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Helmholtz resonators are widely used, but classical models for the resonators, such
as the lumped-element equivalent circuit, are inaccurate for most geometries. This
article presents higher-order equivalent circuits for describing the resonators based
on the one-dimensional wave equation. Impedance expressions are also derived.
These circuits and expressions are given for various constituent resonator com-
ponents, which may be combined to model resonators with curved, tapered, and
straight necks. Resonance frequency predictions using this theory are demonstrated
on two realistic resonators. The higher-order predictions are also applied to the
theory of side branch attenuators in a duct and the theory of resonator coupling
with a mode of an enclosure. © 2019 Institute of Noise Control Engineering.
Primary subject classification: 34.3; Secondary subject classification: 76.9
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1 INTRODUCTION

A Helmholtz resonator consists of an enclosed volume,
or cavity, with a hole or neck of finite length. Helmholtz
resonators are well-known and effective noise control
devices, but classical formulations for predicting their
response often prove inaccurate for all but the most sim-
plistic and ideal geometries. Typically, these resonators
are used to attenuate tonal noise in pipes or ducts, damp
modes in enclosures1, and increase transmission loss
through a partition2. Once tuned, Helmholtz resonators
can often be forgotten, as they need very little maintenance.
The Helmholtz resonator is characterized by a large atten-
uation over a narrow bandwidth; hence, tuning is critical in
many single-resonator applications. Unfortunately, classi-
cal expressions for resonator properties compromise accu-
racy for simplification. Resonance frequency predictions,
for example, can yield errors of 10%–30% for non-ideal
resonators3. In addition, ideal geometry resonators are
rarely used in industrial applications, as compactness and
manufacturability often constrain the design. As a result,
unconventional neck geometries and volume shapes may
be employed in practical resonator designs. In practice,
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the tuning problem is usually solved by repeated resona-
tor prototyping, which can delay project schedules and
increase costs.

Much previous work has attempted to compensate for
these inaccuracies. The classical formulation for the reso-
nance frequency has changed little since it was presented
by Rayleigh in 18704, but several corrections to the for-
mula have been developed. These include accounting
for inaccuracies using end corrections5,6, by calculating
the total acoustic mass using velocity field lines3, or by
developing specialized expressions for pancake or long
resonators7. The regularity of publications on the Helmholtz
resonator indicates a need for more robust and flexible for-
mulations, which account for many current and future res-
onator designs. Some more recent efforts employ finite
element or boundary element analysis; these methods ac-
curately predict resonance frequencies, albeit at the cost
of computational efficiency and design flexibility.

One modeling method that is computationally efficient
but has found limited application to resonators is the equiv-
alent circuit. Equivalent circuits as used in this article treat
volume velocity as an electric current and acoustic pres-
sure as a voltage and allow acoustic systems to be repre-
sented by electrical circuits. Circuit representations allow
construction of systems of equations by inspection8. They
also make available a century's worth of circuit analysis
techniques, including, for example, the use of circuit loops
to quickly construct a system matrix equation. It is com-
mon to represent the Helmholtz resonator with a lumped-
element circuit, where low-frequency effects are described
using equivalent inductance, capacitance, and resistance
elements. This approach can be found in many introduc-
tory acoustics textbooks. Lumped elements are an approx-
imation, however, which is valid only when all dimensions
are much less than a wavelength, and in practice, they
1Published by INCE/USA in conjunction with KSNVE
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exhibit the inaccuracies described above. Though higher-
order circuits have long been implemented in transducer
analysis8, speech production modeling9, and other areas
of acoustics, to the knowledge of the authors, no published
effort exists to describe the Helmholtz resonator using
higher-order circuits.

The approach presented here uses one-dimensional
solutions to the wave equation to create equivalent circuits
and impedance expressions. This relaxes the lumped-
element requirement of all dimensions being small com-
pared to awavelength, as systemsmay be distributed along
one dimension. Equivalent circuits are developed for con-
stituent components of resonators and then combined to
model a complete resonator. In addition to the equiva-
lent circuits, this article will develop expressions for
the input impedance at one end of a constituent compo-
nent in terms of the impedance attached to the other
end. These alternate formulations, termed impedance
translation expressions, can also be combined to model
the entire resonator, and may be useful if the only quan-
tity of interest is the input impedance.
Fig. 1—An illustration of the equivalent circuit
development for a straight waveguide.
(a) The waveguide, with the pressure
and volume velocity at each end defined.
(b) The general form of the equivalent
circuit for a waveguide. (c) The fully
developed equivalent circuit for a
straight waveguide.
2 THEORY

The following theoretical discussion introduces three
types of equivalent circuits. First, waveguides are mod-
eled as equivalent circuits with two pairs of terminals,
one pair representing each end of the guide. This type
of circuit is developed for straight, curved, and tapered
waveguides. Second, resonator cavities are modeled as a
terminating impedance. Third, end corrections are mod-
eled as either a series impedance element or an additional
waveguide length.
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2.1 Waveguides

A one-dimensional waveguide has a definition of both
acoustic pressure and volume velocity at each end (see
Fig. 1(a)) and therefore should be modeled as a two-
terminal-pair equivalent circuit. These circuits are also re-
ferred to as two-ports, with a port being a pair of terminals
with a defined voltage and current. One simple two-port
circuit is the T-network10, which is shown in Fig. 1(b). A
T-network includes three impedance elements, which may
have arbitrary impedance expressions. For the purposes
of resonator design, the T-network offers a means bywhich
the wave effects of an acoustic waveguide can be modeled
as an equivalent electrical circuit. The expressions for the
relevant impedance elements can be derived using the gen-
eral solution of the pressure and volume velocity in the
waveguide, as follows: the one-dimensional waveguide
can be described by the 1D wave equation, or by the 1D
Helmholtz equation if ejot time dependence is assumed,
where j ¼ ffiffiffiffiffiffiffi�1

p
;o is the angular frequency, and t is time.
2 Noise Control Engr. J. 67 (6), September-October 2019
The general solution to the latter differential equation is

ep xð Þ ¼ C1e
jkx þ C2e

�jkx; ð1Þ
wherek is thewavenumber,x is the spatial dimension along
the length of thewaveguide, andC1 andC2 are arbitrary con-
stants. The general solution for the volume velocity U xð Þ
can be found using Euler's equation,

eU xð Þ ¼ jS

r0o
dep
dx

¼ � S

r0c
C1e

jkx � C2e
�jkx

� �
; ð2Þ

where r0 is the ambient density of air, c is the speed of
sound, and S is the cross-sectional area of the waveguide.
The impedance expressions are then found by evaluating
these general solutions with various boundary conditions,
as follows:

eZ3 ¼ ep Lð ÞeU 0ð Þ

����eU Lð Þ ¼ 0
;

ð3aÞ
Published by INCE/USA in conjunction with KSNVE
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eZ1 þ eZ3 ¼ ep 0ð ÞeU 0ð Þ

����eU Lð Þ ¼ 0
;

ð3bÞ

eZ2 þ eZ3 ¼ ep Lð ÞeU Lð Þ

����eU Lð Þ ¼ 0
;

ð3cÞ

where eZ1, eZ2, and eZ3 are as indicated in Fig. 1(b), and L
is the length of the waveguide. Substituting Eqns. (1) and
(2) into Eqns. (3a)–(3c) and simplifying give the expres-
sions for the T-network elements of a straight waveguide,
which are present in the literature:

eZ1;straight ¼ eZ2;straight ¼ j
r0c
S

tan
kL

2

� �
; eZ3;straight

¼ �j
r0c
S

csc kLð Þ: ð4Þ

The completed straight waveguide circuit with the im-
pedance expressions included is shown in Fig. 1(c). The
treatment of the other waveguides in this article is carried
out in a similar manner; Eqns. (3a)–(3c) are general, while
Eqns. (1) and (2) are specific to the straight waveguide and
must be substituted by the appropriate general solutions forep xð Þ and eU xð Þ.

An alternate and mathematically identical formulation
of the equivalent circuit is the impedance translation ex-
pression (ITE). ITEs are closed-form expressions for the

input impedance of the waveguide eZB in terms of an arbi-

trary termination impedance eZA; they are derived by eval-

uating the general solutions for ep xð Þ and eU xð Þ with eZA at
the x ¼ L end, as follows:

eZB ¼ ep 0ð ÞeU 0ð Þ

����ep Lð ÞeU Lð Þ
¼ eZA

: ð5Þ

Derivations such as these are often included in introduc-
tory acoustics texts11, and we can easily evaluate the above
expression to find that the ITE for a straight waveguide is

eZB;straight ¼
r0c
S
eZA þ j r0cS tan kLð Þ

r0c
S þ jeZA tan kLð Þ; ð6Þ

where eZB;straight is the input impedance of the waveguide,
and other symbols are as defined previously.

Because the equivalent circuit and ITE above have been
derived from the 1D wave equation, they describe the
waveguide completely below the cutoff frequency of the
cross modes, for arbitrary waveguide length. This is a re-
laxed requirement compared to the lumped-element ap-
proximation and is often an appropriate assumption, as
Noise Control Engr. J. 67 (6), September-October 2019
many resonators target low frequencies and are designed
to be compact. The straight ITE has been used to model
axially symmetric resonators using a discretization of
the resonator into many straight segments12; this may
account for tapers, but it is unclear howaccurate the results
are in the referenced conference paper. The present ap-
proach evaluates tapers separately and is also able tomodel
curved necks.

An equivalent circuit for a curved waveguide of con-
stant radius of curvature may be derived from the work
of Cummings13 and of Keefe and Benade14, who trea-
ted curved ducts in the context of musical instruments.
Their work sought a characteristic acoustic impedance of a
curved duct, analogous to r0c=S for a straight waveguide.
Though they could not solve for sound propagation in a
circular curved duct directly, they did find an approximate
expression for the characteristic impedance by modeling a
circular cross section as a series of rectangular duct slices,
each of which could be characterized analytically. These
slices were treated as though they were separate ducts in
parallel, and by evaluating the inductance and capacitance
of these slices, Keefe and Benade14 found that the curved
duct could be treated as a straight duct with a length equal
to the mean length of the curved duct, and a characteristic
acoustic impedance of the form

Zbend ¼ r0c
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

Rm

R
ln a zð Þ½ �dz

s
; ð7Þ

where Rm is the mean radius of curvature of the bend, z is
the dimension perpendicular to the plane of curvature of
the bend, a zð Þ ¼ Ro zð Þ=Ri zð Þ is the ratio of the outer ra-
dius of curvature to the inner radius of curvature at a given
z, and the integration is performed along the z-extent of the
cross section. Expressions for a may be found in Ref. 14
for a circular cross section. The characteristic acoustic im-
pedance of the curved waveguide is therefore equivalent
to that of a straight waveguide, multiplied by a geometry-
dependent constant. This finding implies that the straight
duct expressions Eqns. (4) and (6) may be modified for a
curved duct by replacing r0c=Swith Zbend everywhere that
it occurs and replacing Lwith the mean length of the bend,
Lm. Themodified expressions are given in Eqns. (8) and (9).
eZ1;curved ¼ eZ2;curved ¼ jZbend tan
kLm
2

� �
;eZ3;curved ¼ �jZbend csc kLmð Þ ð8Þ

eZB;curved ¼ ZbendeZA þ jZbend tan kLmð Þ
Zbend þ jeZA tan kLmð Þ:

ð9Þ

Work by Tang15 is instructive in deriving expressions
for a tapered waveguide. Tang15 modeled a Helmholtz
3Published by INCE/USA in conjunction with KSNVE
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resonator with a conical tapered neck in 2001, using
the Webster horn equation. He did so by first deriving an
impedance translation expression for the tapered wave-
guide, which he then simplified. We can make use of the
full expression, which is given here:
;

258

259

260

261

262

263

264

265

266

267

269269

270

271

272

273

274

275

276R17

277

278

279

280

281R18

282

283

285285

287287

288

eZB;tapered ¼ r0c
SB

eZA þ j r0cSA
� m

krA
eZA

� 	
tan kLð Þ

r0c
SA

� j m2L
krArB

eZA þ r0c
SA

m
krB

þ j m2

k2rArB
eZA þ jeZA

� 	
tan kLð Þ

; ð10Þ
where rA and rB are the radii of thewaveguide cross section

at the ends corresponding to eZA and eZB, or the x ¼ L end
and the x ¼ 0 end, respectively; SA ¼ pr2A and SB ¼ pr2B
are the areas of the circular cross sections at each end;
and m ¼ rA � rBð Þ=L is the slope of the taper. It is worth-
while to note in the case that the slope is zero the ex-
pression collapses to Eqn. (6). In addition to this ITE,
equivalent circuits are given here for the conical tapered
waveguide. The derivation of these expressions is included
in Appendix.

eZ1;tapered ¼ j
r0c
SA

k2rArB cos kLð Þ � krA sin kLð Þ � k2r2A
kLm2 cos kLð Þ � m2 þ k2rArBð Þ sin kLð Þ

eZ2;tapered ¼ j
r0c
SB

k2rArB cos kLð Þ � krBm sin kLð Þ � k2r2B
kLm2 cos kLð Þ � m2 þ k2rArBð Þ sin kLð Þ ;

eZ3;tapered ¼ j
r0c
p

k2

kLm2 cos kLð Þ � m2 þ k2rArBð Þ sin kLð Þ ;

ð11Þ
where all symbols are defined as in Eqn. (10). While these
expressions are visually much more complicated than
those in Eqn. (4) or Eqn. (8), they are just as calculable
using a computer.

Until now, all impedance formulations have been given
solely in terms of the reactive component; for accurate
modeling of Helmholtz resonators, resistive losses must
also be considered. Duct losses may be accounted for in
any of the waveguide models by substituting a complex

wavenumber ek for k, as

ek ¼ k � ja: ð12Þ
For thiswork,we use the expression for agiven inRef. 16:

a ¼ 1

rc

ffiffiffiffiffiffiffi
�ck

2r0

s
1þ g� 1ffiffiffiffiffi

Pr
p

� �
; ð13Þ

where r0; c; and k are defined as previously, r is the radius of
thewaveguide, � is the viscosity of the fluid (18:5 mPa � s for
4 Noise Control Engr. J. 67 (6), September-October 2019
air at standard temperature and pressure), g is the ratio of
specific heats (1.4 for air), and Pr is the Prandtl number
(0.71 for air). Note that a will typically be different for
each waveguide, and thus, each waveguide will have a
different complex wavenumber.
2.2 Cavities

In order to create a cavity, or body, for a resonator, one
need only terminate a waveguide with an infinite imped-
ance. For the equivalent circuit model, this creates an open
circuit, removing the right branch of the T-network. In this
work, only a cavity with sides perpendicular to its end
is treated, which is derived from setting eZA ¼ 1 in
Eqn. (6), or by removing the right branch of the T-network
in Fig. 1(c). Both methods yield the same result, after sim-
plification, of

eZcavity ¼ j
r0c
S

cot ekL� 	
; ð14Þ

where S and L are the cross-sectional area and length, re-
spectively, of the cavity. This same procedure applies to
cavities created by stopping the end of a curved or tapered
waveguide, but these are not investigated in this work.

2.3 End Corrections and Junctions

The complete description of the resonator requires the
treatment of the sudden change in cross-sectional area be-
tween the neck and body of the resonator. Karal17 derived
expressions for the equivalent impedance of a concentric
junction between cylindricalwaveguides by expanding both
waveguides in terms of cylindrical eigenfunctions. His ex-
pression shows that the discontinuity is effectively an added
acoustical mass, or inertance. In addition, Bies and Hansen18

presented an effective resistance of a discontinuity. The im-
pedance may therefore be expressed as

eZ junction ¼ joMjunction þ Rjunction; ð15aÞ

with

Mjunction ¼ 4r0
pr2

X1
m¼1

J 21 gm
r2
r1

� 	
gm

r2
r1
gmJ0 gmð Þ½ �2 ; ð15bÞ

where r2 < r1 are the two radii, Jn xð Þ is the nth-order Bessel
function, and gm is the mth zero of the first-order Bessel
Published by INCE/USA in conjunction with KSNVE
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 �
þ S2k2

2p

� �
; ð15cÞ

where t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=r0o

p
is the boundary layer thickness,

S2 ¼ pr22, and h is the larger of t and r2. For most practical
purposes, h ¼ r2; for example, at o ¼ 2p rad=s in air at
standard temperature and pressure, t � 2:2 mm. eZ junction as
defined in this way describes cylindrical necks and cavi-
ties. In addition to cylindrical geometries, the current work
reported here has found good empirical agreement for a
cylindrical neck attached to a cavity with elliptical cross
section by using the semi-major axis of the ellipse in place
of a radius in Eqns. (15a)–(15c), as well as in the thermo-
viscous losses described in Eqn. 13. Typical practice in a
lumped-element circuit representation is to approximate the
discontinuity as an end correction due to an infinite baffle;
Karal17 showed that the reactive portion of Eqns. (15a)–(15c)
approaches this solution as the ratio of radii becomes
very large.

In addition to this discontinuity impedance, end correc-
tions are needed for the connection of the resonator neck to
the passive noise control environment. These may appro-
priately include the standard end corrections of a baffled
or unbaffled tube, if the mounting conditions so dictate.
End corrections for the outer end of the neck will be pre-
sented as they are used in the experimental examples.

2.4 Building a Resonator from
These Components

With equivalent circuits and impedance translation ex-
pressions for each of these resonator components, a full
resonator can be built. To illustrate how this is done, con-
sider the resonator depicted in Fig. 2(a). This resonator has
a cylindrical cavity, a junction (or discontinuity), and a
neck made up of a curved section and a straight section.
The equivalent circuit can be built by attaching a terminat-
ing cavity impedance in series with the junction impedance
Fig. 2—An example of creating an equivalent circu
a junction discontinuity, and a two-segmen
resonator in (a), where the eZ is defined in

Noise Control Engr. J. 67 (6), September-October 2019
to the right end of the curved waveguide network, which is
attached to the right end of a straight waveguide network.
The full equivalent circuit is shown in Fig. 2(b), where
the circuit component expressions would be as given in
the preceding sections, evaluated using the physical di-
mensions of each part of the resonator. Quantities of inter-
est such as the resonator input impedance and pressure and
particle velocity at any point in the resonator may be de-
rived from the circuit. If the input impedance of the res-
onator is the only property of interest, it may be calculated
using the ITEs as follows. Adding the cavity and the junc-
tion impedance gives the load on the cavity end of the
curved waveguide. Using this as eZA in Eqn. (9) gives
the input impedance at the other end of the curved wave-
guide eZB;curved, which also happens to be the load on the
deeper end of the straight waveguide. As such, substitut-
ing the calculated eZB;curved for eZA in Eqn. (6) gives the in-
put impedance of the entire resonator, neglecting fluid
loading at the mouth for the time being.

Though these formulations do not allow for closed-
form expressions for resonator properties, they can easily
be implemented in a computer. The authors have imple-
mented an ITE impedance calculation in MATLAB,
which is able to calculate impedance over a 6000 Hz
bandwidth in under a second on a low-end desktop com-
puter. Comparable calculations for a simple straight-necked
resonator with a commercial finite element package took
about a factor of two longer to complete. When the ad-
ditional overhead of preparing meshes for finite element
analysis is considered, especially in the context of itera-
tive design, the speed improvements become considerable.
In addition, resonance frequencies and Q factors can be
gleaned from the calculated impedance curves with very
little effort.

2.5 Lumped-Element Impedance Calculation

For comparison, the lumped-element formulation for
resonator impedance is given here. The resonator is treated
as a series combination of an acoustic massMA given by the
it for a resonator. (a) A resonator with a cavity,
t neck. (b) The equivalent circuit of the
the preceding sections.

5Published by INCE/USA in conjunction with KSNVE
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movement of the air in the neck, an acoustic compliance
CA given by the compression of the air in the body, and an
acoustic resistance RA given by the radiation of the reso-
nator mouth. Damping is introduced using complex fre-
quencies eo ¼ ek=c, where ek is given by Eqn. (12), with
separate complex frequencies calculated for the neck (eon)
and the body (eob). The impedance is then

eZLE ¼ jeonMA þ 1
jeob

CA þ RA; ð16Þ

where MA ¼ r0Ln=Sn , CA ¼ V=r0c
2; RA ¼ r0o

2=2pc,
Ln and Sn are the length and cross-sectional area of the
neck, and V is the volume of the resonator body. An end
correction appropriate for a resonator mounted in infinite
baffle (‘corr ¼ 0:85rn) is included in Ln for both ends of
the neck unless otherwise specified19.

The lumped-element formulation does not include pro-
visions for curved or tapered necks, but as an approxima-
tion, one may use the average length and cross-sectional
area of the complex neck in the expression for MA. This
procedure is what is commonly used in practice when
modeling a complex resonator, and it is used to calcu-
late the lumped-element impedances shown in the next
section.
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3 FABRICATION AND VALIDATION

The foregoing expressions are now validated by com-
paring predicted impedance to measured impedance of
complete resonators containing the various components.
Resonators were fabricated using 3D printing to give spe-
cific resonance frequencies, as predicted by the equivalent
circuits and ITEs. The resonators were mounted on the end
of an impedance tube, as shown in Fig. 3, where the im-
pedance was measured using Chung and Blaser's20 two-
microphone method. The impedance tube had an internal
radius of 50.8 mm, with an associated cutoff frequency
of 1.9 kHz, above which the two-microphone method
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Fig. 3—The impedance measurement setup,
with a resonator attached to the end
of an impedance tube. Two microphones
are mounted in the impedance tube,
and a speaker is mounted on the
end opposite the resonator.

6 Noise Control Engr. J. 67 (6), September-October 2019
is inaccurate. Various microphone separation distances
were used, and the results were combined, to give valid
results over the entire frequency range shown below. The
higher-order theory models the discontinuity in cross sec-
tion between the resonator neck and the impedance tube as
a junction discontinuity impedance eZ junction added in series
with the input impedance of the resonator. In addition, the
mounting of the resonator to the impedance tube adds a
straight segment of 3 mm length to the mouth of the
resonator that is not included in resonator dimensions
below but is treated in both model predictions.

Several resonators with various configurations were
tested, though only two will be shown here. The first has
a straight cylindrical neck and a straight cylindrical body;
this resonator is pictured in Fig. 4(b) with dimensions pro-
vided in Table 1 and will be referred to as resonator A.
The second resonator, resonator B, has a complex neck
consisting of a tapered section, a curved section, and a
straight section, with a body of elliptical cross section.
Resonator B is pictured in Fig. 5(b), and the dimensions
are given in Table 2. This resonator requires the assump-
tions mentioned in Sec. 2.5 in order to evaluate the
lumped-element approximation.

Impedance predictions and measurements are com-
pared in Fig. 4(a) for resonator A and in Fig. 5(a) for
resonator B. Notice that in both figures the classical im-
pedance calculated by Eqn. (16) only shows one mini-
mum, corresponding to the first resonance, while the
higher-order predictions are able to model multiple reso-
nances as well as antiresonances. Resonance predictions
are summarized in Table 3. Resonator A is somewhat of
a best-case scenario in that the lumped-element impedance
calculation has low error in the first resonance frequency.
The higher-order theory outperforms the classical theory
on both first resonances, however, and is able to represent
the entire curves well. For resonator B, we see that the
lumped-element predictions for the first resonance are
not passably close, as they were for resonator A. Finally,
all higher-order predicted resonance frequencies arewithin
3% of the measured values, with most of them having less
than 1% error.

The results seen for these two resonators are representa-
tive of what was seen for all the resonators fabricated in
this work. Though the lumped-element predictions may
have mixed success for simple resonators, the higher-order
predictions are consistently accurate. All first resonances
were predicted within 1–2 Hz, and the higher resonances
had only a few percent error at most. In addition to more
accurate resonance predictions, the higher-order theory
characterizes the broadband impedance of the resonator,
while the lumped-element approximation only approxi-
mates the first resonance. These improvements have the
potential to better inform passive noise control theories
and reduce prototype iteration.
Published by INCE/USA in conjunction with KSNVE
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Fig. 4—(a) Impedance measurements and predictions using higher-order and lumped-element
theories for resonator A. Resonance occurs at the minimum of impedance.
(b) A photograph of the fabricated resonator A.
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4 APPLICATIONS

Higher-order predictions of resonator impedance can
be utilized in many traditional passive noise control the-
ories to improve accuracy. Many established passive
noise control formulations have been developed using a
lumped-element model for the resonators, and all of these
formulations could potentially benefit from these higher-
order predictions. In some of these, the calculated imped-
ance may be substituted directly for the lumped-element
impedance; in others, finding the resonance frequency
from the impedance curve gives enough information
to implement the theory. Some theories are written in
terms of lumped elements MA, CA; and RA from Eqn. (16);
these can be integrated with the higher-order theory by
least-squares fitting Eqn. (16) to the first resonance in the
calculated impedance curve. In this article, we give exam-
ples of the first two types of integrations to show how this
can be done. Predictions of transmission loss due to a res-
onator side branch are calculated by directly substituting
the higher-order resonator impedance into side branch the-
ory. As a second example, coupling between a resonator
and an enclosure is achieved using only the resonance fre-
quency of the resonator.

4.1 Side Branch on a Duct

The theory for the transmission loss in a duct due to a
lumped-element Helmholtz resonator side branch is close-
ly related to the more general case. It is calculated as
499

500
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505

Table 1—Dimensions of resonator A.

Neck Body

Radius (mm) 20.125 47.6
Length (mm) 187 147.6
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TL ¼ 10 log10 1þ c=2Sduct
o‘′=SN � c2=oVB

� �2
" #

; ð17Þ

where Sduct is the cross-sectional area of the duct, SN is the
cross-sectional area of the resonator neck, ‘′ is the effective
length of the resonator neck, and VB is the volume of the
resonator body21. This expression is derived by substitut-
ing the lumped-element impedance of the resonator into
the more general expression:

TL ¼ 10 log10
r0c=2Sduct þ eZres

�� ��2eZres

�� ��2
24 35; ð18Þ

where eZres is the input impedance of the resonator. Equa-
tion (18) is where one can make use of the higher-order
predictions: once the resonator input impedance is calcu-
lated, it may be substituted into Eqn. (18) to obtain a calcu-
lated transmission loss.

This theory using the higher-order impedance predic-
tionswas implemented, and the predicted transmission loss
was compared to measured results. For this verification,
resonators were mounted as a side branch on the duct used
for impedance measurements with an anechoic termina-
tion added at the end; this setup is shown in Fig. 6. Trans-
mission losswas calculated using the procedure outlined in
Refs. 20 and 22, with four microphonesmeasuring the field:
two upstream and two downstream of the side branch. This
section shows verification of transmission loss predictions
using resonator B, though the neck is physically extended
39 mm by the side branch mounting hardware. Because the
resonator-duct interface is a curved surface, a specialized
end correction is needed. This can be obtained from the
work of Ji23, who found empirically the end correction
for a side branch:
7Published by INCE/USA in conjunction with KSNVE
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Fig. 5—(a) Impedance measurements and predictions using higher-order and lumped-element
theories for resonator B. Resonance occurs at the minimum of impedance. (b) A
photograph of the fabricated resonator B.

t2:1

t2:2

t2:3

t2:5

t2:6

t2:7

t2:8

t2:9

t2:10

t2:11
‘0;SB ¼ rm
0:8216� 0:0644x� 0:694x2 x≤ 0:4
0:9326� 0:6196x x > 0:4

;

�
ð19Þ

where rm is the radius of the side branch mouth and x is
the ratio of side branch to main duct radii. This end cor-
rection is added to the mouth end of the neck as a straight
waveguide of length ‘0;SB for the higher-order predictions
and as a replacement for one of the end corrections in the
lumped-element neck length. The predicted and measured
results for transmission loss are shown in Fig. 7. Like the
impedance plots, the measured and predicted frequency of
maximum transmission loss matches exactly. The lumped-
element prediction is off by 19%.
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4.2 Enclosure Mode Coupling

Although the calculated impedance cannot be directly
substituted into the resonator-enclosure coupling theory,
good coupling predictions can be attained with the ex-
tracted resonator properties. In 1980, Fahy and Schofield
published a derivation on the resonator-enclosure interaction
showing that a Helmholtz resonator tuned to the resonance
Table 2—Dimensions of resonator B, with neck
segments listed in order from the outlet of
the resonator to the body of the resonator.

Segment: Tapered Curved Straight Body

Radius
(mm)

12.7–20.125 20.125 20.125 Semi major
axis (mm)

51.0

Length
(mm)

85.0 67.2 22.0 Semi minor
axis (mm)

30.4

Bend
angle

— 110� — Length (mm) 215.8
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frequency of an enclosure mode can attenuate that reso-
nance, while creating two coupled resonances at frequencies
just above and below the original resonance frequency.1

These coupled resonances may have higher or lower am-
plitude than the original resonance, depending on the Q
factors of the enclosure and the resonator and the relative
volumes of the two. One factor that significantly affects
the coupling is howwell the resonator is tuned to the res-
onance of the enclosure. When the resonator is well tuned,
the two coupled resonances will have nearly equal ampli-
tude; if the resonator is poorly tuned, one coupled reso-
nance will be much higher in amplitude than the other
and will approach the amplitude of the original resonance
peak. Tuning the resonator therefore becomes an impor-
tant step in creating this coupling; this tuning can be
achieved before fabrication using the higher- order predic-
tions that have been given here.

An implementation of this passive noise control sce-
nario demonstrated that the higher-order tuning predic-
tions significantly improved the attenuation achieved.
Resonator A was coupled to the nearly rectangular ply-
wood enclosure shown in Fig. 8 with a depth of 1.5 m,
t3:1Table 3—Measured and predicted resonance
t3:2frequencies for resonators A and B and the
t3:3percent error of the predictions.

t3:5Resonator A Resonator B

t3:6Resonance First Second First SecondThird

Resonance
t3:7frequencies
t3:8(Hz)

Measured 124 799 109 676 946
Higher order t3:9123.3 778.6 109.3 666.5 937.4
Lumped

t3:10element
t3:11127.4 — 124.4 — —

Percent
t3:12error (%)
t3:13Higher order 0.6 2.6 0.3 1.4 0.9

Lumped
t3:14element
t3:152.7 — 14.1 — —
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Fig. 6—Test setup for measurement of
transmission loss due to resonator B
as a side branch.

Fig. 8—Test setup for resonator-enclosure
coupling, with resonator A attached to
the side of a plywood enclosure.
a height of 0.96 m, and a linearly varying width of
0.99–1.19 m. The response of the (1,0,0) mode to broad-
band excitation is shown in Fig. 9 as a solid line. Reso-
nator A was fabricated to have a resonance frequency
aligned with the center of the full width half max band
of this mode at 124 Hz. This fabrication was done twice,
with different neck lengths; once so that the higher-order
predictions placed the resonance at 124 Hz and again with
a slightly longer neck so that the lumped-element predic-
tions placed the resonance at 124 Hz. The resonator was
then attached to the enclosure using a hole in the wall
where the modal response was a maximum. The infinite
baffle end correction, an added neck length of 0.85 times19

the outlet radius, was used for this mounting scenario.
Figure 9 shows the response of the coupled enclosure-

resonator system to broadband noise as the dashed line
and the dot-dashed line for the resonator fabricated accord-
ing to higher-order predictions and lumped-element pre-
dictions, respectively. The resonator fabricated according
to higher-order predictions achieves an attenuation of 7 dB
at the peak frequency, with both coupled resonances
having an amplitude more than 3 dB below the original
Fig. 7—Transmission loss of resonator B as a
side branch on a duct. Solid: measured.
Dashed: higher-order predicted.
Dot-dashed: classical predicted.

Noise Control Engr. J. 67 (6), September-October 2019
peak. This type of response is typical of a well-tuned reso-
nator. The resonator fabricated according to lumped-element
predictions creates a dip in the response at about 118 Hz,
which roughly corresponds to the resonance of the resona-
tor. This is a 6 Hz error, or about a 5% relative error, and it
causes the resonator to give poor attenuation. One of the
coupled resonance peaks is only 1 Hz higher in frequency
than the original peak and is only 2 dB lower in amplitude,
giving an effective attenuation of about 2 dB. The accuracy
of higher-order tuning predictions allows afirst-round proto-
type to achieve 5 dBmore attenuation, even in a near-best-
case prediction scenario for the lumped-element formula.
Fig. 9—Response of an enclosure to
broadband excitation, with and
without resonators. Solid: without a
resonator. Dashed: with a resonator
fabricated according to higher-order
predictions. Dot-dashed: with a
resonator fabricated according to
lumped-element predictions.

9Published by INCE/USA in conjunction with KSNVE
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5 CONCLUSIONS

A higher-order model of Helmholtz resonators that can
predict resonator properties accurately has been devel-
oped. This method uses combinations of one-dimensional
solutions to the wave equation and junction impedances
to describe complete resonators. Predictions of resonance
frequencies have less than 2% error in all cases tested. In
addition, the model is quick to evaluate, allowing for rapid
calculation of many resonators. This allows the user to in-
vestigate numerous possible resonator designs in a short
period of time with high confidence that the model will
accurately predict the response of the resonator when
fabricated. This can be done for awide variety of resona-
tors, including those with tapered and curved necks, and
elliptical bodies.

This article has presented the application of this model
to two resonators: a simple concentric cylindrical resona-
tor, and a more complex resonator using a combination
of a tapered, curved, and straight neck segments. Both
resonators had one-element, straight cavities, but complex
cavities with tapers, curves or combinations of the three
would also be possible. This theory gives a unified model
for Helmholtz resonators and quarter-wave tubes and
allows for curved or tapered quarter-wave tubes. In addi-
tion, the literature contains studies on other components
that could be added, such as end correction when flow is
present or exponential tapers. The reader is encouraged
to apply similar techniques as those shown here to im-
plement additional components as needed.

This theory allows for higher-order predictions to be
implemented in passive noise control theory. Examples
of side branch transmission loss and enclosure mode atten-
uation were shown here, but this can be equally useful for
other theories in which lumped-element formulations are
traditionally used.

6 ACKNOWLEDGMENTS

The authors gratefully acknowledge Caterpillar, Inc.
for their funding and support of this research.

7 APPENDIX: DERIVATION
OF THE TAPEREDWAVEGUIDE
EQUIVALENT CIRCUIT

The Webster horn equation allows for the treatment of
waveguides with slowly varying cross section. This differ-
ential equation results from the 1D wave equation when
the cross-sectional area may vary, and it is written as

1
S xð Þ

d

dx
S xð Þ dep

dx

� �
þ k2ep ¼ 0; ðA1Þ

where S xð Þ is the varying cross-sectional area, ep is the
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acoustic pressure, k is thewavenumber, and x is the dimen-
sion along the waveguide. If conical spreading is assumed,

S xð Þ ¼ p rB þ mxð Þ2, wherem ¼ rA � rBð Þ=L is the slope
of the taper, and rA and rB are the radii at the right and
left ends, respectively, of the taper. By substituting and
simplifying, the general solution for the pressure may
be found16 to be

ep xð Þ ¼ m

k mxþ rBð Þ C1e
�jk mxþrBð Þ=m þ C2e

jk mxþrBð Þ=m
� 	

;

ðA2Þ
where C1 and C2 are arbitrary constants to be determined.
The general solution for the volume velocity can be found
from Eqn. (A2) using Euler's equation and (substitut-
ing a ¼ mxþ rB) is

eU xð Þ ¼ j
S xð Þ
r0o

dep
dx

¼ mp
r0ok

C1 ka� jmð Þe�jka=m � C2 kaþ jmð Þe jka=m
�

ðA3Þ
where r0 is the density of air and o is the angular fre-
quency. Finally, by substituting Eqns. (A2) and (A3) into
Eqns. (3a)–(3c) and simplifying, it is found that

eZ1;tapered ¼ j
r0c
SA

k2rArB cos kLð Þ � krA sin kLð Þ � k2r2A
kLm2 cos kLð Þ � m2 þ k2rArBð Þ sin kLð Þ

eZ2;tapered ¼ j
r0c
SB

k2rArB cos kLð Þ � krBm sin kLð Þ � k2r2B
kLm2 cos kLð Þ � m2 þ k2rArBð Þ sin kLð Þ ;

eZ3;tapered ¼ j
r0c
p

k2

kLm2 cos kLð Þ � m2 þ k2rArBð Þ sin kLð Þ ;

ðA4Þ
which are equivalent to Eqns. (11a)–(11c).
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