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In this paper, we consider the problem of parameter sensitivity in models of complex dynamical systems
through the lens of information geometry. We calculate the sensitivity of model behavior to variations in
parameters. In most cases, models are sloppy, that is, exhibit an exponential hierarchy of parameter sensitivities.
We propose a parameter classification scheme based on how the sensitivities scale at long observation times.
We show that for oscillatory models, either with a limit cycle or a strange attractor, sensitivities can become
arbitrarily large, which implies a high effective dimensionality on the model manifold. Sloppy models with a
single fixed point have model manifolds with low effective dimensionality, previously described as a “hyper-
ribbon.” In contrast, models with high effective dimensionality translate into multimodal fitting problems. We
define a measure of curvature on the model manifold which we call the winding frequency that estimates the
density of local minima in the model’s parameter space. We then show how alternative choices of fitting metrics
can “unwind” the model manifold and give low winding frequencies. This prescription translates the model
manifold from one of high effective dimensionality into the hyper-ribbon structures observed elsewhere. This
translation opens the door for applications of sloppy model analysis and model reduction methods developed for
models with low effective dimensionality.
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I. INTRODUCTION

An essential part of the modeling process is selecting
a similarity metric that quantifies the extent to which a
model mimics the system or phenomenon of interest [1].
The choice of similarity metric informs nearly all aspects of
the modeling process: model selection, data fitting, model
reduction, experimental design, model validation, etc. Here,
we consider the question of similarity metrics for dynamical
systems, particularly oscillatory ones. Although a common
choice, the least squares metric comparing model outputs
at selected times may lead to models with a high effective
dimensionality. In addition to posing technical challenges
(e.g., ill-posed, multimodal fitting problems), we argue that
a high effective dimensionality reflects a more fundamental
issue: that the choice of metric does not accurately capture
the phenomenon of interest. In this paper, we use sloppy
model analysis and information geometry to identify parame-
ter combinations in models of dynamical systems that lead to
high effective dimensionalities (Secs. II and III). We then use
methods of signal processing to construct similarity measures
that “unwind” the model manifold and lead to well-posed
inference problems (Sec. IV).

Some have already observed that one’s choice of metric
is a critical aspect of parameter space exploration [2,3].
The relationship between model behavior and parameters is
(locally) captured by sensitivity analysis. Previous studies
have decomposed the sensitivities of periodic signals into
independent parts that control amplitude, period, and other
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features [4–6]. In chaotic systems, it has been found that
the dynamics exhibit an exponential sensitivity to parameters
[7,8]. In such cases, it is common to use measures of the
statistical distribution in phase space, rather than time series
[3,7,9–11]. The present work combines these insights with
tools of sloppy model analysis and information geometry.

Sloppy models are a broad class of models whose behav-
ior exhibits an exponential hierarchy of parameter sensitiv-
ities [12–20]. Using an information geometric approach, it
has been shown that the local sensitivity analysis reflects a
global property, i.e., a low effective dimensionality described
as a hyper-ribbon [21–24]. It has been suggested that this
hyper-ribbon structure is why simple effective (i.e., low-
dimensional) theories of collective behaviors exist for systems
that are microscopically complicated [23,24].

The effective dimensionality of sloppy models has im-
portant statistical implications. Information criteria (such as
Akaike or Bayes) are used in model selection and penalize
those with too much fitting flexibility. A model’s fitting power
is most easily estimated in the asymptotic limit, in which it
is simply approximated by the number of parameters, i.e., the
dimension of the model manifold. For hyper-ribbons, these
formulas greatly overestimate the fitting power of a model
[25,26]. However, it is also possible for models to exhibit
a high effective dimensionality, i.e., have model manifolds
whose fitting power is much larger than that suggested by the
number of parameters. As we show in Secs. II and III, these
models will exhibit extreme multimodality when fit to data,
and have model manifolds with large curvatures that tend to
fill large volumes of behavior space.

The challenge of multimodality in fitting problems has
been noted in many fields [9,10,27–29]. Proposals for
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addressing multimodality have included global search meth-
ods [9,28,30–32], increasing the size of the parameter space
in order to escape local minima [29,33], and changing the
parameter landscape through an alternative choice of metric
[3,9].

In Sec. II, we introduce the least squares metric under
consideration and use model sensitivity analysis at long times
to classify parameter combinations. In turn, we classify mod-
els based on which parameter types they include and show
that some classes of models exhibit an anomalous statistical
dimension, that is, the effective dimensionality of the model
may be either much more or less than the number of param-
eters. In Sec. III, we argue for a deeper theoretical impli-
cation of this phenomenon. Using an information geometric
approach, we relate the effective statistical dimension to the
curvature on the model manifold. In Sec. IV, we explicitly
demonstrate that alternative metrics can lead to different ef-
fective dimensions and present a prescription for how models
of high effective dimension can be regularized through an
appropriate choice of metric.

II. MODEL AND PARAMETER CLASSIFICATIONS

A. Similarity measure

Consider a parametrized model of time y(t ; θ ) (which
could be generated, for example, as the solution to a system
of differential equations), where θ is a vector of parameters
(which could include initial conditions) and y is either a scalar
or vector of observables. We wish to quantify the similarity
of the model behavior for different values of θ . The most
common metric in the literature is least squares regression,
in which case the distance (or cost) between two models, with
parameters θ and θ0, takes the form

C(θ ) = 1

2T

∫ T

0
dt[δy(t ; θ )]2, (1)

δy(t ; θ ) ≡ y(t ; θ0) − y(t ; θ ). (1a)

We are interested in the sensitivity of model predictions
at different time scales. By increasing the total time T , this
cost function C(θ ) defines a coarse-graining in the effec-
tive sampling rate followed by a renormalization so that
the total number of effective data points is constant. When
measuring the distance to observed data yi at times ti (with
uncertainties σi used as weights), the integral becomes a
sum,

C(θ ) = 1

2T

∑
i

(
yi − y(ti; θ )

σi

)2

. (2)

Being a distance measure, C defines a metric on the space
of data and model predictions known as data space [21,22].
We interpret the model predictions y(ti; θ ) and observations yi

as components of two vectors in data space which we denote
y(θ ) and y, respectively. By varying θ , y(θ ) sweeps out a
surface in data space known as the model manifold. With this

notation, Eq. (2) may be written as

C(θ ) = 1

2T
δyᵀ�−1δy, (3)

δy ≡ y − y(θ ), (3a)

where � denotes the (diagonal) covariance matrix for the
observation vector y.

B. Sensitivity analysis and parameter classification

To quantify the sensitivity to parameters of model predic-
tions at different time scales, we consider derivatives of the
cost with respect to θ . Dropping the t and θ dependence for
clarity, the gradient of Eq. (1) is

∂C

∂θμ

= − 1

T

∫ T

0
dt

(
δy

∂y

∂θμ

)
, (4)

and the Hessian is

Hμν ≡ ∂2C

∂θμ∂θν

= 1

T

∫ T

0
dt

(
∂y

∂θμ

∂y

∂θν

− δy
∂2y

∂θμ∂θν

)
. (5)

Note that because δy(t ; θ0) = 0, the gradient at θ0 is also 0 and
the Hessian at θ0 simplifies to

Hμν (θ0) = 1

T

∫ T

0
dt

(
∂y

∂θμ

∂y

∂θν

)
. (6)

This is also approximately valid when θ ≈ θ0. For Eq. (3), the
Hessian at θ0 takes the form

H (θ0) = 1

T

∂y
∂θ

ᵀ
�−1 ∂y

∂θ
. (7)

Although the gradient and Hessian may be evaluated at other
points, H (θ0) is particularly important because it is the Fisher
information metric (FIM) for this measurement process and
acts as a Riemannian metric on the model manifold. We are
interested in the eigenvalues of H and their dependence on T .

Figure 1 plots a cross section of C (as a surface over θ ), the
eigenvalues of H , and a three-dimensional projection of the
model manifold for three models (details of these models are
found in Appendix A).

The first model is characterized by a transient decay to a
steady state. As illustrated in Fig. 1(b), for large T , the model
becomes increasingly insensitive to parameter combinations
that control transient behavior, scaling as O(T −1). The pa-
rameter that determines the steady state scales as O(1). These
scaling behaviors can be motivated as follows. We assume that
parameter combinations which control the transient dynamics
have sensitivities that decay to zero at long times,

∂y

∂θμ

(t → ∞; θ ) ∼ 0, (8)

while those that control the steady state are asymptotically
constant:

∂y

∂θμ

(t → ∞; θ ) ∼ const. (9)

In light of Eq. (6), this leads to the O(T −1) and O(1) scaling
behaviors observed. Note that as the total sampling time T is
increased past the transient dynamics, the only new informa-
tion obtained is information about the final steady state. Our
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FIG. 1. Model classes. [(a), (d), (g)]: Cross sections of C(θ ) [Eq. (1)] for three prototype models (see Appendix A, models A, D, and G).
Contrast the canyons in (a) with the ripples in (d) and the roughness in (g). [(b), (e), (h)]: Hessian eigenvalues as a function of sampling time
(same models). Colors differentiate scaling behaviors at long times. [(c), (f), (i)]: Projections of the model manifold (same models). In (c), a
three-ball in parameter space was mapped to the nearly one-dimensional region of prediction space shown (low effective dimensionality). By
contrast, for (f) and (i) a single parameter was varied producing a one-dimensional (1D) (space-filling) curve in prediction space (high effective
dimensionality). Note that in (i), the model goes through a bifurcation where the manifold begins to oscillate rapidly. The sampling required
to see continuity is prohibitive, so the points plotted become scattered.

choice of normalization keeps the effective number of data
points constant, so increasing T results in an effective loss of
information about the transient dynamics but no information
loss for the steady state.

The second model exhibits a periodic limit cycle. As shown
in Fig. 1(e), parameter combinations controlling features of
the attractor scale as O(1), those that control the transient
approach to the attractor scale as O(T −1), and the combination
controlling frequency scales as O(T 2). Motivation for the
scaling behavior of the parameter combinations controlling
the the transient approach to the attractor follow as in the
previous case. To motivate the other two scaling behaviors,
we consider the steady state of the model and expand in a
Fourier series:

y(t → ∞; θ ) =
∞∑

k=−∞
ck (θ )eikω(θ )t = y(t → ∞; c(θ ), ω(θ )).

(10)

There is an intermediate dependence of the steady state on
the amplitude coefficients ck and the oscillatory frequency ω.

This allows us to decompose the parameter sensitivities of the
steady state into two parts:

∂y

∂θμ

(t → ∞; θ ) =
∞∑

k=−∞

∂y

∂ck

∂ck

∂θμ

+ ∂y

∂ω

∂ω

∂θμ

. (11)

Because ck and ω are time independent by construction, the
time dependence of these sensitivities is due entirely to the
coefficients

∂y

∂ck
(t → ∞; θ ) = eikω(θ )t , (12)

which is bounded by a constant, and

∂y

∂ω
(t → ∞; θ ) =

∞∑
k=−∞

iktck (θ )eikω(θ )t ∼ t, (13)

which grows linearly with time. The amplitude sensitivities
(∂y/∂ck )(∂ck/∂θμ) control the shape and amplitude of the
steady state and give rise to O(1) scaling behavior [referring
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TABLE I. Parameter classification.

Eigenvalue scaling behavior Dynamics controlled

O(T −1) transient
O(1) steady state
O(T 2) frequency
O(eT ) chaotic behavior

again to Eq. (6)]. By contrast, the frequency sensitivity
(∂y/∂ω)(∂ω/∂θμ) results in O(T 2) scaling behavior. Other
studies have focused on the sensitivity to period, rather than
frequency, but the temporal scaling behavior is the same for
both [4–6].

Finally, the third model is chaotic; parameters controlling
its dynamics exhibit exponential sensitivities,

∂y

∂θμ

(t → ∞; θ ) ∼ eλμt , (14)

leading to the exponential scaling behavior in Fig. 1(h).
We classify parameter combinations in a model according

to their scaling behavior. This classification is summarized in
Table I. LaMont and Wiggins have also proposed a classifica-
tion of model parameters, based on the complexity of a given
parameter combination [25]. In the case of dynamical models,
our analysis illustrates the mechanisms that give rise to the
complexities of each class.

C. Model classification

The different scaling behaviors for the Hessian eigenval-
ues are accompanied by different structures in both the cost
surface and the model manifold (first and third columns of
Fig. 1). The cost surface of the first model is characterized
by a single, highly anisotropic basin. Its model manifold is
similarly anisotropic; the long, narrow hyper-ribbon structure
is common for models with low effective dimensionality
[21,22]. In contrast, the second cost surface has many local
minima and a model manifold with high curvature. The third
cost surface exhibits a fractal-like roughness (although for
finite T the derivative with respect to parameters formally
exists everywhere). Its model manifold is even more highly
curved and space filling.

These three models are prototypes of three model classes,
distinguished by the scaling behavior of the largest eigenvalue
for large T . For the first class, λmax ∼ O(1) is bound by a
constant. For the second class, λmax ∼ O(T n) is bound by a
polynomial. For the third class, λmax ∼ O(eT ) is exponential.
We plot the eigenvalues of the Hessian (at large, fixed T )
for the three prototype models and for two additional models
from each class in Fig. 2 (details of these models are found
in Appendix A). All nine models are considered sloppy; that
is, the eigenvalues of the Hessian are spread over many orders
of magnitude. Accordingly, we refer to these model classes as
sloppy models of the first, second, and third kinds, respectively.

III. MANIFOLD CURVATURE

The large sensitivities of sloppy models of the second and
third kinds are necessarily associated with large curvature and

FIG. 2. Eigenvalues of H (θ0) for the following models (see
Appendix A for details): A: sum of exponentials; B: rational polyno-
mial; C: biological adaptation; D: FitzHugh-Nagumo; E : Hodgkin-
Huxley; F : Wnt oscillator; G: Lorenz; H : Hindmarsh-Rose; I:
damped, driven pendulum. {A, B,C} are nonoscillatory models,
{D, E , F } are periodic, and {G, H, I} are chaotic.

high effective dimensionality on the model manifold. This
can be understood by noting that the absolute variation in
the model behavior is bounded (the models oscillate within
a finite range and do not grow). This restricts the model
manifold to a finite region of data space. Large parameter
sensitivities indicate that the model manifold is very long
in the associated parameter directions. The only way to fit
something very long into a finite region is for it to curve,
fold, or wind. The combination of large parameter sensitivities
and bounded predicted behavior necessitates large manifold
curvature. For large T , there will be enough winding that the
manifold effectively fills a volume of higher dimension than
that of the manifold itself. This high effective dimensionality
is the opposite effect of the low effective dimensionality
argued for in previous studies of sloppy models [23,24].

To quantify this effect, we introduce a quantity that we
call the winding frequency, as follows. The extrinsic curvature
associated with parameter direction v is given by the geodesic
curvature k(v) = 1/R (as in Ref. [22]), where R is the radius
of curvature of the circle tangent to the manifold along direc-
tion (∂y/∂θμ)vμ (sum over μ implied; see Fig. 3). We define

FIG. 3. Illustration of winding frequency. The “s”-shaped curve
represents a possible 1D cross section of a model manifold (obtained,
for example, by varying just one parameter combination) in a sim-
ple 2D data space. Also shown are the tangent or velocity vector
(∂y/∂θμ)vμ (sum over μ implied), the tangent circle with radius R,
and the winding frequency ω defined in Eq. (15).
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FIG. 4. Winding frequencies along Hessian eigendirections for
the models from Fig. 2, ordered from left to right by magnitude of
the corresponding eigenvalue. “Stiff” refers to eigendirections with
large eigenvalues, while “sloppy” refers to eigendirections with small
eigenvalues. The black dashed line at ω = 2π roughly distinguishes
low from high winding frequencies.

the winding frequency as

ω(v) ≡
∣∣∣∣ ∂y
∂θμ

vμ

∣∣∣∣k(v), (15)

which is the angular velocity at which the manifold locally
winds around the tangent circle, such that f = ω/2π is the
number of windings of the manifold per unit change in pa-
rameters. Because C is a distance measure for the manifold
embedding space, each winding of the manifold results in
a local minimum of C, so f is also the frequency of local
minima in C as we move along parameter direction v.

Figure 4 shows winding frequencies along Hessian
eigendirections for the models from Fig. 2. Notice that sloppy
models of the first kind (i.e., hyper-ribbons) have low winding
frequencies. Sloppy models of the second kind have high
winding frequency in the stiffest direction, which controls
frequency. Sloppy models of the third kind have high winding
frequencies in more than one direction.

The effective dimensionality, estimated by the winding
frequencies, depends on the metric of the model manifold
embedding space, i.e., Eq. (1). We now show that alternative
choices for embedding the model manifold can lead to differ-
ent effective dimensionalities.

IV. ALTERNATIVE METRICS

A. Analytic signal (AS)

The high effective dimensionality of sloppy models of the
second kind is due entirely to the parameter combination
controlling frequency. Varying this parameter combination
causes model predictions to pass in and out of phase with each
other, resulting in local minima in the cost (see Figs. 5 and 6).
We avoid this aliasing by defining the phase of oscillation as
a monotonically increasing function of time and comparing
model behaviors at the same phase.

Many definitions of instantaneous frequency and phase
have been considered in the literature [34–36]. We use the an-
alytic signal approach [37], which is discussed in Sec. IV A 1.
Some alternatives are discussed in Appendix B. We propose a
metric for oscillatory systems in Sec. IV A 2. We discuss the

FIG. 5. Cost C for the model y(t ) = A cos(ωt ), treating A and ω

as parameters. The cost has been rescaled to make the local minima
apparent.

Hessian and FIM in Sec. IV A 3. Results of applying our met-
ric to the FitzHugh-Nagumo model are found in Sec. IV A 4.
Comparing model predictions with observational data in this
paradigm requires calculating the phases of the observa-
tions, which will have uncertainty. We propagate uncertainty
and derive appropriate covariance matrices in Appendix C.
Calculation of winding frequencies requires second-order
parameter sensitivities (specifically, when calculating the
geodesic curvature κ); we derive the necessary formulas in
Appendix D.

1. Phase definition

The analytic representation z(t ) of an oscillatory signal y(t )
is a complex function defined as

z(t ) ≡ y(t ) + iH[y](t ) = A(t )eiφ(t ), (16)

FIG. 6. Decoupling amplitude from phase. (a) Signal vs time
for two signals with mismatched amplitude and frequency; their
difference is indicated by the shading between the curves. The
mismatch in frequency causes a large difference δy when the two
signals are out of phase (t ≈ 1.8) but little or no difference when
they are in phase (t ≈ 3.5). (b) Signal vs phase for the same signals.
The difference-at-constant-phase δỹ is consistent throughout (see
Sec. IV A 2). (c) Phase vs time for the two signals. The difference
in phase δφ simply grows linearly (see Sec. IV A 2). (d) Analytic
representation in the complex plane of the black point marked in the
other three panels (see Sec. IV A 1).
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where H[y](t ) is the Hilbert transform of y(t ),

H[y](t ) ≡ 1

π
P. V.

∫ ∞

−∞

y(τ )

t − τ
dτ , (17)

and the magnitude A(t ) and argument φ(t ) of z(t ) are

A(t ) ≡
√

y2(t ) + H2[y](t ), (18)

φ(t ) ≡ tan−1

(
H[y](t )

y(t )

)
(19)

[see Fig. 6(d)].
In light of Eq. (16), we reinterpret y(t ) in terms of ampli-

tude and phase as

y(t ) = Re{z(t )} = A(t ) cos(φ(t )). (20)

We then define a new signal ỹ as a function of phase:

ỹ(φ(t )) ≡ y(t ) = A(t ) cos(φ(t )). (21)

As long as φ(t ) is monotonically increasing, the relationship
between φ and t is invertible. Hence, we may also write

ỹ(φ) = A(t (φ)) cos(φ). (22)

If y(t ) is a vector (rather than scalar) function of time, then
φ(t ) will also be a vector function of time. That is, for each
scalar component of y(t ), the preceding prescription for con-
structing the phase should be applied separately. If this is not
possible or does not produce a set of monotonically increasing
phases, it may be applied to a single scalar component of y
and the resulting phase used for all of the components. For
other alternatives that avoid using the Hilbert transform, see
Appendix B.

As a final note, a necessary condition for φ(t ) to be mono-
tonically increasing is that the signal y(t ) oscillate around 0. If
it does not, the time average 〈y(t )〉 = (1/T )

∫ T
0 y(t )dt should

be subtracted from y(t ) prior to calculating the phase. H[y](t )
will be unaffected, as the Hilbert transform of a constant is 0.

2. New cost using phase

We want to construct a cost that compares models at the
same phase rather than the same time. Actually, we can go
one step further and construct a cost that also retains the
phase information while still eliminating the aliasing of oscil-
lations that results in local minima. We use an approximation
of Eq. (1a) that arises from the propagation of uncertainty
considered in Appendix C [see Eq. (C16)]. In the discrete
case [comparing a model y(ti; θ ) with observational data yi],
Eq. (1a) is

δyi ≡ yi − y(ti; θ ). (23)

We define the deviations of the phases φi of the observations
from the phases φ(ti; θ ) predicted by the model as

δφi ≡ φi − φ(ti; θ ) (24)

[see Fig. 6(c)], and the deviations of the observations from the
predictions at constant phase as

δỹi ≡ yi − ỹ(φi; θ ) (25)

FIG. 7. Cost decomposition of the model y(t ) = A cos(ωt ).
(a) Same as Fig. 5. (b) ỹ(φ) = A cos(φ) is insensitive to changes in
ω and varies linearly with A, resulting in a quadratic dependence
of Cỹ(φ) on A only. (c) φ(t ) = ωt is insensitive to changes in A and
varies linearly with ω, resulting in a quadratic dependence of Cφ(t ) on
ω only. (d) Cost using Eq. (27). The ripples in (a) have been replaced
with a quadratic basin.

[see Fig. 6(b)]. The approximation we use for oscillatory
systems is

δyi ≈ δỹi +
(

∂ ỹ

∂φ

)
i

δφi ≡ δŷi. (26)

The first term captures changes in amplitude while the second
term captures changes in phase or frequency, so both pieces of
information are retained (see Sec. IV A 3). At the same time,
because this approximation is first order in δφi, it eliminates
the nonlinear dependence on frequency that results in ripples
in the cost (refer back to Fig. 6), which we will demonstrate
in Figs. 7 and 8.

We define a new cost function by replacing δy in Eq. (3)
with the approximation δŷ defined according to Eq. (26):

Cφ (θ ) ≡ 1

2T
δŷᵀ�−1δŷ. (27)

Using Eq. (26), this may be decomposed into three pieces rep-
resenting the amplitude contribution, the phase contribution,
and a cross term:

Cφ (θ ) = Cỹ(φ)(θ ) + Cφ(t )(θ ) + CX (θ ), (27a)

Cỹ(φ)(θ ) ≡ 1

2T
δỹᵀ�−1δỹ, (27b)

Cφ(t )(θ ) ≡ 1

2T
�φᵀ�−1�φ, (27c)

CX (θ ) ≡ 1

2T
(δỹᵀ�−1�φ + �φᵀ�−1δỹ), (27d)

�φi ≡
(

∂ ỹ

∂φ

)
i

δφi. (27e)

We compare C [Eq. (3)], Cỹ(φ), Cφ(t ), and Cφ in Fig. 7.
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FIG. 8. Effects of alternative metrics on cost surfaces (first column), winding frequencies (second column), and manifolds (third column),
(a)–(c) using analytic signal (AS) and (d)–(f) using kernel density estimation (KDE). Compare (a),(c),(d), and (f) with Figs. 1(d), 1(f), 1(g), and
1(i), respectively. Panels (b) and (e) show both the winding frequencies shown previously in Fig. 4 (“w/o ___”) and the winding frequencies
that result when using our metrics (“using ___”) for comparison. Note that long time series are needed to achieve these results; see Appendix E
for details.

When comparing two models with parameters θ0 and θ ,
Eqs. (24)–(27) take the form

δφ(t ; θ ) ≡ φ(t ; θ0) − φ(t ; θ ), (28)

δỹ(t ; θ ) ≡ ỹ(φ(t ; θ0); θ0) − ỹ(φ(t ; θ0); θ )

= y(t ; θ0) − ỹ(φ(t ; θ0); θ ), (29)

δŷ(t ; θ ) ≡ δỹ(t ; θ ) + ∂ ỹ(φ(t ; θ0); θ0)
∂φ

δφ(t, θ ), (30)

Cφ (θ ) ≡ 1

2T

∫ T

0
dt[δŷ(t ; θ )]2. (31)

As we show in Sec. IV A 3, Eq. (31) is a quadratic approxima-
tion of Eq. (1) (i.e., they have the same gradient and Hessian).
In other words, Eq. (31) is an isometric embedding of the
model manifold. However, because changes in frequency only
affect φ(t ; θ ), which is unbounded, the large manifold volume
is no longer constrained to a finite region of the embedding
space.

3. Fisher information metric

We stated in Sec. II B that the Hessian of the cost evaluated
at θ0 is the Fisher information metric (FIM). Specifically, the
FIM is related to the cost by

Iμν =
〈
∂2C(θ0)

∂θμ∂θν

〉
= 〈Hμν (θ0)〉. (32)

We have already shown that

Iμν = 1

T

∫ T

0
dt

∂y

∂θμ

∂y

∂θν

(33)

for Eq. (1) [see Eq. (6)]. We can rewrite this for oscillatory
systems in light of Eq. (21),

y(t ; θ ) = ỹ(φ(t ; θ ); θ ). (34)

Differentiating Eq. (34) with respect to θμ, we obtain

∂y

∂θμ

∣∣∣∣
t

= ∂ ỹ

∂θμ

∣∣∣∣
φ

+ ∂ ỹ

∂φ

∣∣∣∣
θ

∂φ

∂θμ

∣∣∣∣
t

, (35)

where the |x notation is used to indicate that the argument x is
being held constant in the given derivative. This relationship
is exact and shows a decoupling of the amplitude sensitivity
from the phase sensitivity [similar to Eq. (11)]. Substituting
Eq. (35) into Eq. (33) yields

Iμν = 1

T

∫ T

0
dt

(
∂ ỹ

∂θμ

+ ∂ ỹ

∂φ

∂φ

∂θμ

)(
∂ ỹ

∂θν

+ ∂ ỹ

∂φ

∂φ

∂θν

)
. (36)

We now show that Eq. (36) is also the FIM for Eq. (31).
First we calculate the gradient of Cφ (θ ):

∂Cφ

∂θμ

= − 1

T

∫ T

0
dt

{
δŷ

(
∂ ỹ

∂θμ

+ ∂ ỹ

∂φ

∂φ

∂θμ

)}
. (37)

Next we calculate the Hessian and evaluate it at θ0 [note that
δŷ(θ0) = δφ(θ0) = 0]:

Hμν (θ0) = 1

T

∫ T

0
dt

(
∂ ỹ

∂θμ

+ ∂ ỹ

∂φ

∂φ

∂θμ

)(
∂ ỹ

∂θν

+ ∂ ỹ

∂φ

∂φ

∂θν

)
.

(38)

Clearly this is the same as Eq. (36). Because the FIM is
preserved, the new cost [Eq. (31)] constitutes an isometric
embedding of the model manifold and no information is lost
(in the sense of the Fisher information).
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4. Results

We implement the metric for the FitzHugh-Nagumo model
as an example; results are shown in Figs. 8(a)–8(c). The local
minima in the cost surface in Fig. 1(d) have been eliminated,
the winding frequency of the stiffest direction is significantly
reduced, and the manifold is no longer highly curved (see also
Appendix E). Because the new cost function is an isometric
embedding [i.e., preserves the Hessian in Eq. (6)], the curva-
ture of the cost surface at the bottom of the bowl is the same
as that in Fig. 1(d).

B. Kernel density estimation (KDE)

The high effective dimensionality of sloppy models of the
third kind cannot be eliminated using the metric discussed
in Sec. IV A. Adjusting the phase of a chaotic time series
is insufficient to account for the variation in predictions as
one moves from point to point in parameter space [resulting
in the apparent roughness of the cost surface illustrated in
Fig. 1(g)]. This is reflected in the exponential sensitivities
of chaotic systems at long times and is connected with a
fundamental difference in manifold structure between sloppy
models of the second and third kinds. Note from Eq. (15) that
winding frequency is directly proportional to geodesic (extrin-
sic) curvature. Figure 4 shows that the manifolds of sloppy
models of the second kind only have high extrinsic curvature
in one direction (like a scroll of paper). This high curvature
can be eliminated through an isometric embedding (analogous
to unwinding the scroll). By contrast, sloppy models of the
third kind have high extrinsic curvature in more than one
dimension. High extrinsic curvature in multiple dimensions is
necessarily associated with some intrinsic curvature, and this
intrinsic curvature cannot be eliminated through an isometric
embedding (think of a globe, which can’t be “unwound” and
laid flat).

The sensitivities of chaotic time series to parameters (in-
cluding initial conditions) make time series prediction in
sloppy models of the third kind impractical at long times.
However, model predictions yi(θ ) in phase space do give rise
to a predictable distribution f (y, θ ) [11]. We evolve an ensem-
ble of initial conditions and use the result to approximate this
distribution with a kernel density estimate [38,39],

f (y, θ ) ≈ 1

nh

n∑
i=1

K

(
y − yi(θ )

h

)
, (39)

where n is the number of predictions or observations, K (·) is
a kernel function, and h is the kernel bandwidth. A natural
metric to use for distributions is the Hellinger distance,

C̃(θ ) ≡ 1

2

∫
dy

(√
f (y, θ0) −

√
f (y, θ )

)2
, (40)

because it is a quadratic form, which can be interpreted as
a Euclidean embedding space. It also induces a metric on the
model manifold that is given by the Fisher information metric.

We implement this cost for the Lorenz system; results are
shown in Figs. 8(d)–8(f). The “rough” cost surface of Fig. 1(g)
has been replaced with a basin, the high winding frequencies
have all disappeared, and the manifold is regular (see also
Appendix E).

V. CONCLUSION

Multimodality in comparing and training multiparameter
models is a common problem [9,10,27–29]. Many common
search algorithms find only a local minimum (a point in
parameter space which locally minimizes the chosen distance
measure) and not the global one. Even with global search
methods the possibility of local minima reduces confidence
that the global minimum will be found. Here, we have shown
how the choice of distance measure affects the number of
local minima. We have quantified this effect using curvature
on the model manifold and introduced the winding frequency
to estimate the density of local minima in parameter space.
Finally, we have shown that through an appropriate choice of
metric, the model manifold can be systematically “unwound”
to remove local minima while preserving relevant physical
interpretations of distance.

In this paper we have studied systems for which the rel-
evant structures were known a priori (e.g., limit cycles and
strange attractors). However, the metrics we propose may also
be useful for identifying previously unknown structures in
other complex systems.

One of the ongoing challenges for many complex systems
is the development of appropriate reduced-order representa-
tions [23,40–42]. More broadly, it has been suggested that the
existence of useful simplified models is often due to a sys-
tematic compression of parameter space [23]. Compressing
the parameter space leads to a type of “universality class”
in which models with different parameter values make sta-
tistically indistinguishable predictions. This line of work has
also led to methods for constructing simplified models from
more complex and complete mechanistic representations [43].
Ultimately, this compression is a consequence of the similarity
metric used to compare model behaviors.

For sloppy models of the first kind (which have previously
dominated the literature), the compression “squashes” some
dimensions to be very thin [as in Fig. 1(a) and Refs. [21,22]],
leading to a universality class of continuously connected
parameters for which reduced-order models can be system-
atically derived [43]. In contrast, for sloppy models of the
second and third kind, the manifold is wound tightly, so
that a compression leads to a manifold folding in which
noncontiguous regions of the manifold are identified as part
of the same universality class. It is unlikely that predictive
reduced-order models can be found for sloppy models with
high winding frequencies as this would imply the existence,
for example, of accurate long-term weather forecasts. High
winding frequency is the information-geometric equivalent of
sensitivity to microscopic details (such as frequency, initial
conditions, or other parameters), well studied in chaotic sys-
tems. In contrast, by unwinding the model manifold using an
alternative metric, the manifold is transformed into a hyper-
ribbon and this extreme sensitivity to microscopic details is
removed.

Understanding how effective theories emerge at long time
scales is a challenging problem that has drawn on sophisti-
cated expertise from a variety of fields, including dynamical
systems [44,45], signal processing [4,6], statistics [26,46], and
optimization [10,29]. In this work we have combined insights
from these other domains with tools of information geometry.
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Our hope is that this explicit connection will bring new tools,
such as sloppy model analysis and the manifold boundary
approximation method, to bear on a wide range of important,
ongoing scientific problems.
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APPENDIX A: MODELS

Following are the models examined in Figs. 1, 2, 4, and 8.
In some cases (models D, G, and I), additional polynomial
terms (with parameters as coefficients) were added to the
model equations of motion. This allows calculation of the
structural susceptibility of the model, that is, susceptibility to
perturbations of the underlying dynamics [47]. These terms
can be thought of as representing details of the real system
that have been left out of the model.

A: A sum of decaying exponentials leading to a steady
state,

y(t ; θ ) = θ1 +
N∑

n=2

e−γnt , (A1a)

γn ≡
n∑

i=2

θi, (A1b)

where θi > 0. Eigenvalues of the Hessian and winding fre-
quencies [Figs. 1(b), 2, and 4] were calculated at θi = 1;
likewise for the cost surface in Fig. 1(a) except for the two
parameters indicated on the axes. For the manifold projection
in Fig. 1(c), ln θ2, ln θ3, and ln θ4 were varied over a spherical
volume of radius 20 centered on the original parameter values.
Note that using θi as the parameters of the model, rather than
using the decay rates γn directly, guarantees that the decay
rates are ordered (i.e., γn+1 > γn), breaking the symmetry
between them.

B: A rational polynomial model,

y(t ; θ ) = θ1 + θ2t + θ3t2 + θ4t3

1 + θ5t + θ6t2 + θ7t3
. (A2)

Parameter values used were randomly chosen in the range
e−5 � θi � e5.

C: We used the IFFLP model of biological adaptation
described in [48].

D: The FitzHugh-Nagumo model [29,49,50] can be
written as

V̇ = c

(
V − V 3

3
+ R + I +

∑
n,m

θnmV nRm

)
, (A3a)

Ṙ = −1

c
(V − a + bR). (A3b)

We used a constant input current I , taken as a model pa-
rameter (in addition to the parameters a, b, c, and θnm). Initial

conditions used were (V0, R0) = (−1, 1). Eigenvalues of the
Hessian and winding frequencies [Figs. 1(e), 2, and 4] were
calculated at (a, b, c, I, θnm ) = (−0.0225, 0.135, 3.0, 0, 0),
likewise for the cost surface in Fig. 1(d) except for the two
parameters indicated on the axes. For the manifold projection
in Fig. 1(f), a slice of parameter space along −2 � a � 2,
b = 0.2 was used (all other parameters as above).

E : We implemented the Hodgkin-Huxley model described
in [51].

F : We used the Wnt oscillator model described in [52].
G: The Lorenz system [53] is given by

ẋ = σ (y − x) +
∑
n,m,p

θnmpxnymzp, (A4a)

ẏ = x(ρ − z) − y, (A4b)

ż = xy − βz. (A4c)

Initial conditions used were (x0, y0, z0) = (1, 1, 10).
Model parameters include σ , ρ, β, and θnmp. Additional pa-
rameters for rescaling x, y, and z after solving the ODE [e.g.,
x̃ ≡ (x − xref )/xscale] were also included to illustrate that all
parameters in a chaotic system need not exhibit an exponential
sensitivity [see Fig. 1(h)]. (In general, parameters like these
could account for differences in units between the model
and the observations, if there were any.) Eigenvalues of the
Hessian and winding frequencies [Figs. 1(h), 2, and 4] were
calculated at (σ, ρ, β, θnmp, xref, yref, zref, xscale, yscale, zscale) =
(10, 28, 8/3, 0, 0, 0, 0, 1, 1, 1); likewise for the cost surface in
Fig. 1(g) except for the two parameters indicated on the axes.
For the manifold projection in Fig. 1(i), a slice of parameter
space along σ = 10.05, 10 � ρ � 30 was used (all other
parameters as above).

H : The Hindmarsh-Rose model [54,55] can be written as

ẋ = y − ax3 + bx2 − z + I, (A5a)

ẏ = c − dx2 − y, (A5b)

ż = ε

(
x − 1

s
(z − zR)

)
. (A5c)

Initial conditions used were (x0, y0, z0) =
(−0.216 272 . . . , 0.183 969 , 0.066 920 . . .). Model para-
meters include I (taken as a constant input current), a,
b, c, d , ε, s, and zR. Eigenvalues of the Hessian and
winding frequencies (Figs. 2 and 4) were calculated at
(a, b, c, d, I, ε, s, zR) = (1, 3, 1, 5, 0, 0.004, 4, 3.1586).

I: The equations of motion for a damped, driven pendulum
(derivable using Newton’s 2nd law) are

ϕ̇ = ω +
∑
n,m,p

θnmpϕ
nωmφp, (A6a)

ω̇ = −ω

Q
− sin(ϕ) + A cos(φ), (A6b)

φ̇ = ωD. (A6c)

Initial conditions used were (ϕ0, ω0, φ0) = (−2, 0, 0).
Model parameters include Q, A, ωD, and θnmp. Eigenvalues
of the Hessian and winding frequencies (Figs. 2 and 4) were
calculated at (Q, A, ωD, θnmp) = (2, 1.16, 2/3, 0).
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FIG. 9. Phases obtained when implementing the Hilbert trans-
form numerically on the model y(t, θ ) = A cos(ωt ), for ω ranging
from 2π to 4π . The effects of the Gibbs phenomenon can be seen
near the ends for some values of ω.

APPENDIX B: ALTERNATIVES FOR OBTAINING A PHASE

In some cases, Eq. (19) cannot be used to obtain a mono-
tonically increasing phase. For example, some oscillatory
behavior does not have a unique center of oscillation. If
that is the case, one approach is to decompose the signal
using empirical mode decomposition into a number of in-
trinsic mode functions, for each of which a separate phase
may then be defined [56]. However, because this method is
empirical, the decomposition may not vary smoothly with the
parameters of the model, leading to discontinuities in the cost
function.

Even when the oscillatory behavior does have a single
center of oscillation, in practice the Hilbert transform must be
implemented numerically (especially for observational data).
This usually involves a fast Fourier transform, which can
introduce unwanted effects in the phase due to the Gibbs
phenomenon (see Fig. 9). The impact of end effects can
be reduced by leaving the ends out of the cost function, or
through windowing.

More generally, any monotonically increasing function of
time may be used for a phase, provided it has the appropriate
frequency. One proposal is to use

φ(t ) = ωt + φ0, (B1)

and to estimate a value of ω from the oscillatory signal. This
may be done by fitting a line to the phase obtained from
Eq. (19) or by using a Fourier transform to decompose the
signal into frequency components and selecting one.

We also suggest the following method of obtaining a phase
(found in [35]) that does not require the use of the Hilbert
transform. It is sometimes the case that two signals, y1(t ) and
y2(t ), can be selected from the dynamical variables y(t ) of a
system and used to calculate a phase as follows:

φ(t ) = arctan

(
y2(t )

y1(t )

)
. (B2)

The only requirement is that the combined signal correspond
to a proper rotation, which has both a definite direction and
unique center of rotation, so that the phase will be monotoni-
cally increasing [36,57]. For example, in some cases, a signal

y(t ) and its time derivative ẏ(t ) may be used:

φ(t ) = arctan

(
y(t )

ẏ(t )

)
. (B3)

APPENDIX C: COVARIANCE MATRICES

We consider how uncertainty in experimental observations
propagates to phases calculated using Eq. (19). First, we
define more precisely the covariance matrix �y(t ) for the
observations with time as the independent variable. Let ξi

denote random variables drawn from the normal distribution
N (0, 1). We assume the observations yi are random variables
that are normally distributed about the predictions y(ti; θ0) of
the model at the best fit, with standard deviation given by the
uncertainties σi, and write

yi = y(ti; θ0) + σiξi. (C1)

The deviations

δyi ≡ yi − y(ti; θ ) (C2)

vary with the predictions of the model, but at the best fit they
are random variables with mean 0 and standard deviation σi:

δyi(θ0) = y(ti; θ0) + σiξi − y(ti; θ0) = σiξi. (C3)

The elements of the covariance matrix are defined as the
expectation of the product of deviations at the best fit:

�
y(t )
i j ≡ 〈δyiδy j〉 = 〈σiξiσ jξ j〉 = σiσ j〈ξiξ j〉. (C4)

The matrix is diagonal if the deviations are independent (i.e.,
if 〈ξiξ j〉 = δi j).

1. Covariance matrix for phase

Next, we derive the covariance matrix for the phases. The
observations yi are assumed to have occurred at the phases
φ(ti; θ0) predicted by the model. These phases will differ from
the phases φi calculated using Eq. (19) due to the presence
of noise in the observations. We define the deviations of the
phases as

δφi ≡ φi − φ(ti; θ ). (C5)

Note that, due to the presence of the Hilbert transform in
Eq. (19), the phase φ(t ) has a functional dependence on
the signal y(t ), i.e., φ(t ) = φ[y](t ). We use this functional
dependence and Eq. (C2) to relate δφi to δyi:

φi = φi[y]

= φi[y(t ; θ ) + δy]

≈ φi[y(t ; θ )] +
∑

j

∂φi[y(t ; θ )]

∂y j
δy j

= φ(ti; θ ) +
∑

j

∂φi

∂y j
δy j, (C6)

δφi ≈
∑

j

∂φi

∂y j
δy j . (C7)

In the fourth line we have simplified the notation for
clarity, and we have kept only the first-order terms. This
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approximation is valid near the best fit where δyi is small. At
the best fit, we have

δφi(θ0) =
∑

j

∂φi

∂y j
σ jξ j, (C8)

which shows that δφi(θ0) are random variables with mean 0.
Before proceeding, the derivative ∂φi/∂y j merits some

attention. First, we note that it may be evaluated using either
y(ti; θ ) or yi to first order in δyi:

∂φi[y(t j ; θ )]

∂y j
δy j = ∂φi[y j − δy j]

∂y j
δy j

= ∂φi[y j]

∂y j
δy j + O(δy2). (C9)

Second, using Eq. (19), we can derive an explicit expres-
sion for ∂φi/∂y j :

∂φi

∂y j
= ∂

∂y j

[
tan−1

(
Hi[y]

yi

)]

= 1

1 + (Hi[y]/yi )2

(
1

yi

∂Hi[y]

∂y j
− Hi[y]

y2
i

∂yi

∂y j

)
. (C10)

(Hi[y] is understood to mean the ith component of the Hilbert
transform of y.) To evaluate the derivative ∂Hi[y]/∂y j , we use
the definition of the derivative and the linearity of the Hilbert
transform:

∂Hi[y]

∂y j
= lim

h→0

Hi[y + hδ j] − Hi[y]

h

= lim
h→0

Hi[y] + hHi[δ j] − Hi[y]

h
= Hi[δ j]. (C11)

(We are using δ j to denote the vector formed by taking the
jth column of the Kronecker delta δi j when considered as a
matrix.) Plugging this into Eq. (C10) gives

∂φi

∂y j
= yiHi[δ j] − Hi[y]δi j

y2
i + Hi[y]2

. (C12)

Third, the matrix ∂φ/∂y defined by Eq. (C12) is singular
(i.e., it has at least one zero eigenvalue). As we now show, this
is because changes in the amplitude of an oscillation do not
affect the phase.

Theorem. The matrix ∂φ/∂y, whose i jth element is

∂φi

∂y j
= yiHi[δ j] − Hi[y]δi j

y2
i + Hi[y]2

,

has at least one zero eigenvalue, corresponding to the eigen-
vector δy∗ = y.

Proof.∑
j

∂φi

∂y j
δy∗

j =
∑

j

yiHi[δ j] − Hi[y]δi j

y2
i + Hi[y]2

y j

= yiHi
[∑

jδ jy j
] − Hi[y]

∑
jδi jy j

y2
i + Hi[y]2

= yiHi[y] − Hi[y]yi

y2
i + Hi[y]2

= 0. �

FIG. 10. Propagation of uncertainty. (a) Data (blue) simulated
from the model y(t ) = A cos(ωt ) (red) by adding uniform Gaussian
noise. Error bars indicate uncertainty. (b) Data (blue) plotted as
a function of phase compared with y(φ) = A cos(φ) (red). Error
bars indicate the uncertainties obtained using Eqs. (C14) and (C20).
(c) Phase (blue), obtained for each data point using Eq. (19), com-
pared with φ(t ) = ωt (red). Error bars indicate the uncertainties
obtained using Eq. (C14).

Any change in amplitude at constant phase is a multiple of
y and thus also lies in the null space of ∂φ/∂y.

Returning to Eq. (C7), we derive an expression for the
covariance matrix �φ(t ) for the phases:

�
φ(t )
i j ≡ 〈δφiδφ j〉

=
〈∑

k

∂φi

∂yk
δyk

∑
l

∂φ j

∂yl
δyl

〉

=
∑
k,l

∂φi

∂yk
〈δykδyl〉∂φ j

∂yl

=
∑
k,l

∂φi

∂yk
�

y(t )
kl

∂φ j

∂yl
(C13)

�φ(t ) = ∂φ

∂y
�y(t ) ∂φ

∂y

T

. (C14)

This shows how uncertainties σ 2
yi

= �
y(t )
ii in the observations

are propagated to uncertainties σ 2
φi

= �
φ(t )
ii in the phases of

the observations (see Fig. 10 ).

2. Covariance matrix for observations as a function of phase

Finally, we derive the covariance matrix �y(φ) for the ob-
servations with phase as the independent variable. We define
the deviations of the observations from the predictions at
constant phase as

δỹi ≡ yi − ỹ(φi; θ ). (C15)
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We can relate these to δyi and δφi using Eqs. (C5) and (21):

δỹi = yi − ỹ(φi; θ )

= yi − ỹ(φ(ti; θ ) + δφi; θ )

≈ yi − ỹ(φ(ti; θ ), θ ) − ∂ ỹ(φ(ti; θ ); θ )
∂φ

δφi

= yi − y(ti; θ ) −
(

∂ ỹ

∂φ

)
i

δφi

= δyi −
(

∂ ỹ

∂φ

)
i

δφi. (C16)

In light of Eqs. (C3) and (C8), δỹi also has mean 0 at the
best fit. Note that, similar to ∂φi/∂y j , ∂ ỹ/∂φ may be evaluated
using either φi or φ(ti; θ ) to first order in δφi:

∂ ỹ(φ(ti; θ ); θ )
∂φ

δφi = ∂ ỹ(φi − δφi; θ )

∂φ
δφi

= ∂ ỹ(φi; θ )

∂φ
δφi + O(δφ2). (C17)

We can take Eq. (C16) a step further using Eq. (C7):

δỹi = δyi −
(

∂ ỹ

∂φ

)
i

δφi

= δyi −
∑

j

(
∂ ỹ

∂φ

)
i

∂φi

∂y j
δy j

=
∑

j

[
δi j −

(
∂ ỹ

∂φ

)
i

∂φi

∂y j

]
δy j

≡
∑

j

Di jδy j . (C18)

Taking the expectation of pairs of deviations δỹi, we obtain

�
y(φ)
i j ≡ 〈δỹiδỹ j〉

=
〈∑

k

Dikδyk

∑
l

D jlδyl

〉

=
∑
k,l

Dik〈δykδyl〉Djl

=
∑
k,l

Dik�
y(t )
kl D jl (C19)

�y(φ) = D�y(t )DT . (C20)

This gives us a way to compute the uncertainties σ 2
ỹi

= �
y(φ)
ii

of the observations when taking phase as the independent
variable instead of time (see Fig. 10).

APPENDIX D: PARAMETER SENSITIVITIES

Here we derive the first- and second-order parameter sen-
sitivities of ỹ and φ that are used in calculating the FIM and
winding frequencies for the analytic signal-based metric of

Sec. IV A. We begin with Eq. (20),

y(t ; θ ) = A(t ; θ ) cos(φ(t ; θ )), (D1)

and differentiate it with respect to θμ:

∂y

∂θμ

= ∂A

∂θμ

cos(φ) − A sin(φ)
∂φ

∂θμ

. (D2)

Comparing with Eq. (35), we now see that we have ex-
plicit expressions for ∂ ỹ/∂θμ and ∂ ỹ/∂φ in terms of A, φ,
and ∂A/∂θμ:

∂ ỹ

∂θμ

∣∣∣∣
φ

= ∂A

∂θμ

cos(φ)
∂ ỹ

∂φ

∣∣∣∣
θ

= −A sin(φ)

= y

A

∂A

∂θμ

= −H[y]. (D3)

In the second line we have used the trigonometric relation-
ships cos(φ) = y/A and sin(φ) = H[y]/A which are easily
derived from Eqs. (18) and (19). The second derivative of
Eq. (D1) is

∂2y

∂θμ∂θν

= y

A

∂2A

∂θμ∂θν

− H[y]

A

(
∂A

∂θμ

∂φ

∂θν

+ ∂φ

∂θμ

∂A

∂θν

)

− y
∂φ

∂θμ

∂φ

∂θν

− H[y]
∂2φ

∂θμ∂θν

. (D4)

Because the new analytic signal-based metric involves ỹ and
φ, we use only the first term (which is ∂2ỹ/∂θμ∂θν) and the
last term in this expression when calculating the geodesic
curvature.

Expressions for the sensitivities of A and φ are obtained by
differentiating Eqs. (18) and (19):

A =
√

y2 + H2[y] φ = tan−1

(
H[y]

y

)
(D5)

∂A

∂θμ

= 1

A

(
y

∂y

∂θμ

+ H[y]H

[
∂y

∂θμ

])
(D6)

∂φ

∂θμ

= 1

A2

(
yH

[
∂y

∂θμ

]
− H[y]

∂y

∂θμ

)
(D7)

∂2A

∂θμ∂θν

= A
∂φ

∂θμ

∂φ

∂θν

+ 1

A

(
y

∂2y

∂θμ∂θν

+ H[y]H

[
∂2y

∂θμ∂θν

])

(D8)

∂2φ

∂θμ∂θν

= − 1

A

∂A

∂θμ

∂φ

∂θν

− 1

A

∂φ

∂θμ

∂A

∂θν

+ 1

A2

(
yH

[
∂2y

∂θμ∂θν

]
− H[y]

∂2y

∂θμ∂θν

)
. (D9)

APPENDIX E: REGULARITY OF COST
SURFACES AND MANIFOLDS

In Fig. 8, a sufficiently large number of time points was
included in the cost and manifold calculations to demonstrate
the results of using the new metrics in the limit of infinite
time. In practice, only a finite number of time points can
be included. Here we demonstrate the convergence of the
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FIG. 11. Magnitude of the gradient of the FitzHugh-Nagumo
cost |∇Cφ (θ )|. The magnitude of the gradient has only one mini-
mum, indicating that the cost cross section shown in Fig. 8(a) has
a single minimum. The minimum of |∇Cφ (θ )| shown is not quite
zero because the actual minimum of Fig. 8(a) is between the grid
points where |∇Cφ (θ )| has been calculated. Note that in the upper
corners of the plot, there is a phase transition to nonoscillatory
behavior, where the methods of Sec. IV A cannot be applied ef-
fectively. The sharp apparent dropoff is due to such choices as
having our algorithms return zeros rather than throw errors for these
regions.

FitzHugh-Nagumo manifold and the Lorenz cost as a function
of the number of sampled time points. In addition, we discuss
the gradient of the FitzHugh-Nagumo cost, shown in Fig. 8(a),
as it relates to the regularity of the new surface.

Figure 11 shows a plot of the magnitude of the gradient
of the cost cross section shown in Fig. 8(a). The significance
of the gradient of the cost is that every local minimum of the
cost will be a zero of the gradient. If there are multiple local
minima still present in the new cost, then the gradient will
have multiple zeros. We plot the magnitude of the gradient so
that zeros can be found easily. It is clear from Fig. 11 that there
is only one zero, so the new cost does, in fact, have a single
minimum.

Figure 12 shows two projections of the FitzHugh-Nagumo
manifold (signal predictions at constant phase): one calculated
using about 24 time points per cycle in the original time
series and the other using twice the time sampling of the first.

FIG. 12. FitzHugh-Nagumo manifold projection. A was calcu-
lated using about 24 time points per cycle in the original time series;
B was calculated using twice the time sampling of A.

FIG. 13. FitzHugh-Nagumo amplitude oscillations. Colors are
the same as in Fig. 12, with dark or light indicating the value of the
parameter a. As the peak moves between sampled time points, the
amplitude appears to oscillate.

The manifold itself exhibits oscillations in both cases. These
oscillations are an artifact of the finite time sampling of the
oscillatory signal predicted by the model. As parameters that
control frequency are varied, the peak of each cycle shifts
between adjacent time points and the local amplitude appears
to oscillate (see Fig. 13). Hence the predicted signal values at a
given (constant) phase also oscillate, resulting in the manifold
oscillations observed.

As demonstrated in Fig. 12, doubling the sampling of time
points doubles the frequency of these manifold oscillations,
but their amplitude decreases by a factor of ∼10. Hence, in
the limit of infinite sampling they disappear. In practice they
will be negligible as long as enough time points per cycle
are sampled for the amplitude of the oscillations to be small
compared to the amplitude of the signal itself (and to changes
effected by the parameters).

The attractors of chaotic systems have fractal structure
that is realized only in the limit of infinite sampling time
T . Accordingly, as more time points are included, the kernel
density estimate Eq. (39) will approach the true distribution
f (y, θ ) asymptotically. Figure 14 illustrates the convergence
of a cross section of the cost Eq. (40) for the Lorenz system
as the total sampling time T is varied.

FIG. 14. Lorenz cost. As the number of sampled time points
grows, the noise in the cost dies away. When fit to a parabola,
the MAE between the parabola and the cost cross section shown
is 0.0088 for T = 80 and 0.0013 for T = 800 (about a sevenfold
reduction in noise).
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