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Acoustic source ranging in an uncertain ocean environment is a complicated problem, though classification
and regression-based machine learning algorithms show promise. A feedforward neural network (FNN) has
been trained to do either classification or regression on both the source-receiver range and ocean seabed type
using extracted time-domain features. Pressure time-series are generated to simulate signals received at
different ranges in three different ocean environments, representing sandy, muddy, and mixed sediment
seabeds. Four features are extracted from these waveforms: peak level, integrated level, signal length, and
decay time. These four features are used to train FNN for both classification and regression of range and
environment type, and the results are compared to a network trained on the time waveforms. Even for small
amounts of training data, the pressure time-series provide a higher accuracy than the extracted features.
These results lay a foundation for comparisons to the more computationally expensive convolutional neural
networks.
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1. INTRODUCTION

In ocean acoustics research, localizing acoustic sources and estimating the ocean environment present
many challenges. Some challenges of these inverse problems include nonlinear relationships between the
unknowns, high-dimensional search spaces, and large uncertainty due to ill-conditioning of the inferred
parameters. Solutions can be found using optimization techniques, like matched field processing,' but these
can be limited by the accuracy of the environmental information. Beyond optimization techniques, machine
learning and deep learning are becoming increasingly of interest for ocean acoustics problems due to their
ability to extract features and patterns from data.

Recent efforts have used machine learning to estimate source-receiver ranges. Steinberg et al.? intro-
duced the idea of using neural network techniques to localize an acoustic point source in a homogeneous
medium using single- and two-layer neural networks. Hougnigan et al.> used supervised machine learn-
ing for real-time range estimation and obtained an average error of 4.3%. Lefort et al.* and Niu et al.>%
found that machine learning classifiers outperform traditional methods such as inversion and matched field
processing. Others, such as Huang et al.” and Wang et al.® have had similar successes with using machine
learning techniques to localize sources in the ocean. Machine learning has also been used for classification
of underwater targets as done by Fischell et al.” Seabed parameters, such as attenuation and sound speed,
have also been estimated with machine learning in the work done by Piccolo et al.'® on features extracted
from noisy and clean data.

The goal of this paper is to illustrate the potential of machine learning models for predicting environmen-
tal information from extracted signal features or from full time-domain signals. Specifically, the experiment
employs a feedforward neural network on simulated acoustic signals to predict a range and environment
class simultaneously.

2. BACKGROUND

A. UNDERWATER ACOUSTICS AND SUS CHARGES

To generate the data used in this experiment, the signals underwater sound (SUS) charge spectra were
simulated through three different environments representing sandy, muddy, and mixed sediment environ-
ments. The SUS charge simulations follow the model by Chapman'! as explained in Sen et al.'? for a 0.034
kg charge in all cases. The parameterization of these three environments is displayed in Figure 1. These
figures show a vertical “slice” from the surface of the ocean to the sediment layers that constitute the ocean
floor. The water column sound speed profile, typical of a shallow ocean, is shown by the black line, with
constant attenuation and density listed in the legend with the subscript w. Each sediment layer [ is param-
eterized by it’s thickness h; in m, compressional sound speed c¢; at the top and bottom of the layer in m/s,
density p; at the top and bottom in g/cm?, and compressional attenuation «; at the top and bottom in dB/\.
The bottom boundary, or half-space, is defined by the compressional sound speed, attenuation and density.
These parameters are fed into a forward model to simulate the response of the ocean.

The response of the ocean environment is simulated with ORCA.'*> The ORCA model calculates normal
mode functions in range-independent environments by calculating upward- and downward-reflecting plane
wave reflections. The mode functions can then be used to generate an impulse response of the ocean at a
certain range from the source. This impulse response is convolved with the simulated SUS charge at a depth
z = 18.3 m, to produce the time-series signal used in this study.

B. MACHINE LEARNING METHODS

Machine learning is a data analysis method that builds models dynamically by identifying patterns.
Machine learning has exploded in recent years with new models and methods being published regularly.
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Figure 1: The parameterization of the sandy (left), muddy (center), and mixed sediment (right) environ-
ments. The blue color represents the water layer, the light brown indicates the sediment layers, and the
gray indicates the half-space boundary. The figures also contain a list of the various parameters at each
of the layer boundaries: « is the attenuation in dB/) and p is the density in g/cm>, while the subscript de-
notes the layer identifier (w for water, hs for half-space, number for sediment layers) and the superscript
denotes the top (t) or the bottom (b) of the layer.

Instead of venturing into the latest and greatest models, this paper explores the application of deep learning
to source localization and environmental classification using a feedforward neural network (FNN) model.'

The FNN is an artificial neural network that, in its simplest form, takes inputs and maps them to outputs
through learned transformations. The “neurons”, also referred to as nodes, contain a vector of values. The
neurons in the network are ordered into layers, where the first layer is the input layer, the last layer is the
output layer, and all layers between are hidden layers. Each neuron in each layer is “fully connected” to

every previous neuron in the previous layer, and the value of a neuron j at the next layer can be expressed
by O;:
J

Oj = f(netj), (1)
neurons
net; = bj + Z W;x; 2)
=1

where w; is the weight applied to the previous neuron output x;, b; is a bias term unique to each new
neuron, and f(net;) is an activation function for layer j chosen by the network designer (such as a sigmoid
function, the rectified linear unit (ReLU) function, ' or the softmax function). The weight values w; and bias
values b; are dynamically learned by the network through many iterative steps by calculating the error of the
predictions against the true output and running a gradient descent through the network. Hyperparameters
are set by the network designer to control the behavior of learning, the number of neurons in each layer, and
the type of activation function used. The mathematics behind gradient descent are beyond the scope of this
paper, and there are many tools available to automate the process, such as the PyTorch!'® implementation of
the Adam Optimizer.!’

For this paper, FNNs were selected due to their simplicity and past successes. Their simplicity makes
this study a convenient benchmark for other network types in the future as they strive to localize acoustic
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sources and extract environmental information.

3. METHOD

Development of the FNN approach to predicting environmental information as well as source range re-
quires training data. This section illustrates how the data were generated, how specific features summarizing
the data were selected, and how the network was designed for this problem.

A. DATA SIMULATION AND FEATURE EXTRACTION

For this experiment, data were generated with SUS'! charges in environments simulated by the range-
independent ocean model ORCA.!3 The three different environments (sandy, muddy, and mixed sediment)
are shown in Figure 1. There were also five different sound speed profiles used to provide variability and
expand the dataset. The charges were simulated at nine different ranges (ranging from 0.5 to 11.5 km)
away from a receiver. The signals are approximately three seconds each consisting of approximately 5,000
discrete pressures. The three second window was chosen to encompass the majority of the received signal
no matter the range while reducing the number of points. To illustrate the variability in the simulated data,
Figure 2 shows two example signals from the sandy and mixed environments, where one is at the closest
range of 0.5 km and the other is at the farthest range of 11.5 km. Figure 2 also shows that the signals
fit within three seconds, demonstrating that the full data do not contain the absolute travel time from the
explosion to the sensor.

To reduce the total number of inputs, four specific features were hand-selected to represent each of the
signals. The first feature was peak level (shown by the red arrow in Fig. 2b), which is simply the highest
recorded pressure in the signal. The second was integrated intensity calculated across the three seconds.
The third was the total time of the high-intensity explosion (the dashed green line in Fig. 2b). The fourth
and final feature was the decay time (shown by the yellow solid line in Fig. 2b) which was the time taken
until the pressure reached a specified threshold.

The combination of three environments, seven source ranges, and five sound speed profiles produces
a dataset of 135 samples. The authors understand that 135 samples is a very small number of training
samples for FNNs and other machine learning models. The number used in this study was limited by the
time required to hand-extract some of the features described above. Future work in applying deep learning
algorithms to source localization and environmental classification will use many more samples for training
and testing to take full advantage of the potential for a neural network to learn a more generalized view of
the data. Addition of noise to the simulated data was also not investigated as part of this study, but is being
considered for future ways to improve training networks with synthetic data.

B. FEEDFORWARD NEURAL NETWORK TOPOLOGY AND HYPERPARAMETERS

The FNN used to predict environment and source range was built in Python with the PyTorch!® package.
PyTorch* is an open source deep learning platform that uses native Python syntax to quickly prototype, train,
and test networks of any configuration. PyTorch also automates the required algorithms to perform gradient
descent and other learning algorithms making it ideal for proof-of-concept and production work.

The network structure used to test the ability of a FNN classify range and environment type is listed in
Table 1. The hidden linear layer can be repeated as many times as desired to create a multi-layered network.
This paper shows results from one and two hidden layers with 250 neurons each. The input layer takes either
the four extracted features as detailed in Section 3.A or time series waveforms depending on the test. The

*More information about how to use PyTorch can be found on their website at https://pytorch.org/.
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(a) A simulated received SUS signal at a sensor 0.5 km (b) A simulated received SUS signal at a sensor 11.5 km
away in the sandy environment. away in the muddy environment.

Figure 2: Example simulated SUS signals. Three of the four extracted features are displayed in Figure
2b: the red arrow denotes the peak level, the dashed green line denotes the total time, and the yellow line
denotes decay time.

Table 1: Details of the FNN. The different operations performed with the network are listed, including
the input and output sizes of the linear operations. The type of activation function used at each layer after
the linear operation is also reported. The “Hidden to Hidden” layer is optional or repeatable depending
on the network designer’s needs.

Layer Name Input Size | Output Size | Activation
Input to Hidden 5,000 0or4 | 250 ReLU
Hidden to Hidden | 250 250 ReLU
Hidden to Output | 250 27 Softmax

final layer outputs a probability distribution across 27 values each corresponding to the unique combination
of nine ranges and three environments used in this study.

One fundamental question to address is how many hidden neurons should be used in the network. The
machine learning community has not found a one-size-fits-all answer for determining the number of neurons
in a hidden layer. There appear to be two schools of thought for picking the number of neurons: decreasing
dimensionality and increasing dimensionality. A decrease in dimensionality keeps the network size small
but could lead to overgeneralization and not getting enough information. An increase in dimensionality
increases the network size which increases the computation time but has the benefit of allowing the network
to learn to ignore certain connections. This paper utilizes increasing dimensionality with the extracted
features and decreasing dimensionality with the full signals in an attempt to compare identical networks.
Due to the preliminary nature of this paper and multiple tests leading to the selected hyperparameters, the
authors believe that the network sizes are acceptable. If FNNs are to be used in future research, this question
should be more fully addressed.

The network was trained with the Adam optimizer'’ using a learning rate of 0.001 that annealed via a
cosine function over 1000 epochs. The loss function used was cross entropy,'® which is useful for classifica-
tion. The learning rate was annealed to allow the network to approach the optimal weights early in training
and then refine them later in training. The 135 data samples were split into training and testing datasets
with a random 75/25 split (101 training samples, and 34 testing samples randomly divided each training
instance). The results of training this network are shown with the 34 testing samples that were not used

17
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during training.

The data were also normalized before being input into the network. The selected normalization depended
on the type of input data. The normalization applied to the extracted features is detailed in Section 4.A, and
the normalization for the full wave forms is detailed in Section 4.B. Normalization is encouraged in machine
learning models to avoid the need for large weights, which would require a longer time to learn.

4. RESULTS

The results have been divided into two sections. The first is to show how the network learns from the
four, extracted, time-domain features. The second is to show the ability of the network to learn directly from
the simulated time series.

A. RESULTS USING ONLY EXTRACTED FEATURES

This section shows the results of the FNN trained on four extracted features. Before the data were passed
to the network, each feature was normalized by the maximum value across all samples of that particular
feature to keep the weight values low. Two different networks were used: one with one hidden layer and
another with two hidden layers.

When a new sample is passed through the FNN trained for classification, a probability distribution is
returned. The network predicts which classes are more probable than others. There are 27 separate class
numbers that correspond to a unique combination of range and environment. These probability distributions
are shown in Figure 3 for an FNN with one hidden layer on the top and with two hidden layers on the
bottom. The x-axis corresponds to the test sample number, which were different random draws for the two
cases shown. The plots on the left correspond to the true class distribution that the network, while the plots
on the right correspond to the FNN predicted distribution.

Not every combination of range and environment is represented in these figures due to the random draw.
A random draw, in this case, was useful to quickly determine the network’s potential for learning as well
as seeing the network’s potential for generalizing in the cases where more than one instance of a particular
class is in the testing dataset. As mentioned earlier, there are only 135 total samples in this preliminary
dataset, which is not sufficient for a machine learning model to generalize for all cases. To counter this, the
networks were trained with different random splits across six different runs to obtain an average percentage.
While there could have been a hold-out set of one from each environment, a random draw seemed more
intuitive for these preliminary results.

The class number with the highest probability in each case is used to get a measure of accuracy. To
get a better measure of accuracy, six different networks were trained with a different train-test split in each
instance. The accuracy of the single hidden layer network in one instance (as in Fig. 3b) was 91.1%, while
the average accuracy across six different tests is 86.3%. On the other hand, the two hidden layer network
in one instance (as in Fig. 3d) had an accuracy of 94.1%, while the average accuracy was 91.1% across
six different tests. The FNN can classify the unique combinations of range and environment when using
hand-selected features.

B. RESULTS USING THE FULL WAVEFORM

Building on the results from the extracted features, the FNN are now applied to the entire pressure
time series. In this case, each input sample has approximately 5,000 input features, each containing a
value of the simulated signal. The simulated signals are normalized by the absolute maximum of the entire
dataset. Again, the normalization is done to help the network learn faster and keep smaller weight values.

Proceedings of Meetings on Acoustics, Vol. 36, 070003 (2019) Page 6
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Figure 3: Probability distribution results of training a feedforward neural network by using only extracted
features (peak level, integrated intensity, total time, and decay time) on one random split. These figures
show two different cases: Figures 3a and 3b refer to a FNN with one hidden layer while Figures 3c and
3d refer to a FNN with two hidden layers. Comparison of the predicted class with the highest probability
to the actual class shows that in these particular random training and testing split, the FNN with one
hidden layer is 91.1% accurate, while the FNN with two hidden layers is 94.1% accurate.
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Figure 4: Probability distribution results of training a feedforward neural network by using the full
waveforms. These figures show two different cases: Figures 4a and 4b refer to a network with one hidden
layer while Figures 4c and 4d refer to a network with two hidden layers. When asked to choose the class
with the highest probability, the network was 61.7% accurate with one hidden layer and 52.9% accurate
with two hidden layers in these particular random training and testing splits.

The motivation behind using the whole waveform is to reduce the amount of time that feature extraction
requires.

The FNNs with one and two hidden layers were trained on 101 waveforms and then tested on the
remaining 34. The resulting probability distributions for the predicted classes of the testing samples for one
instance of the random training and testing split are shown in Figure 4. Again, the left figures correspond to
the actual class distribution while the right figures show the probability distribution predictions of the FNN
on the same samples.

The network trained on the time series does significantly worse than the network trained on extracted
features. The predicted class with the highest probability is used to describe the accuracy of the predictions.
In the case of one hidden layer, a single test could produce an accuracy of 61.7% (as in Fig. 4b), while
there was an average of 63.2% accuracy across six tests. With two hidden layers, a single test could produce
an accuracy of 52.9%, while the average accuracy across six tests increases to 67.2%. Full waveforms may
contain more information than what is represented by extracted features, but a FNN does not have the correct
structure to make accurate predictions on the waveforms.
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There is also a significant increase in computational load when using the full waveforms. Using the
extracted features in the one-hidden-layer FNN took approximately 25 seconds on a personal laptop to train
over 1000 epochs. With the same network structure, using full waveforms took approximately two minutes
and 40 seconds. In the case of two hidden layers, the features took approximately one minute while the
waveforms took three minutes to train.

S. CONCLUSION

This paper has shown that FNNs have the potential to learn source range and environmental classifi-
cation simultaneously. The FNN applied to four extracted features from waveforms performed better than
on an FNN applied to the waveforms themselves. This is because the FNN takes into account the exact
positioning of input “features”. This positioning works well for a series of features that are always in the
same position, but does not work on a signal that could vary significantly from point to point. The successes
of the FNN on these simulated data also illustrates the potential for deeper and more complicated networks,
such as convolutional neural networks'® and recurrent neural networks (such as long short-term memory
networks?’) which have shown success in image and speech recognition due to the spatial and temporal
relationships within in the data. These more advanced networks tend to do their own feature extraction,
which would remove the time needed to extract features by hand. Future work seeks to expand on these
preliminary results by increasing the amount of data, developing deeper and more advanced networks, and
by testing the networks on real data.
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