matrix algorithm, with the same N, might

1 00 1 00 0o —1 2
have yielded the same diagonal matrix D = | 0 2 0 |,butdifferent A =|—5 3 1|landB=]| 0 0 ,
006 -2 21 -1 —1 4

which would change the homomorphism to (x, y, z) — (—5x + 3y + z(mod 2), —2x + 2y + z

(mod 6)) = (x + y + z (mod 2), 4x + 2y + z (mod 6)). The new homomorphism is different, since (1,0, 1) —
(0, 5) now, where previously (1, 2, 3) — (1, 5) (for example), but the kernel is the same. In fact the two
homomorphisms are related via an automorphism of the group G.

A.2.4. Non-integer lattices. Now, what about the more complicated situation, where N represents a (possibly
HNF) matrix describing the change from some lattice other than the simple integer lattice Z> to one of its
subgroups (superlattice)?

Then we have abasis V and lattice £, and abasis W = VN for a (super) lattice £yy. Again, the quotient
group G = Ly /Ly is Abelian of order | det(N)|. Again, G is a direct sum of cyclic groups corresponding to the
diagonal entries of ) = ANB (where I is the SNF of N).

The only difference here is that the homomorphism ¢ provided by A must depend on the basis V (which
might even be irrational). Every pointin £y has the form X = Vw where w is a column of integers. Then
P (X) = Aw (modded by the corresponding entries from ) = ANB). We could writeitas 1 (X) = (AV-%)*
(with the entries appropriately modularly reduced and transposed to a horizontal vector).

A.2.5. Example: general (non-integer) lattices. Suppose Ly is the lattice defined by (columns of) the basis matrix

1 1/2 0
V=10 /3 /2 0} and Lyy is the subgroup lattice defined by the basis marix W = VN where
0 0 2
4 2 2 5 3 3
N = [2 2 2]. In other words, one basis for Lyy is given by the columnsof W = | /3 /3 /3 |
4 0 4 8 0 8
Reducing N to SNF yields

200 1 0 -1 -2 =3 =2
D=Jo2o0]l=]1 -1 —-1|INJ2 1 1|
00 4 -6 4 5 1 1 1

1 0 —1
Thus our quotient groupis G = Ly /Ly = Z; & Zy  Zyand A = [ 1 —1 —1]50
—6 4 5
1 —J3/3 —1/2
AVl=11 -3 —1/2}
—6 14J3/3 5/2

which provides our homomorphism v (¥) = (AV~x)* from Ly onto G.

2 0
Ifwelet X = | /3 | whichisan element of £y but not of Ly, then AV—1x = {—z]and P)=1(0,0,3) € G

2 7
7
(after reducing the elements modulo 2, 2 and 4 respectively). On the other hand, ifwelet X = | \/3 |, whichisan
8
2
element of Lyy (thekernel), then AV-1X¥ = | 0 |andso ¢ (¥) = (0, 0, 0),and ¥ is in the group.
-8

By this function 1), the elements of Ly are all mapped to elements of the group G and, in particular, the
elements of £y are mapped to the zero element of the group. Stated in terms of the cosets, the entire set Lyy is
mapped to the zero element of the group G, and each of the distinct translates of Ly, (within £y ) gets mapped to
adifferent element of the group. We might think of this as decorating or labeling the elements of Ly in a periodic
manner, using Ly to define the period, and using the elements of the group G as the labels.
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