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Neural networks learn features that are useful for classification directly from a source, such as a recorded 
signal, which removes the need for feature extraction or domain transformations necessary in other ma-
chine learning algorithms. To take advantage of these benefits and have a finer temporal resolution, a one-
dimensional convolutional neural network is applied to pressure time-series to find source range and ocean 
environment class from a received signal. The neural network was trained on simulated signals generated in 
different environments (sandy, muddy, or mixed-layer sediment layers) for several ranges (0.5 to 15 km). We 
found significant potential in a neural network of this type, given a large amount of varied training samples 
for the network, to learn important features suitable for range and environment predictions. This type of net-
work provides an alternative for frequency-domain learning and is potentially useful for impulsive sources. 
Success in the time domain also reduces the computational requirements of conversion to frequency domain 
and increases the temporal resolution, which might be beneficial for real-time applications. 
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1. INTRODUCTION

In ocean acoustics research, localizing acoustic sources and estimating the ocean environment present
many challenges. Some challenges of these inverse problems include nonlinear relationships between the
unknowns, high-dimensional search spaces, and large uncertainty due to ill-conditioning of the inferred
parameters. Solutions can be done by using optimization techniques, like matched field processing,1 but
these are often limited to correct or inferred environmental information. Beyond optimization techniques,
machine learning and deep learning are increasingly becoming of interest due to their ability to extract
features and patterns from data.

Recent efforts have used machine learning to estimate ranges of sources. Steinberg et al.2 introduced the
idea of using neural network techniques to localize an acoustic point source in a homogeneous medium using
single- and two-layer neural networks. Hougnigan et al.3 used supervised machine learning for real-time
range estimation and obtained an average error of 4.3%. Lefort et al.4 and Niu et al.5, 6 found that machine
learning classifiers outperform traditional methods such as inversion and matched field processing. Others,
such as Huang et al.7 and Wang et al.8 have had similar successes with using machine learning techniques
to localize sources in the ocean. Machine learning has also been used for classification of underwater targets
as done by Fischell et al.9

Given the precedence for source localization in the ocean, the next step is determining if these models
can also learn environmental information from the data. The work of Piccolo et al.10 estimated seabed
parameters, such as sound speed and attenuation, with machine learning on extracted features from signals.
In Van Komen et al.,11 an attempt to use feedforward neural networks (FNN) to predict range and seabed
type showed that models can learn to predict both simultaneously. The goal of this paper is to expand
beyond using a simple feedforward neural network (FNN)12 for predicting environmental information from
full pressure time-series through the use of convolutional neural networks. This paper contains preliminary
results on a simulated dataset. Future work will use more sophisticated networks with simulated and real
datasets.

2. BACKGROUND

A. UNDERWATER ACOUSTICS AND SUS CHARGES

To generate the data used in this experiment, the signals underwater sound13 (SUS) charge spectra were
simulated through four different environments representing deep mud,14 mud over sand,15 sandy silt,16 and
sandy environments.17 The SUS charge simulations follow the model by Chapman13 as explained in Sen
et al.18 for a 0.034 kg charge in all cases. The parameterization of these four environments is displayed
in Figure 1. These figures show a vertical “slice” from the surface of the ocean to the sediment layers that
constitute the ocean floor. The water column sound speed profile, typical of a shallow ocean, is shown in the
blue, with constant attenuation and density listed in the legend with the subscript w. Each sediment layer l
is parameterized by it’s thickness hl in m, compressional sound speed cl at the top and bottom of the layer
in m/s, density ρl at the top and bottom in g/cm3, and compressional attenuation αl at the top and bottom
in dB/λ. The bottom boundary, or half-space, is defined by the compressional sound speed, attenuation and
density. These parameters are all fed into the normal mode model to simulate the response of the ocean.

The response of the ocean environment is simulated with ORCA.19 The ORCA model calculates normal
mode functions in range-independent environments by calculating upward- and downward-reflecting plane
wave reflections. The mode functions can then be used to generate an impulse response of the ocean at a
certain range away from the source. The impulse response is convolved with the simulated source signal at
depths zs = 4, 18.3, and 35 m, to produce the time series signals that comprise this study’s dataset.
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(a) Deep mud (b) Mud over sand (c) Sandy silt (d) Sand

Figure 1: Parameterization of the four environments used in this study. These environments increase
in reflectivity and are numbered 1 through 4 from left to right for the use of the machine learning algo-
rithms.

B. MACHINE LEARNING METHODS - CONVOLUTIONAL NEURAL NETWORKS

A feedforward neural network12 (FNN) is a powerful universal function estimator, but it lacks the ability
to detect patterns independent of where they lie in the input space. For example, if the raw pixels of an
image were fed directly into a trained FNN, there is no guarantee that a particular pattern near the left side
of the image would trigger the same feature response as if it were on the right side of the image. FNNs make
predictions from extracted features as they are always ordered vectors with each extracted feature occupying
the same position for every sample, but that isn’t guaranteed for other input data where they might not be
aligned or sorted.

To solve this problem in image recognition, the convolutional neural network (CNN) was developed
for grid-like data such as time-series data (one-dimensional grids) or images (two-dimensional grids). It is
important to understand that a CNN is simply a neural network that uses at least one convolution layer in
place of a general hidden layer seen in an FNN. However, most CNN architectures have fully connected
layers that are also present in the FNN. Convolutional layers do feature extraction from the raw input data
and then feed those features into the fully connected layers. This removes the need for feature extraction to
be done by hand.

In image processing, a CNN takes an input image and slides multiple trained two-dimensional “filters”
across the entirety of the image. These learned filters are identifying areas of the image that are of particular
interest. However, the power of a CNN comes from stacking multiple convolutional operations in sequence
to make a “deep” network. This stacking of convolutional layers allows the network to detect high- and
low-level features through training.

To explain the mathematics behind this convolution operation used in CNNs for one-dimensional grids,
it is useful to understand discrete one-dimensional convolutions. For the following definition, it must be
assumed that time is discretized, and that the data follows the discretization of time, thus t can only take on
integer values. To perform this operation s(t), input x convolved with a filter w (where both x and w are
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defined only on integer t) can be expressed by

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da

=
∞∑

a=−∞
x(a)w(t− a).

(1)

Due to t being defined as an integer, the sum is simplified due to da = 1. The filter w, also referred to as
the weight vector or the kernel, is dynamically learned through gradient descent which is a process that is
beyond the scope of this paper and was automated by the PyTorch20 Python library. In this particular study,
the Adam optimizer21 was used.

When implementing a CNN, networks will most often use convolution operations that return multiple
channels, meaning that there are multiple different weight vectors to be learned. This results in a two-
dimensional output after this first layer. When stacking multiple convolutional layers in a network, Equation
1 holds for the first layer, but subsequent layers need a two-dimensional kernel. This is because CNNs
combine the features given by the multiple channels at once to learn higher-level features. If the two-
dimensional kernel is now K and the new feature map is I , Equation 1 becomes

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2)

where K is an m× n filter where m is the number of channels and n is the length of the desired kernel.
With the definition of the one- and two-dimensional convolution operations, it is important to understand

the dimensionality of the outputs at the end of each operation. As a general rule of thumb, when using
single-channel data (such as black and white images or a single hydrophone recording, for example), the
input number of dimensions is N and all subsequent outputs have N + 1 dimensions. However, when
using multi-channel data (such as color images coded by red, blue, and green, or multiple hydrophones),
the number of dimensions N remains unchanged after using the convolution operation. This is because
convolutional neural networks seek to find more intricate features by combining multiple features extracted
in previous layers.

To understand how this is implemented in PyTorch, for example, a single-dimensional signal is input
into a CNN. To set up the convolution operations, the developer would use the Conv1d function included in
the package and set nin channels = 1 and nout channels to the desired number of channels for that layer. The next
layer would then include a Conv1d function set with nin channels equal to the previous number of channels
and nout channels to the next desired number of channels. This would continue throughout the entire network
for however many convolutional layers the developer desires. As a clarification, the Conv1d function is
performing one-dimensional convolutions across channels using a two-dimensional weight filter; similarly,
the Conv2d function for two-dimensional input data performs two-dimensional convolutions with a three-
dimensional weight filter. The number in the name of the function refers to the number of dimensions over
which the filter is being moved.

In the first and subsequent layers, the output features are also passed through an activation function to
introduce non-linear properties into the network. In particular, this paper opted to use the rectified linear unit
(ReLU) activation function.22 During training, batch normalization23 was also used to accelerate learning
by allowing multiple samples to be input at once to take advantage of GPU processing. These equations
come from Goodfellow’s Deep Learning book24 and see Chapter 9 for a more in-depth explanation of using
and implementing CNNs in machine learning.
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3. METHOD

Predicting seabed type and source range with a CNN requires training data. This section illustrates how
the data were generated, how specific features summarizing the data were selected, and how the network
was designed for this problem.

A. DATA SIMULATION AND FEATURE EXTRACTION

For this experiment, data were generated with SUS13 charges in environments simulated by the range-
independent ocean model ORCA.19 The four different environments (muddy, mud over sand, sandy slit, and
sand) are shown in Figure 1. The charges were simulated at 30 equally-spaced ranges (r = 0.5 − 15 km)
away from a receiver. The charges were also simulated at three different depths (zs = 4, 18.3, or 35 m).
The environment type, range value, and explosion depth are the values that the network attempts to learn
to predict. In the case of regression, the network attempts to predict the actual values independently as a
regression problem, though the classification case attempts to predict which unique combination of values
the sample belongs to.

The SUS charges were also simulated with 20 different water column profiles sampled from real and
typical shallow-water measurements in an ocean 80 m deep to provide variability in the samples. The signals
are approximately 14 seconds at a sampling rate of 1,000 Hz making each consist of approximately 14,000
discrete pressures. The 14 seconds was chosen to maintain absolute travel time within the signal which
provides extra information about the range. Figure 2 shows two example signals from the dataset.

(a) r = 0.5 km, zs = 4 m, deep mud. (b) r = 15 km, zs = 35 m, sand.

Figure 2: Example signals from the dataset. The total length of each is 14 seconds at a sampling rate
of 1000 Hz. The two samples shown here illustrate range (r), source depth (zs), and environment. The
different time axes show that absolute arrival time is maintained in this dataset.

Before the data goes into the network, the dataset first needs to be normalized. For this particular
case, the data were normalized by the absolute maximum of the entire dataset. This normalization not only
places all values between -1 and 1, but it also maintains relative amplitude across the whole dataset. Another
method considered is normalizing each sample individually by its own maximum, but in that case the relative
amplitude information is lost.
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Proceedings of Meetings on Acoustics, Vol. 36, 070004 (2019) Page 5



Table 1: Details of the CNN. Layers in the network along with operation type, kernel size, number of
channels, stride, and what type of activation function was used at the end of the layer. In the case of the
linear operations, the kernel size indicates the number of output nodes. “Conv1D” is an abbreviation for
one-dimensional convolution.

Layer Layer Operation Kernel Size Channels Stride Activation Batch Norm
1 Conv1D 16 3 4 ReLU Y

2 Conv1D 8 9 4 ReLU Y

3 Conv1D 8 18 4 ReLU Y

4 Conv1D 8 27 4 ReLU Y

5 Linear 500 N/A N/A ReLU Y

6 Linear 3 or nclasses N/A N/A Linear or Softmax N

B. CONVOLUTIONAL NEURAL NETWORK TOPOLOGY AND HYPERPARAMETERS

The CNN used to predict environment and source range was built in Python with the PyTorch20 package.
PyTorch∗ is an open-source deep-learning platform that uses native Python syntax to quickly prototype,
train, and test networks of any configuration. PyTorch also automates the required algorithms to perform
gradient descent, learning rate scheduler components, and other useful algorithms making it ideal for proof-
of-concept and production work. The CNN used consisted of 4 convolutional layers and 2 linear operations.
The hyperparameters corresponding to each of the network layers can be found in Table 1.

The network was trained with the Adam optimizer21 using a learning rate of 0.001 that annealed via a
cosine function (a function included in PyTorch20) over 1,500 epochs. The loss function chosen was mean
squared error loss,24 which is useful for predicting the true physical values through regression. The learning
rate was annealed to allow the network to approach the optimal weights early in training and then refine
them later in training. The 7,200 data samples were split into training and testing datasets with a random
80/20 split (5,760 training samples, and 1,440 testing samples randomly divided each training instance).
The results of training this network are shown using 1,440 testing samples not used during training.

4. RESULTS

The results have been divided into two sections. The first sections shows the performance of a FNN
on this dataset of simulated pressure time series. (A previous study with an FNN was limited to 135 data
samples.11) The second section provides the results for the CNN detailed in Section 3.B on the dataset.

A. FEEDFORWARD NEURAL NETWORK RESULTS

To provide a baseline result, the dataset was input into a FNN. This FNN consisted of two hidden layers
with 5,000 nodes each, was trained across over 300 epochs, and predicted a number between 1 and 4 for
a seabed type, and value in km for the source-reciever range of the signal. Figure 3 shows the predictions
the trained network made on environment class and source range independently on the validation data. The
colors in Figure 3 are used to show the density of the predictions since there are over one thousand points on
each plot. The FNN was asked to only predict the environment number and the source range to better match
the previous study on FNNs,11 where more information about setting up a FNN can be found.

∗More information about how to use PyTorch can be found on their website at https://pytorch.org/.
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(a) Predicted vs correct environment. (b) Prediction vs correct range.

Figure 3: Prediction results from the FNN. There are 1,440 different points on these plots, so the col-
ormap scale shows the density of points (the darker the color, the denser the scatter plot). When the
environment predictions (Figure 3a) are rounded to the nearest integer, an 85% accuracy is achieved.
The source range predictions (Figure 3b) have a RMSE of 1.19 km when compared to the true range.
The dashed line shows the values that would be obtained if the network made an exactly correct predic-
tion.

To determine the accuracy of the environment class, the predicted environment value was rounded to the
nearest integer and compared against the true environment. With this rounding, the network was 85% accu-
rate on environment. The network correctly identifies the first environment, but as soon as more reflectivity
is added, the network struggles, especially with the sandy silt and sandy seabeds. However, the dark color
near the correct answer indicates a high density of points near there, so only a small number of these samples
are actually incorrect as indicated by the 85% accuracy. The source-receiver range predictions had a root
mean squared error (RMSE) of 1.19 km when compared to the true range. The FNN tends to over-predict
the range until around 8 km and then it begins to under-predict the range. However, the FNN still gets close
to correct range on most of the training samples.

If this FNN network was instead configured for classification, the FNN was 71.2% accurate on the 120
unique range-seabed classes. These results are significantly better than the results that used pressure time-
series instead of extracted features found in a previous study using FNNs.11 This improvement could be due
to the larger training dataset or the inclusion of absolute travel time in the signals.

B. CONVOLUTIONAL NEURAL NETWORK RESULTS

The CNN was trained on the same dataset but was designed and trained to learn environment number,
source range r, and source depth zs. Figure 4 shows the results of the CNN on the same size of validation
dataset from a different random split. A visual indicator that the network has learned well is how clustered
the different values are and how dark the points get near the correct answer line.

These figures show interesting trends when compared to the FNN. First, in Fig. 4, the predictions
all appear closer to the true value across all samples and all predictions. As for the seabed environment
prediction (as seen in Fig. 4a), there are several predictions that are outside the dense cluster, but the
majority are correctly predicted. The error in range prediction (as seen in Fig. 4b) increases towards the
min and max ranges, but are still relatively close to the correct values. This increase is likely due to the fact
that there are not training data points beyond these extremes to help the CNN distinguish these ranges. In
comparison with the FNN results, which had some wildly inaccurate predictions, the CNN predictions are
mostly correct or incorrect by only a small margin. The source depth predictions (as seen in Fig. 4c) show
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(a) Predicted vs correct environment. (b) Predicted vs correct range.

(c) Predicted vs correct source depth.

Figure 4: Prediction results from the CNN. There are 1,440 different points on these plots, so the col-
ormap scale is used to show density of points (the darker the color, the denser the scatter plot). When the
environment predictions (Figure 4a) are rounded to the nearest integer, a 98.96% accuracy is achieved.
The source range predictions (Figure 4b) has a RMSE of 0.1798 km when compared to the true range.
The source depth predictions (Figure 4c) has a RMSE of 0.7633 m. The dashed line shows the values
that would be obtained if the network made an exactly correct prediction.

a distinct grouping around the correct source depth.
Comparison of the accuracy confirms the superiority of the CNN to the FNN. The RSME for the CNN

range predictions is 0.1798 km—an order of magnitude better than the predictions of the FNN. The accuracy
of the environment prediction is 97%, which is 13% higher than that of the FNN. The CNN also predicts a
third label, the source depth, with an RMSE of 0.7633 m. The CNN performed much better than the FNN
even when predicting an additional label.

The results described come from the CNN structured for regression, but the final output layer can be
modified for classification. Beforehand, each sample must be labeled into a class representing its combi-
nation of source-receiver range, source depth, and environment. This creates 360 unique classes for the
network to learn. The same 80/20 training/testing data split was used. The CNN was 97% accurate in
classifying the 1440 testing samples, which is 26% higher than the FNN on triple the number of classes.
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5. CONCLUSION

This paper has shown that CNNs have the potential to learn source range and environmental classifica-
tion from time-series waveforms. The CNN on the waveforms performed better than an FNN applied to the
same set of data. This improvement implies a significant advantage to using convolutions on the grid-like
structure of pressure time-series data. This study also lays the ground work for developing deeper and more
complex networks, such as U-net CNNs25 and recurrent neural networks (such as long short-term memory
networks26), which have also shown success in image and speech recognition. Future work seeks to expand
on these results by increasing the amount of data, increasing the number of environments used, application
of noise to training and testing data, and applying the networks to real measured data.
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