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Acoustic radiation modes have become a useful and widespread analysis tool in situations involving 
sound radiation from vibrating structures. They have found use in applications such as active structural 
acoustic control, optimization of structures for minimal sound radiation, and acoustical holography. 
Analytical expressions for the radiation resistance matrix, from which the radiation modes are obtained, are 
available only for a small number of simple source geometries, while the obtaining of radiation modes for 
more complicated structures typically requires boundary element analysis or similar computational 
methods. In addition, better characterization of radiation modes could lead to rules of thumb or 
expressions for evaluating them more quickly, e.g. when the modes must be evaluated across a wide 
frequency band. This paper details the development of quasi-analytical expressions for the radiation 
resistance matrices of singly-curved structures such as cylinders, cylindrically curved plates, and angularly 
truncated cylinders. Through these expressions, radiation modes for these structures may be obtained 
without the use of typical computational methods. Wavenumber transforms of these modes are shown, and 
trends of the physical and wavenumber space representations are investigated as frequency varies. It is 
found that the most efficient modes morph with frequency to match the acoustic wavenumber.
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1. INTRODUCTION

Acoustic radiation modes form an orthogonal basis that describes the radiation of sound from a 

surface velocity distribution.  These modes have long been present in the search for a meaningful 

connection between vibration patterns and the resulting acoustic radiation, but they are less often 

utilized than the more popular methods of wavenumber filtering and structural-mode-based analysis.    

In contrast to structural modes, the radiation modes do not depend on the material or mounting 

conditions of the vibrating structure, but only on the geometry of the fluid-structure interface.  They 

also orthogonalize the radiation operator, meaning that they radiate sound power independently of one 

another, while structural modes exhibit coupling in the generation of sound power.  Radiation modes 

originally found use in active structural acoustic control as a metric for reducing total sound power;1 

because each radiation mode radiates sound power independently, minimizing vibration in one 

radiation mode invariably lowers the total sound power radiated.  More recently, radiation modes have 

been investigated as a method of calculating sound power from experimental vibration measurements,2 

as basis functions for acoustical holography,3 and as design parameters for quieter structures.4  

Though not originally known by their current name, radiation modes were first introduced in the 

literature in the early 1990s through three papers published within a year of each other.  Photaidis first 

published a paper on the relationship between radiation modes and wavenumber filtering,5 though he 

cited Borgiotti as the first to employ the modes.  Borgiotti’s paper came two months later, focusing on 

the relationships between radiation modes and the radiated sound power.6  The third paper, by 

Sarkissian, introduced a simpler way to calculate radiation modes by eigenvector decomposition of the 

radiation resistance matrix;7 this is the method commonly used today.  Both Sarkissian and Photaidis 

were clear that radiation modes tend to have a preferential or peak wavenumber and that at high enough 

acoustic wavenumber 𝑘, the radiation modes with peak wavenumbers nearest to 𝑘 tended to be the 

most efficient radiators of power.  This was shown by examples at various frequencies. 

At the present state of the literature, analytical formulations for the acoustic radiation modes, or 

the radiation resistance matrix from which they are derived, exist for two structure-fluid interface 

geometries, namely flat plates in infinite baffles and spheres.  All other modes must be calculated 

through the means of boundary integral equations or the boundary element method, as described in 

Ref. 3.  This requires significantly more computational power than the simple evaluation of expressions 

for the modes, especially if modes are needed over a large frequency range.  Computational demands 

of radiation mode calculations could be minimized through additional analytical expressions for 

modes, as well as through better characterization of mode trends over frequency.  Efforts in this latter 

regard have recently been undertaken for sphero-cubic structures,8 and the current work attempts to 

further develop such characterizations. 

This paper presents a formulation for the radiation resistance matrix of cylindrically curved objects.  

The matrix is formulated in terms of the cylindrical eigenfunctions of the wave equation.  The resulting 

radiation modes are presented along with insight into their trends with frequency.  Not only are the 

features noted by Photaidis and Sarkissian observed again here, but the trends of these features as the 

frequency is varied are investigated.   It is found that the modes morph to meet the requirement that 

the most efficient modes must have peak wavenumber close to 𝑘.  In addition, Sarkissian and Photaidis 

investigated only the axial dependence of radiation modes with axial symmetry, but here the full two-

dimensional cylinder modes are shown, and the effects of the azimuthal dependence is shown in both 

wavenumber and physical domains. 
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2. METHODS

The radiation resistance matrix is derived from the expression for sound power radiated from a

vibrating structure.  Given the acoustic pressure �̃� and the normal structure velocity �̃�, the sound power 

may be calculated as 

Π =
1

2
Re {∫ �̃�∗�̃� 𝑑𝑆

𝑆

}, (1) 

where 𝑆 is the surface of the vibrating structure, and (⋅)∗ denotes the complex conjugate.  If the 

vibrating structure is discretized into 𝑁 discrete radiators of equal area, this may be rewritten in vector 

form as 

Π =
𝑆

2𝑁
Re{�⃗�𝐻 �⃗⃗�} (2) 

where �⃗� and �⃗⃗� are 1 × 𝑁 vectors containing the acoustic pressure and normal surface velocity, 

respectively, evaluated at each surface point, and (⋅)𝐻 indicates the Hermitian transpose.  Because the 

pressure can be written in terms of the surface velocity through Green’s functions, it is possible to write 

the power in terms of the surface velocities only as 

Π =
𝑆

2𝑁
Re{�⃗⃗�𝐻𝒁�⃗⃗�} =

𝑆

2𝑁
�⃗⃗�𝐻Re{𝒁}�⃗⃗�, (3) 

where 𝒁 is the matrix of Green’s functions between each pair of locations.  The radiation resistance 

matrix is then defined as 

𝑹 =
𝑆𝑒

2
Re{𝒁}, (4) 

with 𝑆𝑒 = 𝑆/𝑁 being the area of a single discrete radiator.  Therefore, the derivation of the radiation

resistance matrix is as simple as finding the Green’s function between surface points. 

This paper presents eigenfunction decomposition formulations for the radiation resistance matrix 

of cylindrically curved objects in separable geometries.  These geometries, shown in Fig. 1, include a 

full cylinder of finite length on an infinite cylindrical baffle, as in Fig. 1(a); a partial cylinder on an 

infinite cylindrical baffle, as shown in Fig. 1(b); and a partial cylinder radiating into a partial cylindrical 

space of extent 𝜃𝐿, as shown in Fig 1(c).  In each of these figures, grey surfaces are presumed to

continue out to infinity. 

Figure 1: Cylindrical structures treated in this work. (a) A finite cylinder on an infinite cylindrical baffle. (b) A 

partial cylinder on an infinite cylindrical baffle. (c) A partial cylinder radiating into a partial cylindrical space of 

𝜽-extent 𝜽𝑳.

The derivation is as follows: The eigenfunction decomposition in cylindrical coordinates allows 

the pressure field generated by the vibration of one discrete element to be expressed in the form 
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𝑝(𝑟, 𝜃, 𝑧) = ∑ ∫ 𝑑𝑘𝑧

∞

0

∞

𝑚=0

(𝐴𝑚 cos 𝑚𝜃 + 𝐵𝑚 sin 𝑚𝜃)

× (𝐷(𝑘𝑧) cos 𝑘𝑧𝑧 + 𝐸(𝑘𝑧) sin 𝑘𝑧𝑧)𝐻𝑚
(2)

(𝑘𝑟𝑟)

(5) 

where 𝑚 and 𝑘𝑧 are separation constants, 𝑘𝑟 = √𝑘2 − 𝑘𝑧
2, and 𝐴𝑚, 𝐵𝑚, 𝐷(𝑘𝑧), and 𝐸(𝑘𝑧) are constants

to be determined.  The velocity when one discrete element of the structure is vibrating may be 

approximated with a point source of equivalent source strength.  Then, expanding the point source in 

terms of the 𝜃 and 𝑧 eigenfunctions, and applying Euler’s equation at the surface of the structure, we 

can find that the 𝑖𝑗th element of the radiation resistance matrix for the first two structures in Fig. 1 is 

𝑅𝑖𝑗 =
𝜔𝜌0𝑆𝑒

2

𝑎𝜋2
∑ cos(𝑚Δ𝜃𝑖𝑗) ∫ Im {

𝐻𝑚
(2)

(𝑘𝑟𝑎)

𝑘𝑟𝐻𝑚
(2)′

(𝑘𝑟𝑎)
} cos(𝑘𝑧Δ𝑧𝑖𝑗) 𝑑𝑘𝑧

𝑘

0

∞

𝑚=0

, (6)

where 𝑎 is the radius of the cylinder, 𝜔 is the angular frequency, 𝜌0 is the density of air, and Δ𝜃𝑖𝑗 and

Δ𝑧𝑖𝑗 are the difference in 𝜃 position and 𝑧 position of the 𝑖th and 𝑗th discrete elements.  For the structure

in Fig. 1(c) there are homogeneous Neumann boundary conditions at 𝜃 = 0, 𝜃𝐿 instead of a periodicity

condition.  Thus the finished expression is 

𝑅𝑖𝑗 =
𝜔𝜌0𝑆𝑒

2

𝜋𝑎𝜃𝐿
∑ cos (

𝑚𝜋𝜃𝑖

𝜃𝐿
) cos (

𝑚𝜋𝜃𝑗

𝜃𝐿
)

∞

𝑚=0

∫ Im {
𝐻𝑚𝜋/𝜃𝐿

(2) (𝑘𝑟𝑎)

𝑘𝑟𝐻𝑚𝜋/𝜃𝐿

(2) ′
(𝑘𝑟𝑎)

} cos(𝑘𝑧𝛥𝑧𝑖𝑗) 𝑑𝑘𝑧

𝑘

0

, (7) 

where 𝜃𝑖 and 𝜃𝑗 are the 𝜃 positions of the 𝑖th and 𝑗th discrete elements.

The radiation resistance matrices in Eqs. (6) and (7) may be used for power calculations as in Eq. 

(3), or they may be decomposed into the radiation modes.  Eigendecomposition of these matrices gives 

eigenvectors {𝒒𝑟}, which are the radiation modes, and eigenvalues {𝜆𝑟}, which are proportional to the

radiation efficiencies of the associated modes.  The radiation modes are presented in the following 

section at various 𝑘𝐿 values for a cylinder with 𝐿/𝑎 = 6 and with a 𝜃 extent of 𝜋/2 for the partial 

cylinders. 

In addition to simply looking at the radiation modes themselves, the following results include 

wavenumber transforms of the radiation modes for a full cylinder.  Because the radiation modes are 

real, the magnitude of the wavenumber transforms will be symmetrical across the axes; thus only the 

first quadrant of the wavenumber domain is shown.  The radiation modes are padded by many zeros 

above and below the mode in the 𝑧 direction to represent the rigid baffle, after which a two-dimensional 

fast Fourier transform is used.  These transforms allow us to look for the trends that Sarkissian and 

Photaidis mentioned as the frequency varies. 

3. RESULTS

The first nine radiation modes for each geometry are shown in Fig. 2 for 𝑘𝐿 ≪ 1, sorted by radiation 

efficiency, with parts (a)-(c) corresponding to the geometries presented in Fig. 1, parts (a)-(c).  For 

each geometry, there is a multipole-like pattern in the series of modes: The first mode is a breathing, 

or monopole mode, the next two or three modes feature two out of phase regions like a dipole, the few 

after that resemble longitudinal or lateral quadrupoles, and so on.  This similarity can also be seen in a 

plot of the efficiencies, given for the full cylinder modes in Fig. 3; below about 𝑘𝐿 = 0.5 rad the 

monopolar modes follow a 6 dB/octave increase, the dipolar modes follow a 12 dB/octave trend, and 

the quadrupolar modes increase at 18 dB/octave.  It is interesting to note that the mode shapes for the 

partial cylinders on a cylindrical baffle and those for partial cylinders radiating into a partial space are 

very similar at this low 𝑘𝐿.  Some of the modes switch places in the lineup of efficiency, and there are 

slight differences in those that match, but the general shapes are the same. 
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Figure 2: The nine most efficient acoustic radiation modes for each of the three geometries in Fig. 1. (a) Full 

cylinders, (b) Partial cylinders on a cylindrical baffle, (c) partial cylinders radiating into a quarter space. 

 

 
Figure 3: Efficiencies of the few most efficient full cylinder modes at low kL. The multipole-like effects can be seen 

in the rate of increase of these efficiencies with frequency. 

 

Next we turn to the wavenumber transforms of the full cylinder modes.  Initial wavenumber 

transforms of the most efficient modes with zero-order, first-order, and second-order 𝜃 dependence are 

shown in Fig. 4 for 𝑘𝐿 = 6.  It is seen that each mode has only one wavenumber component in the 𝜃 
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direction, corresponding to the order of the 𝜃 dependence.  In other words, the 𝜃 dependence of each 

of the modes is purely sinusoidal.  All wavenumber transforms for the balance of this paper will 

therefore be presented as line plots, showing the 𝑘𝑧 dependence for only the 𝑘𝜃 value at which the

transform is non-zero. 

Figure 4: The most efficiently radiating modes with zero-order, first-order, and second-order 𝜽 dependence, and 

their associated 2D wavenumber transforms. 

These line plots are shown in Fig. 5 for the four most efficient modes (from left to right) with no 

𝜃 dependence.  Here we begin to look at trends with frequency, as the same four modes are shown at 

several 𝑘𝐿 values.  In Fig. 5(a) the first four modes each peak at a different wavenumber, but as the 

acoustic wavenumber increases from 𝑘𝐿 = 6 to 𝑘𝐿 = 9 in Fig. 5(b), it is seen that the first two modes 

peak around the same 𝑘𝑧𝐿, and the third mode has shifted to a peak wavenumber at 𝑘𝑧𝐿 = 0.  As the

frequency continues to increase, the first two modes peak at around the same wavenumber, which 

closely follows the acoustic wavenumber, and the third and fourth mode begin to peak at the same 

wavenumber as well, which follows after the more efficient modes’ peak wavenumber.  Animations 

of these trends, of which the plots in Fig. 5 are just a snapshot, can be found at 

https://doi.org/10.6084/m9.figshare.8248883. 

In other words, pairs of modes emerge that have the same or similar peak wavenumbers.  The peak 

wavenumbers of the most efficient pair follow the acoustic wavenumber, and each subsequent pair of 

modes has a peak wavenumber that follows that of the pair before.  In each pair of modes there is one 

mode which has even symmetry about the center of the structure’s z-extent and one which has odd 

symmetry about that center.  As the modes morph to higher wavenumbers, these symmetries do not 

change.  It is interesting as well to look at the efficiencies of these pairs of modes at high 𝑘𝐿.  Shown 

in Fig. 6 are the efficiencies of the four modes whose trends are given in Fig. 5.  It can be seen that at 

high enough 𝑘𝐿 the two modes with similar peak wavenumbers also have similar efficiencies.  These 

efficiencies constantly leapfrog each other as the wavenumbers increase, but the pairs with no 𝜃 

dependence do not overtake each other in efficiency.  This means that the two most efficient modes 

will always be the two most efficient modes at high 𝑘𝐿. 
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Figure 5: The physical space and wavenumber space representations of the first four radiation modes with no 𝜽 

dependence. (a) at 𝒌𝑳 = 𝟔. (b) at 𝒌𝑳 = 𝟗. (c) at 𝒌𝑳 = 𝟏𝟐. (d) at 𝒌𝑳 = 𝟏𝟓. (e) at 𝒌𝑳 = 𝟏𝟖. 
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Figure 6: Efficiency of the first few modes with zero-order and first-order 𝜽 dependence at high 𝒌𝑳 

The trends above are also exhibited in modes with first-order or second-order 𝜃 dependence, 

though with a slight variation.  Figure 7 shows the four most efficient modes with second-order 𝜃 

dependence at 𝑘𝐿 = 18, which corresponds to Fig. 5(e).  These modes come in degenerate pairs; the 

first two modes have identical efficiencies and wavenumber transform magnitudes, as do the last two 

shown.  The difference between the first and second (and between the third and fourth) modes is simply 

a sin 2𝜃 versus a cos 2𝜃 dependence.  As such, all four of these modes become a peak wavenumber 

“pair” in which the peak wavenumbers are similar and change together with frequency.  The 

wavenumber transforms shown here make obvious an important point; these most efficient modes with 

second-order 𝜃 dependence do not follow the acoustic wavenumber, but rather the effective acoustic 

wavenumber given by √𝑘2 − 𝑘𝜃
2, also known as the radiation circle.  Animations of these modes and 

their wavenumber transforms as frequency is varied are also available at the link given above, 

https://doi.org/10.6084/m9.figshare.8248883. 

 

 
Figure 7: The physical space and wavenumber space representations of the first four radiation modes with second-

order 𝜽 dependence at 𝒌𝑳 = 𝟏𝟖. 
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4. DISCUSSION

As has been shown above, the most efficient radiation modes have peak wavenumbers that tend to

follow the radiation circle as it moves with frequency.  This is true regardless of the circumferential 

wavenumber of the modes.  While 𝑘𝑧 changes with frequency in this case, 𝑘𝜃 does not.  Similar analysis

of the other structures given in Fig. 1 show that this morphing effect occurs in the z dimension for all 

three mode types, but in the 𝜃 dimension only for the partial cylinders on an infinite cylindrical baffle.  

Comparison with other known radiation modes, such as those for flat baffled plates and those for 

spheres, suggests that this morphing of radiation modes with frequency occurs only in dimensions 

where the structure does not span the whole dimensional space.  For example, a vibrating sphere covers 

the whole 𝜙 and 𝜃 dimensions over which the fluid-structure interface is defined, and consequently 

there is no variation of the radiation modes with frequency.  In contrast, the radiation modes of flat 

plates morph with frequency in both dimensions over which they are defined; this is because the flat 

plate does not cover the full breadth of either of those dimensions. 
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