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Real materials have structure at both the atomic or crystalline scale as well as at interfaces and defects at
the larger scale of grains. There is a need for the study of materials at the “mesoscale,” the scale at which
subgranular physical processes and intergranular organization couple to determine microstructure, crucially
impacting constitutive response at the engineering macroscale. Diffractive imaging using photons that can
penetrate multiple grains of material would be a transformative technique for the study of the performance of
materials in dynamic extremes. Thicker samples imply higher energy photons of shorter wavelength, and imaging
of multiple grains implies bigger spot sizes. Such imaging requires the use of future planned and proposed hard
x-ray free electron lasers (such as the European XFEL) to provide both the spatial coherence transverse to the
large spots and the peak brilliance to provide the short illumination times. The result is that the Fresnel number of
the system becomes large and is no longer in the Fraunhofer far-field limit. The interrelated issues of diffractive
imaging at large Fresnel number are analyzed, including proof that diffractive imaging is possible in this limit
and estimates of the signal-to-noise possible. In addition, derivation of the heating rates for brilliant pulses of
x rays are presented. The potential and limitations on multiple dynamic images are derived. This paper will
present a study of x-ray interactions with materials in this new regime of spatially coherent but relatively large
mesoscale spots at very hard energies. It should provide the theory and design background for the experiments
and facilities required to control materials in extreme environments, in particular for the next generation of
very-hard-x-ray free electron lasers.
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I. THE CHALLENGE OF TRANSIENTLY IMAGING RARE
DEFECTS IN LARGE SAMPLES

The grand challenge of materials science is a transformation
from the current era of observation to an era of control of
the properties of materials [1]. Material properties are often
controlled not only by the atomic structure of the material but
by the interfaces, inhomogeneities, and defects of the bulk
material. Thus the ability to image interfaces or sparse defects
in multigranular material as they are dynamically created and
evolved in situ in extreme environments is critical to the control
of materials for many national needs [2]. This is the challenge
of mesoscale [3] imaging.

A revolution is occurring in the field of x-ray imaging [4,5].
It has been demonstrated that using extreme ultraviolet or
x-ray photons from a spatially coherent source (e.g., an x-ray
free electron laser (XFEL) [6])—or a source which can be
filtered to coherency (e.g., a spatially filtered synchrotron
beamline)—the phase information absent in diffraction pattern
intensity data can be retrieved via an iterative algorithm to
recover a reconstructed image of the sample. This method
was theoretically proposed for two-dimensional samples in
1952 [7] and first achieved experimentally in 1999 [8]. It
is now in routine use for a variety of samples including
nanocrystals [9,10], viruses [11,12], single cells [13,14],
biomolecules [15], and integrated circuits [16] at a variety of
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sources of spatially coherent—and partially coherent [17]—
light.

In the context of materials science on metals or alloys,
by the term “mesoscale” we refer to imaging sample regions
containing a few to several grains in linear extent, tens
to hundreds of microns in size. Such scales include the
morphology of grains and grain boundaries, as well as
some smaller-scale intragrain effects. Harder energy photons
(x rays) are required to penetrate such a sample. The dual
requirements of large spot size and short wavelength result in
experiments that are difficult to perform in the Fraunhofer,
or far-field, limit where coherent diffraction imaging has
traditionally been performed. We begin with a derivation of
diffraction theory generalized to the Fresnel—as opposed to
the Fraunhofer—regime. We consider the impact of this theory
on coherent x-ray diffraction imaging and phase retrieval
algorithms. Analysis follows of optimum photon energy, both
in terms of maximizing the coherently scattered signal and
reducing heating of the sample by the illumination pulse to
allow for multiple dynamic images. Finally, example point
designs for possible experiments are presented.

II. DIFFRACTION THEORY GENERALIZED TO
THE FRESNEL REGIME

In this section, we provide an overview of classical diffrac-
tion theory and derive an extension of that theory to the Fresnel
regime necessary for mesoscale imaging (large diameter spot
sizes with very hard and penetrating x rays). (As explained
below, we define the Fresnel regime here as a limitation to
diffraction due to the placement of a large sample close to the
detector plane, as opposed to Fresnel illumination caused by
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FIG. 1. A schematic x-ray scattering experiment.

a diverging wavefront, such as in Williams et al. [18].) We
begin by defining the relevant variables that characterize an
idealized x-ray scattering experiment, a schematic of which
is shown in Fig. 1. (See Appendix for a list of the symbols
used in this article.) A beam of coherent, monochromatic light
with wavelength λ and photon energy Eγ = hc/λ (h, Planck’s
constant; c, the speed of light) is incident upon a sample. As
is traditional in x-ray scattering, it is assumed that the beam
initially travels in the z direction, with wave vector �ki and wave
number k = |�ki |. For an idealized beam with uniform intensity
within a circular cross section, the spot size d is that circle’s
diameter. For more realistic beam profiles, we define d as the
full width at half maximum (FWHM) of the radial intensity
distribution. The sample’s thickness t in the beam direction
may be larger or smaller than d. The detector is assumed to
be centered along the positive z axis a distance L from the
sample, to have a width and height of D, and to consist of
Np

2 square pixels of width and height p, where Np = D/p is
the linear number of pixels in either direction on the detector.
Typically, Np falls in the range ∼ 103–104. The scattering
angle subtended by the detector is φ = tan−1(D/2L). Note that
φ is the quantity usually referred to in the scattering literature
as 2θmax.

Our goal is to calculate the scattered intensity at a point
�r on the surface of the detector for the experimental setup
in Fig. 1. Consider an isolated electron located at a position
�r ′ = (x ′,y ′,z′) in three-dimensional space (see Fig. 2). If the
electron is bombarded by a beam in the form of an infinite,
coherent plane wave with electric field

�E0(�r ′) = E0e
i�ki ·�r ′

ε̂, (1)

FIG. 2. (Color online) A classical view of an elastic electron/
photon scattering event.

where E0 is the incident electric field amplitude, �ki is its
wave vector, and ε̂ is its polarization vector, then the resulting
oscillation of the electron will yield a scattered radiation
field. Via consideration of the corresponding Liénard-Wiechart
potentials, it can be shown [19,20] that in the nonrelativistic
limit the scattered electric field vector at a point �r = (x,y,z) is

�E(�r) = reE0[(n̂ · ε̂)n̂ − ε̂]
ei(k|�r−�r ′| + �ki ·�r ′)

|�r − �r ′| . (2)

Here re = e2/mc2 ∼ 2.82 × 10−15 m is the classical radius of
the electron, and

n̂ = �r − �r ′

|�r − �r ′| (3)

is a unit vector from the source point �r ′ to the field point
�r . Note that a number of approximations have been made in
arriving at the expression in Eq. (2). In particular, we have
assumed that the beam is perfectly coherent, monochromatic,
planar, and infinite in extent, an ideal which is not achievable
in practice (see Sec. V for further discussion of the coherence
issue). Furthermore, we have considered only classical elastic
scattering, and ignored inelastic (Compton) scattering, which
is quantum mechanical in origin. The latter is justified by the
fact that Compton scattering becomes significant only when
Eγ approaches the electron rest energy 511 keV.

If, instead of a single isolated electron, the beam is incident
upon a sample with an extended electron number density field
ρ(�r ′), then Eq. (2) becomes

�E(�r) = reE0

∫
d�r ′ ρ(�r ′) [(n̂ · ε̂)n̂ − ε̂]

ei(k|�r−�r ′| + �ki ·�r ′)

|�r − �r ′| .

(4)

The domain of integration is the volume of intersection of
the beam and the sample. (Here, and in what follows, we
assume the origin of our coordinate system is at the center of
the sample.) We now make several common simplifications to
Eq. (4) in order to cast it into a more tractable form. Defining
the lengths r = |�r| and r ′ = |�r ′|, the unit vectors r̂ = �r/r and
r̂ ′ = �r ′/r ′, and the parameter ε = r ′/r , the Taylor series of
1/|�r − �r ′| and n̂ in powers of ε yield

1

|�r − �r ′| = 1

r
[1 + ε r̂ · r̂ ′ + O(ε2)]

and

n̂ = r̂ + ε[(r̂ · r̂ ′)r̂ − r̂ ′] + O(ε2),

respectively. If ε � 1 then we may approximate these as
1/|�r − �r ′| ≈ 1/r and n̂ ≈ r̂ , and Eq. (4) becomes

�E(�r) = E0
re

r
[(r̂ · ε̂)r̂ − ε̂]

∫
d�r ′ ρ(�r ′) ei(k|�r−�r ′| + �ki ·�r ′). (5)

Note that these approximations imply that t/L � 1 and
d/L � 1.

The scattered intensity at �r is given by

I (�r) = c

8π
〈| �E(�r)|2〉

= I0

(
re

r

)2

〈|(r̂ · ε̂)r̂ − ε̂|2〉|F (�r)|2, (6)
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where we have used Eq. (5). Here I0 = cE0
2/8π is the average

intensity of the light source, the angle brackets 〈· · · 〉 represent
an average over the ensemble of possible polarization vectors
ε̂, and the dimensionless, scalar field F (�r) is given by

F (�r) =
∫

d�r ′ ρ(�r ′) ei(k|�r−�r ′| + �ki ·�r ′). (7)

For an unpolarized source, it can be shown that the polarization
term becomes

〈|(r̂ · ε̂)r̂ − ε̂|2〉 = 1
2 (1 + (k̂i · r̂)

2
),

where k̂i = �ki/k.
The integral in Eq. (7) cannot in general be solved

analytically, and is not amenable to numerical fast Fourier
transform (FFT) methods. The remainder of this section, and
indeed much of the history of diffraction theory, consists of an
exploration of various approximations to Eq. (7). Before we
continue, it is worthwhile to note that in arriving at Eq. (7)
we have neglected the possibility that the intensity may vary
from point to point within the sample, due to the effects of
both absorption and an imperfect radial beam profile. This is
easily dealt with, however, by including a position-dependent
intensity field I (�r):

F (�r) =
∫

d�r ′ ρ(�r ′)
√

I (�r ′)/I0 ei(k|�r−�r ′| + �ki ·�r ′).

However, the validity of the results in the remainder of this
paper are unaffected by this term, and it will be omitted in
what follows.

A. The classical far-field regime

The primary barrier to an analysis of the field in Eq. (7) is
the presence of the nonlinear factor k|�r − �r ′| in the exponent.
However, if we once again define the small parameter ε = r ′/r ,
and assume that L is much larger than the dimensions of the
spot size d and sample thickness t , then we may perform a
Taylor series of this factor as follows:

k|�r − �r ′| = k
√

r2 − 2 �r · �r ′ + r ′2

= kr
√

1 − 2 ε r̂ · r̂ ′ + ε2

= kr

{
1 − ε r̂ · r̂ ′ + ε2 1

2
(1 − r̂ · r̂ ′) + O(ε3)

}

= kr − kr
r ′

r
r̂ · r̂ ′︸ ︷︷ ︸

= k r̂·�r ′

+ kr
r ′2

r2

1

2
(1 − r̂ · r̂ ′)︸ ︷︷ ︸

= kr′2
r

1
2 (1−r̂·r̂ ′)

+O(ε3).

(8)

In order for the third term in Eq. (8) to be ignorable, it is
insufficient that it merely be much smaller than all lower-
order terms. Instead, it is necessary that this term contribute
an ignorable phase (i.e., �π ) to the complex exponential in
Eq. (7). We first derive an upper bound on the size of this term:

kr ′2

r

1

2
(1 − r̂ · r̂ ′) � kr ′2

r
because 1 − r̂ · r̂ ′ � 2

� kr ′2

L
because r � L

� 1

4

k(d2 + t2)

L

because r ′2 �
(

d

2

)2

+
(

t

2

)2

� 1

2

k max(d,t)2

L

because d2 + t2 � 2 max(d,t)2

� π
max(d,t)2

λL
because k = 2π

λ
.

We assume at this point that d � t . Although this is not
always the case, it simplifies subsequent expressions without
significant loss of generality. The third term in Eq. (8) then
contributes an ignorable phase if

Fr ≡ d2

λL
� 1, (9)

where Fr is the dimensionless Fresnel number. It can be shown
that when Fr � 1, all higher order terms in Eq. (8) can likewise
be ignored. In this limit, Eq. (7) becomes

F (�r) = F (�q) = eikr

∫
d�r ′ ρ(�r ′) e−i �q·�r ′

, (10)

where the scattering vector

�q = �q(�r) ≡ �kf − �ki = kr̂ − �ki (11)

is the difference between the incoming (�ki) and outgoing (�kf =
kr̂) wave vectors of the scattered light.

Note that there is some variation in the literature with
regard to which planes the Fresnel number is calculated with
respect to. Whereas here we will always define the Fresnel
number in terms of propagation from the sample plane to the
detector plane, some authors (see, e.g., Quiney et al. [21] and
Williams et al. [18]) calculate it with respect to propagation
from the source plane to the sample plane. As such, these
authors report relatively high Fresnel numbers—about 5 and
about 28, respectively, for the two previous references—in
their experiments (which take place very close to a small
source). By a sample-to-detector Fresnel number calculation,
however, their values of Fr are significantly lower, e.g., ∼ 0.01
to 0.30 for Williams et al. (wherein it is made clear that the
detector is indeed in the far field of the sample).

Together, Eqs. (9) and (10) define the classical far-field,
or Fraunhofer, regime of diffraction. In this regime, the field
F (�q) is simply a Fourier transform of the electron number
density field ρ(�r) in the sample. This makes diffraction in the
far field highly amenable to both theoretical and numerical
analysis. In particular, the fact that FFT techniques can be
applied to the evaluation of Eq. (10) is especially fortuitous
for imaging applications and the simulation of x-ray diffraction
experiments (see Sec. III). The Fresnel number itself is a ratio
of two other ratios: d/L and λ/d. It is useful to think of
the double-slit interference problem, in which the slit size is
generally greater than the wavelength.
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B. The Fresnel regime

At the high photon energies Eγ (and hence small wave-
lengths λ) and large spot sizes d required for the imaging
of higher-Z materials, achieving a Fresnel number Fr � 1
is impossible without requiring prohibitively large sample-
detector distances L (i.e., kilometers). When Fr 
� 1, we are
said to be in the Fresnel regime of diffraction. It is often
thought that one must be in the far-field regime to generate
meaningful diffraction patterns. In fact, this is not true, and it
can be shown that a useful approximation of Eq. (7) valid in the
Fresnel regime follows from Huygens’ principle [19,22], and
a diffractive imaging method based on this approximation has
been proposed [23]. In this section, we describe the relevant
theory.

A different approximation can be applied to the quantity
k|�r − �r ′| which is known as the small-angle approximation in
the optics literature. The vector �r extends from the origin at the
center of the sample to a point on the detector. Assuming, as
before, that the detector is centered on the positive z axis,
we can decompose �r as �r = Lêz + �r⊥, where Lêz is the
component of �r parallel to the beam direction, and �r⊥ is the
component parallel to the detector’s surface. (Note that, Fig. 1
notwithstanding, the detector’s surface need not in general be
entirely perpendicular to the z axis; i.e., it may be tilted or
curved, so that êz · �r⊥ 
= 0.) With this definition, we have

k|�r − �r ′| = k|Lêz + �r⊥ − �r ′|

= kL

∣∣∣∣êz + �r⊥ − �r ′

L

∣∣∣∣
= kL

√
1 + 2êz ·

( �r⊥ − �r ′

L

)
+

∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣2

. (12)

The small-angle approximation is realized when the length of
the dimensionless vector (�r⊥ − �r ′)/L is small. We consider
two different cases.

1. Two-dimensional samples

The mathematical analysis of diffraction in the Fresnel
regime has historically focused exclusively on the consider-
ation of two-dimensional samples, i.e., very thin samples or
apertures in an otherwise opaque barrier (e.g., the aforemen-
tioned double-slit experiment). In such problems, the electron
number density field ρ(�r ′) appearing in expressions such as
Eq. (7) has units of 1/area rather than the usual 1/volume.
We assume in this case that the sample lies entirely in the xy

plane, so that the source point integration variable �r ′ satisfies
êz · �r ′ = 0. Furthermore, we assume that the detector’s surface
is entirely perpendicular to the z axis, so that êz · �r⊥ = 0. In
this case, Eq. (12) becomes

k|�r − �r ′| = kL

√
1 +

∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣2

= kL

{
1 + 1

2

∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣2

− 1

8

∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣4

+O

(∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣6)}
. (13)

We wish to derive the conditions under which the third
term in Eq. (13) can safely be ignored. An upper bound on its
magnitude may be derived as follows:

kL
1

8

∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣4

= π

4

1

λL3
|�r⊥ − �r ′|4 because k = 2π

λ

� π

4

1

λL3
(|�r⊥| + |�r ′|)4

by the triangle inequality

� π

4

1

λL3

(
D√

2
+ d

2

)4

because |�r⊥| � D√
2

and |�r ′| � d

2

� π

4

(
1√
2

+ 1

2

)4
D4

λL3
assume d � D.

As in Sec. II A, this term contributes an ignorable phase to
the complex exponential in Eq. (7) if its magnitude is �π , a
condition which obtains when

An ≡ D4

λL3
� 1, (14)

where we have ignored the order-unity factor

(1/2 + 1/
√

2)
4
/4 ≈ 0.53. This defines the small-angle

number An, the value of which determines whether the
neglect of the third term—and all higher terms—in Eq. (13)
is a valid approximation. This quantity has previously
been alluded to (although not by name) in Römer [24].
Note that whether a given experiment satisfies Eq. (14) is
typically independent of whether the Fresnel number is small.
Furthermore, the small-angle number An can be large even
when the relevant angle is small; thus An � 1 is a more
stringent requirement than the small-angle condition that
D/L � 1.

Noting that the second term in brackets in Eq. (13) yields

kL
1

2

∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣2

= k

2L
(|�r⊥|2 + |�r ′|2 − 2�r⊥ · �r ′)

= k

2L
(|�r⊥|2 + |�r ′|2 − 2(Lêz + �r⊥) · �r ′)

because êz · �r ′ = 0

= k

2L
(|�r⊥|2 + |�r ′|2 − 2�r · �r ′)

because �r = Lêz + �r⊥

in the An � 1 limit, Eq. (7) becomes

F (�r) = F ( �K) = ei(kL+ k|�r⊥|2
2L

)
∫

d�r ′ ρ̄(�r ′) e−i �K·�r ′
, (15)

where the Fresnel regime scattering vector is

�K = �K(�r) ≡ k
�r
L

− �ki, (16)

and

ρ̄(�r ′) ≡ ρ(�r ′) ei
k|�r ′ |2

2L (17)
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is the “distorted object” density field proposed in Xiao and
Shen [23]. Note that the complex exponential factor that
multiplies the electron density field in Eq. (17) has a phase of
order the Fresnel number. In the classical far-field limit of small
Fr this exponential phase factor thus approaches unity and the
necessity of considering a “distorted object” is removed.

2. Three-dimensional samples

The results of the previous section apply only to two-
dimensional samples with diffraction patterns projected onto
flat detectors perpendicular to the z axis. For three-dimensional
samples, these results are not valid for imaging applications
since the scattering vector �K has no components in the z

direction:

êz · �K = k

L
êz · �r − êz · �ki

= k

L
êz · (Lêz + �r⊥) − k

= k

L
êz · �r⊥ = 0.

Thus no Fourier information about variation of the sample
in the z direction is preserved in the diffraction pattern,
and imaging of three-dimensional samples in this regime is
reduced to the imaging of a projection of the sample onto a
two-dimensional plane perpendicular to z. Nevertheless, the
final equality above raises a question: Can we change the
geometry of the experiment by tilting or curving the detector,
so that êz · �r⊥ 
= 0, which would in turn allow the scattering
vector to take on nonzero z components? In fact, this is not
possible, as we demonstrate below.

In three-dimensional samples, for a general source point �r ′
within the sample, êz · �r ′ 
= 0. Assuming in addition that for
a general value of �r⊥ on the detector, êz · �r⊥ 
= 0, we return to
Eq. (12) and perform a Taylor series of k|�r − �r ′| in powers of
|(�r⊥ − �r ′)/L|:

k|�r − �r ′| = kL

{
1 + êz ·

( �r⊥ − �r ′

L

)

+ 1

2

(∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣2

−
[
êz ·

( �r⊥ − �r ′

L

)]2)

+ 1

2

([
êz ·

( �r⊥ − �r ′

L

)]3

− êz ·
( �r⊥ − �r ′

L

)∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣2)

+O

(∣∣∣∣ �r⊥ − �r ′

L

∣∣∣∣4)}
. (18)

It can be shown that the fourth term in curly brackets above
(the third-order term) contributes an ignorable phase to the
complex exponential in Eq. (7), and may be ignored along
with all higher-order terms, if

D2

λL2
max(t,D sin χ ) � 1,

where χ is the largest angular deviation that �r⊥ achieves
as a result of the tilt or curvature of the detector’s surface.

Collecting the remaining terms, we are left with

k|�r − �r ′|=k

[
L + êz · �r⊥ + 1

2L
(|�r⊥|2 − (êz · �r⊥)2)

]

+ k

2L
(|�r ′|2 − z′) − k

(
êz + �r⊥

L
− êz · �r⊥

L
êz

)
· �r ′,

and Eq. (7) becomes

F (�r) = ei k[L+êz·�r⊥+ 1
2L

(|�r⊥|2−(êz·�r⊥)2)]
∫

d�r ′ ρ̄(�r ′) e−i �K·�r ′
,

where the new scattering vector is

�K ≡ k

(
êz + �r⊥

L
− êz · �r⊥

L
êz

)
− �ki,

and

ρ̄(�r ′) ≡ ρ(�r ′) ei k
2L

(|�r ′|2−z′2).

It is straightforward to show that despite the improved
generality of the above approach, it is still the case that
êz · �K = 0, and therefore no imaging z resolution is captured
by a diffraction pattern governed by such an approximation.
This can be explained geometrically by noting that limitation to
a small scattering angle implies that in Fresnel regime imaging
the curvature of the Ewald sphere has been neglected, along
with the sample depth information it encodes [25].

It should be emphasized that expressions such as Eq. (15)
or Eq. (10) are merely approximations to the process of
diffraction pattern formation, formulated for easier analysis. In
reality, diffraction patterns form according to the more exact
expression (7) [or, even better, (4)]. In contrast to Eq. (15),
these expressions do contain z information, whatever regime
one is in. This fact has been demonstrated in the so-called
“ankylography” technique, which relies upon the curvature of
the Ewald sphere in the far field to obtain three-dimensional
imaging from a single exposure angle [25–27]. If iterative
phase retrieval using Eqs. (7) or Eqs. (4) were possible, then
three-dimensional information might be extracted even in the
more stringent geometries described in this work.

III. COHERENT X-RAY DIFFRACTION IMAGING

Equations (10) and (15) both stem from approximations
that allow the diffraction pattern to be represented in terms of
a Fourier transform of the original object, possibly modified
by a complex form factor. Coherent x-ray diffraction imaging
(CXDI) is a lensless imaging technique which exploits this
simple Fourier relationship to reconstruct a two- or three-
dimensional image of the sample from its coherent diffraction
pattern. However, the detector preserves only the amplitude,
and not the phase, of the scattered field, a difficulty referred
to as the “missing phase problem” [7]. A numerical process
known as iterative phase retrieval (IPR) must therefore be used
to recover this missing phase information [4,28]. IPR requires
that the diffraction pattern be oversampled [29] at a greater
resolution than is nominally sufficient according to Nyquist
theory. In this section we provide an overview of the details
of CXDI and then apply that to understanding geometry and
detector limitations that occur in mesoscale imaging.
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A. Imaging resolution

The set of scattering vectors �q subtended by the detector’s
surface characterizes the imaging resolution of CXDI. At every
point on the detector, we can divide �q into components parallel
and perpendicular to the original beam direction. We define
qmax

⊥ and qmax
‖ as the maximum magnitude these perpendicular

and parallel components achieve, respectively, for a given
experimental geometry. From Fig. 1 and the definition of �q
in Eq. (11), it is straightforward to show that

qmax
⊥ = 2π

λ
sin φ = 2π

λ

D/2√(
D
2

)2 + L2
≈ πD

λL
(19)

and

qmax
‖ = 2π

λ
(1 − cos φ) = 2π

λ

⎛
⎝1 − L√(

D
2

)2 + L2

⎞
⎠

≈ π

4

D2

λL2
, (20)

where the latter approximations assume that D � L. (It should
be noted that in the two-dimensional Fresnel regime, we can
similarly define Kmax

⊥ , which takes the value πD/λL exactly.)
When performing CXDI in three dimensions, one has two
different resolutions in the reconstructed image of the sample:
a transverse resolution �x perpendicular to the beam direction,
and a longitudinal resolution �z parallel to the beam direction.
These are related to qmax

⊥ and qmax
‖ by

qmax
⊥ = 2π

2�x
= π

�x
(21)

and

qmax
‖ = 2π

2�z
= π

�z
. (22)

Note in particular the additional factor of 2 in the denominators
of the middle expressions in Eqs. (21) and (22). This is the
often-overlooked Nyquist factor, which stems from the fact
that the smallest wavelength represented by a grid-sampled
function is twice the grid size. Combining Eqs. (19)–(22) yields
expressions for the resolutions �x and �z in terms of the
experimental geometry:

�x

λ
= 1

D

√(
D

2

)2

+ L2 ≈ L

D
, (23)

�z

λ
= 1

2

⎛
⎝1 − L√(

D
2

)2 + L2

⎞
⎠−1

≈ 4L2

D2
, (24)

where the latter approximations once again assume that
D � L. The above expressions imply that the transverse
and longitudinal resolutions �x and �z are not independent.
Combining Eqs. (23) and (24) yields

�z

λ
= 1

2

(
1 −

√
(2�x/λ)2 − 1

2�x/λ

)−1

≈ 4

(
�x

λ

)2

. (25)

For reasons related to the Nyquist explanation above, �x is
always greater than λ/2. Equation (25) therefore implies that

the longitudinal resolution is always worse (i.e., larger) than
the transverse resolution.

B. Imaging geometry

We have demonstrated how the experimental parameters
determine the imaging resolution. In fact, they also determine
the imaging geometry, i.e., the size and shape of the region
nominally described by the diffraction pattern. In order for the
integral in Eq. (7) to be representable as a Fourier transform,
upon which iterative phase retrieval can then be performed,
either Fr � 1 [Eq. (9)] or An � 1 [Eq. (14)]. For mesoscale
imaging, the illuminated spot size d is large and, as we will
show later, the photon energy required to penetrate thick
samples makes the photon wavelength λ small. Hence, unless
extremely long detector beam lines L are built, Fr > 1. The
primary constraint on mesoscale imaging then comes from
the requirement that the small-angle approximation remain
valid. Again, for not unreasonable detector beam lines L and
very short wavelengths λ, this limits the full detector extent D

or equivalently the maximum scattering angle and hence the
minimum spatial resolution [Eq. (23)] that can be measured
by diffractive imaging.

The height/width and thickness of the computational
domain for iterative phase retrieval are given by O⊥d and O‖t ,
respectively, where O⊥ is the transverse oversampling factor
and O‖ is the longitudinal oversampling factor. In general, O⊥
and O‖ cannot be specified independently. The set of scattering
vectors �q captured by the detector is not a continuum, but rather
a discrete set, with the (generally nonuniform) increments of
�q determined by the detector position and pixel size. The
maximum size of these increments in the transverse and
longitudinal directions determine O⊥ and O‖, respectively. For
the simple geometry shown in Fig. 1, and assuming D � L,
it can be shown that

O⊥d ≈ λL

p
(26)

and

O‖t ≈ 2λL2

pD
= 2L

D
O⊥d. (27)

There is a subtlety here. In real applications, one takes
the nonuniform scattering vector samples measured by the
detector and embeds them into a two- or three-dimensional
rectangular grid. There is considerable freedom in choosing
the spacings of this grid, so long as its Fourier-space resolution
is not better than that of the original diffraction pattern. For
example, in Raines et al. [25], 3 × 3 groupings of pixels were
averaged to reduce noise, resulting in an effective pixel size
peff = 3p. In practice, therefore, Eqs. (26) and (27) represent
upper bounds on the oversampling factors and computational
domain sizes accessible to the experiment.

C. Detector limitations on the field of view

From Eq. (26), the choice of the spot size d is a trade-off
between the maximum feasible sample-detector distance L and
the minimum available pixel size p for a given wavelength
λ. Increasing the spot size reduces the scattering angle
corresponding to the scale of d, and for a given pixel size the
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detector must therefore be moved further back to oversample
at that scale. Advances in small pixel technology can therefore
save money on conventional facilities by reducing the required
value of L. Conversely, conservative decisions on detector
technology (i.e., assuming large pixels) will limit the field
of view (the sample illumination spot size) given limitations
on the detector hall. One might use an optic on the scattered
light side of the sample made of a simple hemisphere of any
low-absorbing material, such as Be. This would expand the
divergence angle of the scattered light, effectively optically
increasing L. Since the interference pattern is “formed” in the
sample, any optic that follows is only redirecting rays. This
sets an optic requirement of limiting the optic imperfections
so that a perceptible overlap of adjacent rays does not occur at
the detector. This is much less stringent than maintaining the
transverse coherence before the sample, implies that surface
imperfections will not matter, and should be easily fabricated.

By having a pixel size p = λL/O⊥d one is effectively
making measurements at a larger spot size than was actually
illuminated. The result is that the region to be imaged, the
spot size d, corresponds to a region in the Fourier plane
(i.e., the detector) O⊥ pixels across, while the minimum
size to be resolved, the transverse spatial resolution �x, is
determined for fixed L by the detector size D. The “imaging
figure-of-merit” iFOM is defined as the transverse field of view
(or spot size) divided by the transverse spatial resolution,

iFOM = d

�x
≈ D

O⊥p
, (28)

where in arriving at the last approximate equality, we have
made use of Eqs. (23) and (26).

There is a further requirement on the relative bandwidth,
�λ/λ, of the “monochromatic” source. Each feature in a
diffraction pattern will have a certain spread in size on the
detector because of the bandwidth or energy variation of the
source. The largest spread (which occurs near the edge of
the detector measuring the smallest scales) needs to be smaller
than a pixel size, leading to a requirement [30] of

�λ

λ
<

�x

O⊥d
= 1

O⊥iFOM
. (29)

For example, with a 100 micron diameter spot size and desired
imaging resolution of 100 nanometers (an iFOM = 1000) and
an oversampling O⊥ = 2 the bandwidth must be better than
�λ/λ < 5 × 10−4.

D. Iterative phase retrieval

As mentioned in the introduction of this section, only
the scattered amplitudes—but not the phases—are measured
by a detector. Provided that O⊥2 > 2 in two dimensions or
O⊥2O‖ > 2 in three dimensions, this missing information can
in principle be retrieved by IPR. Here we provide an outline
of IPR algorithms for two-dimensional imaging applications,
as can be found in reviews such as those of Chapman and
Nugent [4], Abbey [5], or Marchesini [31].

One starts with the intensities measured by the Np × Np

pixels on the detector, which correspond to amplitudes of
the Fourier transform of the density field in the O⊥d × O⊥d

computational domain. If necessary, this set of amplitudes is

interpolated onto a regular Np × Np complex grid. Random
phases are assigned to each point, and an inverse FFT is
performed which transforms the data to the spatial, or image,
plane. Since O⊥d > d, any electron number density in the
reconstructed image which is outside the actual ∼d × d area
of the spot will be set to zero. Densities within the spot are left
unaffected. (This step is termed “applying the support,” and
could also involve the enforcement of other known constraints
on the predicted density field, such as radiography data.)
Now a FFT is performed which returns us to the Fourier,
or detector, plane. All amplitudes are set back to those implied
by the observed diffraction pattern, but the new predicted
phases are retained. This process is iterated until convergence
is achieved and a reconstructed sample image is obtained,
which may take anywhere from tens to tens of thousands of
iterations, depending on the algorithmic variant employed, the
noise level, and the details of the sample. It can be shown
that convergence is guaranteed for all but a pathological
set of possible samples [32]. See Fig. 3 for examples of
this process performed at several Fresnel numbers using a
simulated sample and diffraction patterns. (Note that it is a
general empirical observation in calculations of this type—see
also Xiao and Shen [23]—that IPR tends to converge more
rapidly at higher Fresnel number.)

IV. CHOICE OF PHOTON ENERGY

At the mesoscale “the extremes of heterogeneity in a mate-
rial dominate performance at the expense of the homogeneous
bulk” [2], and it is necessary to allow multiple measurements
on single samples each of which has different rare events
and fluctuations in defects. Especially in dynamic extremes,
the choice of the light source photon energy is a delicate
trade-off between maximization of the coherently scattered
signal, and minimizing the heating of the illuminated spot to
make multiple measurements. In this section, we explore both
of these issues.

A. Optimizing the coherently scattered signal

Consider a coherent photon bunch consisting of N0 photons
traveling in the z direction and impinging upon a sample.
A given photon in the bunch has a number of possible
fates: It may pass through the sample unaffected, it may be
absorbed (photoelectric absorption, in which the photon’s
entire energy Eγ is transferred to the sample), it may be
scattered incoherently (inelastic, or Compton, scattering, in
which a fraction of the photon’s energy is transferred to
the sample, depending on the scattering angle), it may be
scattered coherently (elastic, or Thomson, scattering, in which
none of the photon’s energy is transferred to the sample),
etc. It may also be subject to some combination of these
events: It may be scattered and then absorbed, it may be
scattered coherently twice, etc. In general, the history of a given
photon can be treated as a continuous Markov process, with
Poisson-distributed transition times mediated by the relevant
cross sections of the material at the given photon energy.
The relevant cross sections include those for photoelectric
absorption, coherent scattering, incoherent scattering, as well
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FIG. 3. (Color online) Examples of simulated x-ray scattering and iterative phase retrieval using a model 2D sample at different Fresnel
numbers (Fr = 0, 20, and 200 from top to bottom).

as that for total attenuation, which is the sum of the preceding
three. In CXDI, we wish to maximize the signal resulting
from those photons which, from their original unscattered and
unabsorbed state, have coherently scattered once and only
once. How many of these particular photons are present in
the beam at a given penetration depth z into the sample?
Equivalently, how many such photons will emerge from a
sample with a total thickness t?

The various relevant cross sections are usually tabulated
in units of area per unit mass. Let σT and σC be the cross
sections per unit mass for total attenuation and coherent
scattering, respectively. Examples of σT and σC taken from
the online NIST XCOM photon cross sections database [33]
are shown in Fig. 4. If ρm is the average mass density of the
sample, then the exponential attenuation coefficients for total
attenuation and coherent scattering are defined as μT = σT ρm

and μC = σCρm, respectively. Note that these quantities have
units of inverse length. We define NU (z) as the number of
unscattered and unabsorbed photons in the beam at penetration
depth z. We further define N1C(z) as the number of photons
in the beam at depth z whose only transition has been to
coherently scatter once and only once. Clearly, NU (0) = N0

and N1C(0) = 0. What are the rates at which NU (z) and N1C(z)
change with z? Any interaction whatsoever, be it scattering or
absorption, will decrease NU (z). By definition the rate at which
this occurs is −μT NU (z). The situation for N1C(z) is slightly
more complicated, as there are two ways in which N1C(z) may
change. It can increase via the coherent scattering of previously
unscattered and unabsorbed photons. This occurs at a rate of
+μCNU (z). It can also decrease via any interaction whatsoever

on the part of single-coherently-scattered photons. This occurs
at a rate −μT N1C(z).

Combining all of these expressions yields a pair of partially
coupled differential equations for NU (z) and N1C(z):

d

dz
NU (z) = −μT NU (z), NU (0) = N0,

(30)
d

dz
N1C(z) = −μT N1C(z) + μCNU (z), N1C(0) = 0.

FIG. 4. (Color online) The total (solid) and elastic or coherent
(dashed) cross sections per unit mass for uranium (green), iron (red),
and aluminum (blue).
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FIG. 5. (Color online) The fraction of incident photons coher-
ently scattered just once, the coherent scattering signal N1C/N0, as a
function of incident photon energy for various materials at thicknesses
of 1 μm (dashed lines) and 100 μm (solid lines), from Eq. (31).

Solving this set of equations and letting z = t , the thickness
of the sample, yields the following expression for N1C(t):

N1C(t) = N0μC t e−μT t . (31)

Note that when the sample thickness t tends to zero, although
the transmission of the photons becomes unity, the number of
photons that have coherently scattered goes proportionately to
zero. N1C(t) has a maximum at tmax = 1/μT of

N1C(tmax) = μC

μT

N0

e
.

However, this optimal thickness is generally too thin to be
practical for the materials and energies needed for mesoscale
imaging. Instead, we must specify an experimentally feasible
sample thickness t , and vary the photon energy Eγ (upon which
μT and μC depend) to find the optimum value that maximizes
the expression in Eq. (31) for the coherent signal. The results
of such an analysis for various materials are shown in Fig. 5.

B. Expected heating of the spot

1. Temperature rise in samples

The energy absorbed in a sample Eabs depends on the
total number of incident photons N0 of photon energy Eγ

and the total energy absorption coefficient μE that takes
into explicit account (a) the emission of bremsstrahlung,
(b) positron annihilation in flight, (c) fluorescence emission
as a result of electron- and positron-impact ionization, and
(d) the effects on these processes of energy-loss straggling and
knock-on electron production as the secondary particles slow
down. The energy absorption coefficient is smaller by about
80% than the total attenuation coefficient μT because some
inelastic processes do not deposit the full photon energy in the
sample. Then the absorbed energy is

Eabs = N0Eγ (1 − e−μEt ), (32)

where t is the sample thickness. Hence for thick samples, all
the photons are absorbed.

TABLE I. Properties of some selected materials. Source: Ref. [34].

Melting Mass Thermal Volumetric
Temperature Density Diffusivity Heat Capacity

Material Tmelt (K) ρm

( g
cm3

)
α

(
10−5 m2

s

)
CV

(
106 J

m3 K

)
Al 933.4 2.699 8.4 2.42
Fe 1811 7.87 2.3 3.53
Ti 1941 4.50 0.931 2.35
Cu 1358 8.96 11.2 3.45
U 1408 18.95 1.25 2.22

The number of singly scattered coherent photons required
to be detected, which we denote by Nreq, depends on the
desired average number P of detected photons per pixel, the
total number of pixels [= (O⊥iFOM)2 from Eq. (28)], and the
detector quantum efficiency ηQE . Combining these quantities
yields Nreq = P (O⊥iFOM)2/ηQE . Setting this detection re-
quirement equal to the number of coherently scattered photons
from the entire sample [Eq. (31)] determines the total number
of incident photons required to make the measurement,

N0 = P (O⊥iFOM)2

ηQE μC t e−μT t
. (33)

Combining Eqs. (32) and (33) yields the total energy going
into heating:

Eabs = P (O⊥iFOM)2 Eγ

ηQE

1 − e−μEt

μC t e−μT t
. (34)

We assume a sample of illuminated volume V ≈ π (d/2)2t ,
atomic weight A, mass density ρm, and a volumetric heat
capacity CV . For cold crystalline materials, CV is well-
approximated for scaling purposes as three times the Boltzman
constant kB times the number of atoms per unit volume in
the sample, i.e., CV ≈ 3NAρmkB/A, where NA is Avogadro’s
number. (One can use measured CV values, which take into
account how many degrees of freedom the temperature has
compared to the photon energy, for better estimates. See, e.g.,
Table I.) Combining this with Eq. (34), we find that the average
temperature rise in the sample is

�T = Eabs

π (d/2)2t CV

= P (O⊥iFOM)2 A

3π (d/2)2NAρmkBηQE

Eγ (1 − e−μEt )

μC t2e−μT t
. (35)

The extra power of thickness in the denominator comes from
the volume of atoms in the sample size over which the
heating can be averaged. For samples thin compared to the
shortest radiation length [the inverse of the largest attenuation
coefficient in Eq. (35), generally 1/μT ], the temperature rise
is proportional to the imaging terms [P (O⊥iFOM)2/ηQE]
times terms dependent on the photon energy and the element
[Eγ AμE/(ρmμC)] times 1/t . This divergence with decreasing
t stems from Eq. (31): As the sample thickness decreases,
more and more incident photons (and hence more heating) are
required in order to produce the required number of photons
to make the desired imaging measurement.
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FIG. 6. (Color online) Average sample heating �T times the
area of the illuminated spot π (d/2)2 vs photon energy Eγ for
uranium samples of various thicknesses. For reference, a photon
energy of 50 keV is marked as a vertical dashed line, which
crosses the 10, 50, and 100 μm curves at 6.0 × 10−3, 2.0 × 10−3,
and 2.1 × 10−3 K cm2, respectively. The horizontal dashed line
represents a 10 K temperature rise for a 100 μm diameter spot.

As an example, we present numbers for uranium (A =
238.02891, ρm = 18.95 g/cm3), which at Eγ = 50 keV
has σT = 11.21 cm2/g, σC = 0.7681 cm2/g, and σE =
9.034 cm2/g. We assume a spot diameter d = 100 μm, a
sample thickness t = 100 μm, O⊥ = 2, iFOM = 500, P =
100 detected photons per pixel, and ηQE = 90%. Under these
assumptions, Eq. (35) yields �T = 27 K. Note that this is the
average temperature rise throughout the volume of a sample
of thickness t . The maximum temperature rise will be on the
front surface and higher by a factor of μEt/(1 − e−μEt ), which
is approximately 2.1 for this thickness and material. Figure 6
shows the average sample heating �T from Eq. (35) times
the area of the illuminated spot π (d/2)2 as a function of the
photon energy Eγ for uranium samples of various thicknesses.
In addition, Fig. 7 shows the average sample heating times
the spot area as a function of sample thickness t for several
materials at both Eγ = 15 keV and 50 keV.

A clear implication of this analysis is that for thin samples
too much sample heating may be required, especially for
small spot sizes, if the illumination is done rapidly compared
to the time scale over which heat diffuses away from the
illuminated region (see Sec. IV B 2 below). Optimizing the
photon energy for the material of interest can help, although
even for low-Z materials lower energies are of limited benefit
since the absorption cross sections are so large. Mesoscale
imaging is possible at hard x-ray energies because of the ability
to transmit through a sufficiently thick sample, as well as due to
the reduction in absorbed energy, which allows measurements
to be made rapidly.

2. Temperature diffusion for multiple pulses

The preceding section attempted to estimate the tempera-
ture increase due to the energy deposited in the sample in a
single pulse. What about the influence of a train of pulses?
Does the temperature increase due to a single pulse have time
to diffuse away before the next pulse arrives, thus allowing

FIG. 7. (Color online) Average sample heating �T times the area
of the illuminated spot π (d/2)2 vs sample thickness t for three
different elemental materials, using 50 keV photons [the vertical
dotted line of Fig. (6)] (the solid curves) or 15 keV photons (the
dashed curves). For reference, the dashed horizontal line corresponds
to a 10 K temperature rise for a 100 μm spot.

the heating of the sample to effectively start anew with each
pulse? Or, conversely, is there insufficient time for diffusion to
take effect, so that the temperature increases due to subsequent
pulses is cumulative?

The temperature distribution within a material illuminated
by a given light source is governed by the heat equation,

∂

∂τ
T (�r,τ ) = α ∇2T (�r,τ ) + Q(�r,τ ),

T (�r,0) = T0.

(36)

Here T (�r,τ ) is the temperature field, �r = (x,y,z) is a position
within the sample, τ is time (since t was already taken),
α is the thermal diffusivity, ∇2 is the Laplacian operator,
T0 is the initial temperature of the sample, and Q(�r,τ ) is
the position- and time-dependent rate at which the beam is
changing the temperature within the material. For multiple
diffractive images during a dynamic event, the heat source term
can be considered a set of delta-functions in time of magnitude
�T and separated by the time τb between subsequent x-ray
pulses. It is straightforward to show that the time required
for heat to diffuse away from a region of diameter d is of
order d2/α. For thermal diffusivities α typical of the materials
of interest (see Table I) and spot sizes d large enough that
the heating from a single pulse does not significantly perturb
the sample, d2/α is lies approximately in the range 0.1–1
milliseconds. Thus heating is cumulative on the microsecond
time scales of the passage of a shock wave across a mesoscale
region, but can diffuse away between subsequent pulses from
a 50–120 Hz source.

V. SOME PROPOSED EXPERIMENTAL NUMBERS

In Table II we present numbers corresponding to three
example mesoscale imaging experimental designs using iron
(example 1) and uranium (examples 2 and 3). We have in all
cases attempted to choose sample properties and experimental
parameters which are workable and plausible, and which do not
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TABLE II. Parameters for some example experiments.

Quantity Description Example 1 Example 2 Example 3

Z Sample atomic number 26 (Fe) 92 (U) 92 (U)
λ Source wavelength (Å) 0.25 0.25 0.3
Eγ Photon energy (keV) 50 50 41.3
d Spot size (μm) 100 100 120
t Sample thickness (μm) 500 100 200
iFOM Imaging figure-of-merit 400 500 120
O⊥ Transverse oversampling factor 2 2 2
p Pixel size (μm) 12.5 12.5 12.5
D = O⊥ iFOM p Detector size (cm) 1.0 1.25 0.3
L Sample-detector distance (m) 100 100 100
φmax = tan−1(D/2L) Maximum scattering angle (rad) 5 × 10−5 6.3 × 10−5 1.5 × 10−5

�x = Lλ/D Transverse image resolution (nm) 250 200 1000
�z = 4λL2/D2 Longitudinal resolution (cm) 1.0 0.64 13
Fr = d2/λL Fresnel number 4.0 4.0 5
An = D4/λL3 Small angle number 4 × 10−4 1 × 10−3 3 × 10−6

ηQE Detector quantum efficiency 90% 90% 90%
P Average photons per pixel 400 100 100
1/

√
P Average-per-pixel noise-to-signal 5% 10% 10%

N0 Required incident photons for imaging [Eq. (33)] 1.3 × 1010 6.4 × 109 1.5 × 1010

N1C Coherently-scattered photons for imaging [Eq. (31)] 2.8 × 108 1.1 × 108 6.4 × 106

N1C/N0 Fraction coherently scattered 2.3% 1.7% 0.04%
�T Average temperature rise (K) [Eq. (35)] 3.4 27 23

yield too great a degree of heating in the sample. Nevertheless,
there are a number of entries in Table II which hint at the
inherent (though by no means insurmountable) difficulty of
performing coherent diffraction imaging in dense materials.
In particular, the large sample-to-detector distance L = 100 m
imposes a stringent requirement on facility design. In addition,
note that the longitudinal imaging resolution �z is for all
three examples significantly larger than the proposed sample
thickness. This indicates that only two-dimensional CXDI is
possible in these cases. The imaging data gathered would
therefore consist of a projection of the sample’s electron
number density field ρ(�r) onto a plane perpendicular to the
beam.

Figure 8 provides a simulated example—analogous to the
examples in Fig. 3—of CXDI using a model sample and
experimental geometry corresponding to example 2 in Table II.
The contrast mechanism in this case is the variation in electron
density near grain boundaries, and the resulting reconstructed
image is a two-dimensional projection of this field. Grain
boundary density contrast has previously been used in the

context of phase contrast imaging (PCI) in polycrystals (see,
e.g. Kowalski et al. [35]). In addition, in a true dynamic, in
situ imaging experiment, other contrast mechanisms, such as
those associated with shock compression, would typically be
present. The sample used in the analysis of Fig. 8 was modeled
via a set of 100 randomly generated grain centers distributed
through a 100 μm cube. The Voronoi tesselation associated
with these centers was determined, and the corresponding
electron density field was constructed by assigning a density
equal to the average electron density of unshocked uranium to
the central region of each grain, with a decrease in density near
the grain boundaries peaking at a 10% decrease on the planes
of the boundaries themselves. (The 10% figure is, to a certain
extent, ad hoc, although it is in rough agreement with values
obtained from unpublished molecular dynamics simulations
of polycrystalline iron.)

As a final point, it is appropriate to include here some
discussion of the question of coherence. In the preceding,
we have neglected most of the details regarding the light source
characteristics, and have instead assumed a perfect plane

FIG. 8. (Color online) Simulated x-ray scattering and iterative phase retrieval using a 3D polycrystalline sample and experimental geometry
analogous to example 2 in Table II. This calculation was done at Fr = 4.0.
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wave source. In reality, x-ray free electron lasers (XFELs)
such as those alluded to in Sec. I are not fully spatially
coherent. The transverse coherency drops significantly as the
normalized transverse emittance exceeds βγλ/π where γ and
β are the usual relativistic factors. Vartanyants et al. [6] found
the degree of transverse coherence to be 75% at the Linac
Coherent Light Source (LCLS) at 8 keV. At shorter x-ray
wavelengths achieving transverse coherence can be difficult.
Increasing the electron energy and γ is not a solution as
coherent synchrotron radiation can have deleterious effects
at very high energies. Running at lower injection charge can
increase the estimated coherence; for example, Schneidmiller
and Yurkov [36] estimate the degree of coherence at the
European XFEL to be approximately 90% at 10 keV, but 75%
at 25 keV for the planned injection charge of that facility. A
very-hard-x-ray FEL experimental facility such as the MaRIE
facility [37] proposed by Los Alamos National Laboratory may
require advanced design concepts [38] to achieve significant
levels of transverse coherence.

Nevertheless, techniques are in use for ameliorating the
effects of partial coherence. A full review of these techniques
would be lengthy and well beyond the scope of this paper.
Whitehead et al. [17] and the references therein describe a
technique whereby the various modes present in the source
wave incident upon the sample are themselves reconstructed
as part of the IPR process. In addition the technique of
ptychography, in which the phase/intensity profile of a source
is calculated in the absence of a sample prior to the imaging
experiment, is in wide use (see, e.g., Kewish et al. [39] and
Schropp et al. [40]).

VI. CONCLUSIONS

The detailed study of dynamic material properties at
the mesoscale, i.e., three-dimensional samples comprising
tens to hundreds of grains of material, requires dynamic
imaging, which could be possible with coherent diffraction
imaging using highly penetrating photons. The combination
of large spot sizes and high energy photons leads to large
Fresnel number optical systems that do not allow for the
Fraunhofer far-field limit approximations. This paper showed
that diffractive imaging using hard x rays is possible at large
Fresnel numbers, and extends the Fresnel regime analysis
to coherent x-ray diffraction imaging and phase retrieval
algorithms. From the resulting analysis the optimal photon
energy can be chosen for a given per-pixel signal-to-noise,
and the maximum photon bandwidth can be calculated. An
important aspect in experimental design is maximizing the
coherently scattered photons relative to the absorbed photons
since the absorbed photons can cause heating easily high
enough to melt or vaporize the sample from a single pulse
making multiple-pulse imaging all but impossible. Finally,
we have applied the analytical techniques developed in this
paper to three hypothetical experiments involving samples of
either iron or uranium, to show that while the imaging of
high-density, relatively thick samples presents experimental
challenges, those challenges can be overcome with proper
experiment design.

APPENDIX: LIST OF SYMBOLS

Light Source Parameters

Symbol Description

d Source spot diameter or FWHM of intensity profile
λ Source wavelength
Eγ Source photon energy (=hc/λ)
�ki Source wave vector
k Source wave number (=|�ki |)
ε̂ Polarization vector of the source
N0 Total number of photons in a single pulse of the source
τb Time between subsequent light source pulses

Sample Parameters

Symbol Description

t Sample thickness in beam direction (usually the
z direction)

NU (t) Number of unscattered photons which emerge from a
sample thickness t

N1C(t) Number of photons which emerge from a sample
thickness t that have undergone a single
coherent scattering event as their sole interaction

Detector Parameters

Symbol Description

L Sample-detector distance
φ Maximum scattering angle subtended by the detector

[= tan−1(D/2L) = 2θmax]
D Width/height of the detector
p Width/height of the detector pixels
Np Number of pixels in each direction on the detector (=D/p)
P Number of photons captured by an average detector pixel
ηQE Quantum efficiency of the detector

Imaging Parameters

Symbol Description

�x Transverse (perpendicular to beam direction) resolution
of sample image

�z Longitudinal (parallel to beam direction) resolution
of sample image

O⊥ Oversampling ratio in each of the two transverse directions
O‖ Oversampling ratio in the longitudinal direction
iFOM Imaging figure-of-merit in the transverse direction

(=dD/λL ≈ D/O⊥p)

Miscellaneous

Symbol Description

Fr Fresnel number (=d2/λL)
An Small-angle number (=D4/λL3)
τ Time (since t was already taken)
êx , êy , êz Unit vectors in the x, y, and z coordinate directions
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