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Abstract: In ocean acoustics, many types of optimizations have been employed to locate
acoustic sources and estimate the properties of the seabed. How these tasks can take advan-
tage of recent advances in deep learning remains as open questions, especially due to the
lack of labeled field data. In this work, a Convolutional Neural Network (CNN) is used to
find seabed type and source range simultaneously from 1 s pressure time series from impul-
sive sounds. Simulated data are used to train the CNN before application to signals from a
single hydrophone signal during the 2017 Seabed Characterization Experiment. The train-
ing data includes four seabeds representing deep mud, mud over sand, sandy silt, and sand,
and a wide range of source parameters. When applied to measured data, the trained CNN
predicts expected seabed types and obtains ranges within 0.5 km when the source-receiver
range is greater than 5 km, showing the potential for such algorithms to address these prob-
lems. VC 2020 Acoustical Society of America
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1. Introduction

In ocean acoustics research, knowledge of the ocean environment is important for localizing
acoustic sources. However, localizing acoustic sources, using an algorithm such as matched-field
processing (MFP),1 is difficult in an uncertain ocean environment. Matched-field inversions2 have
been used in many cases to estimate environmental parameters.3,4 Simultaneous estimation of
source location and environmental characteristics of an unknown ocean environment presents
multiple challenges.4–6 Some of these challenges include nonlinear relationships between the
unknowns, high-dimensional search spaces, and large uncertainty due to ill-conditioning of the
inferred parameter values.

Recently, machine and deep learning approaches to the problems of source localization
have gained traction. These efforts include using neural networks to localize a point source in a
homogeneous medium,7 supervised learning for real-time range estimation,8 classifying underwa-
ter targets,9 and other machine learning techniques to localize sources in the ocean.10,11 Some
studies, such as those done by Lefort et al.12 and Niu et al.13,14 have found that machine learning
classifiers outperform MFP, further suggesting the relevance of using machine and deep learning
in the underwater acoustics field.

Machine learning has also been used to make predictions about ocean environmental
parameters such as attenuation and sound speed. Early efforts included the use of neural and sta-
tistical classifiers by Michalopoulou et al.,15 artificial networks on transmission loss by Benson
et al.,16 and global and hierarchical approaches by Stephan et al.17 Recently, Piccolo et al.18

used generalized additive models for predicting compressional sound speed and attenuation from
time-domain features. A more detailed review of machine learning applications in various fields
of acoustics can be found in Bianco et al.19

In this paper, a machine learning model known as a convolutional neural network
(CNN) is used to simultaneously predict source range and seabed type. This CNN is trained on
synthetic pressure time waveforms and, as a proof of concept, applied to waveforms measured
on a single pressure sensor20 from an impulsive signals underwater sound (SUS) source21,22 in the
New England Mudpatch during the 2017 Seabed Characterization Experiment (SBCEX2017).

a)Author to whom correspondence should be addressed.
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2. Background and methodology

Several steps are needed before a CNN can simultaneously predict source range and environment
type on a real-world measurement. First, the CNN training data need to reflect the real-world
testing data and incorporate the variability likely to be found. The real-world testing data used
in this work is described in Sec. 2.1. Second, due to the lack of real-world labeled data, simulated
training data were generated using a verified source spectrum and a propagation model, as
described in Sec. 2.2. Finally, the training data are used to tune the hyperparameters of the
CNN. The CNN model architecture and tools used to build and train the model are presented in
Sec. 2.3.

2.1 Intensity vector autonomous recorder in SBCEX2017

SBCEX2017 (Ref. 23) was conducted on the New England Mud Patch centered at
½40�280N; 70�350W� in the Spring of 2017. The Intensity Vector Autonomous Recorder (IVAR)
system deployed by the Applied Physics Laboratory, University of Washington, recorded the
waveforms of SUS Mk64 charges deployed at ranges of 2–13 km. Three to five SUSs were
deployed at each location. More details about the system, the recordings, locations of the SUS
stations, and the experiment conducted can be found in Ref. 20.

While IVAR has multiple sensors for measuring both pressure and particle velocity, the
data used here are restricted to the pressure sensor located 1.32 m above the seabed. Examples
are displayed in Figs. 1(a) and 1(b). Because the signals were downsampled to 5000 Hz and iso-
lated to 1 s, the simulated training data are each 1 s long and have a sampling frequency of
5000 Hz. To facilitate the generation of trained data for this study and to provide proof of con-
cept, only the data collected from a single pressure sensor IVAR was used; additional
SBCEX2017 sensors can be used in future studies.

The environment at SBCEX2017 informed the simulation of the training data. The SUS
charges were deployed in an area with an average ocean depth of 74 m and a nearly isospeed
sound speed profile in the water [as seen in Fig. 2(b) in Ref. 20]: varying from 1467.8 to 1468.6
m/s. The New England Mud Patch has an uppermost sediment layer consisting of fine-grained
mud-like material.24 Thus, training data are simulated for a variety of linear sound speed profiles
and four different seabed types, one of which was inferred from the analysis of the SUS wave-
forms on a different receiving array.25

2.2 Synthetic data generation

Machine learning models require a significant amount of training data to identify and learn pat-
terns. Because of the lack of labeled field data, synthetic training data are used. The range-
independent, normal-mode model ORCA (Ref. 26) model was used to generate the ocean’s
impulse response at frequencies up to 2500 Hz. This impulse response is convolved with a simu-
lated SUS Mk64 signal spanning a bandwidth of 5–2500 Hz to produce the simulated time-series

Fig. 1. Normalized pressure waveforms measured on IVAR from SUS station S54 (a), and S42 (b) (the exact positions are
shown in Fig. 3 of Ref. 20) and two simulated, normalized waveforms, in a representative environment, at 2.5 (c) and 6.5 km
(d) away from the source.
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waveform using the model in Wilson et al.22 Examples of the simulated samples are shown in
Figs. 1(c) and 1(d).

The time series were simulated using four different seabeds representing deep mud, mud
over sand, sandy silt, and sand environments. The “deep mud” environment comes from a study
done in the gulf of Mexico by Knobles et al.27 The “mud over sand” environment comes from
maximum entropy statistical inference on data collected during the SUS circle experiments in
SBCEX.25 The “sandy silt” environment comes from geoacoustic inversions done in the New
England Bight by Potty et al.28 The “sand” environment comes from a study on sandy seafloors
done by Zhou et al.29 A visualization of these seabeds and values for sound speeds, densities,
and attenuations is shown in Fig. 1 of Van Komen et al.30

A variety of sound speed profiles were also used in the simulation to expand the training
dataset. Fifty different linear, downward-refracting sound speed profiles were used with water
depths between 73 and 75 m, representative of the measurements taken at SBCEX2017. These
profiles (spanning 1465–1470 m/s) were selected to add variability that was present in the mea-
surements. This variability also allows the machine learning model to better generalize the inter-
nal feature extraction used for prediction.

Source and receiver parameters were selected to cover the variability in the measured
IVAR data. The signals were simulated to be received on a hydrophone located 1.3 m from the
ocean floor at ranges between 0.5 and 15 km at 0.5 km intervals. The true IVAR-to-SUS charge
ranges (as reported by station locations in Ref. 20) were not used in the simulations so as to test
the model’s ability to generalize on the range label. Because the nominal source depth of the
SUS charges is 18.3 m, the simulations were performed at eight different source depths spanning
10.3 to 24.3 m from the surface to account for any variability.

With the four seabed types, 50 sound speed profiles, 30 ranges, and eight source depths, a
dataset of 48 000 signals was generated. The 1 s signals, normalized and sampled at 5000 Hz, were
aligned with the arrival time occurring at approximately the same time in each sample, as illustrated
in Fig. 1. Thus, the data contain no information about absolute travel time or absolute amplitude.

2.3 Machine learning model architecture and training

The machine learning model employed in this study is a CNN. A CNN is chosen due to its abil-
ity to find patterns in gridded data, which makes it an ideal candidate for analysis on time-series
waveforms. Using a CNN also eliminates the need for data preprocessing because a CNN learns
to extract features necessary for accurate predictions. More information on CNNs can be found
in Goodfellow et al.31 The CNN architecture used in this study is a simple network with four
convolutional layers and two fully connected layers and is the same network architecture found
and explained in more detail in Van Komen et al.30

To implement and train the machine learning models, the Python package PyTorch
(Ref. 32) is used. PyTorch automates many of the functions used in machine learning for devel-
oping and training models and provides an interface for learning on a GPU, a necessity for train-
ing quickly on 48 000 training samples. A Tesla T4 GPU by NVIDIA was used to accelerate
computations by a factor of 5 (approximately 15 minutes versus 75 minutes on an Intel Xeon
Gold 6134 CPU) for this study. PyTorch also provides the algorithms needed for the models to
learn, such as the Adam33 optimizer used to train the network’s weights.

The dataset of 48 000 simulated signals were labeled with the source-receiver range (in
km) and a number representing the seabed type. The dataset was randomly divided into a
training-validation split of 95%=5%, leading to 45 600 training and 2400 validation samples. This
split was chosen because the final testing dataset is the IVAR signals. Validation errors for this
network are reported in Van Komen et al.30

For a single training session, the CNN was trained over 200 epochs. The learning rate
began at 0.001 and was annealed via a cosine function to allow the algorithms to make large
adjustments in the early epochs and then make smaller adjustments in the later epochs. These
hyperparameters were selected over several trial runs and led to a sufficiently low validation
error; the results on the IVAR SBCEX2017 data (Sec. 3) also confirm the selections.
Unfortunately, there is no special formula or method for selecting hyperparameters, so there is a
possibility that other hyperparameters could give more precise results, but for the sake of consis-
tency, these parameters were chosen and used across all tests in this study.

The network was trained multiple times to get a broader picture of the potential the
CNN has to make predictions on the IVAR SBCEX2017 data. This process of training multiple
networks was chosen to account for the random initialization of weights and the random
training-validation split. Ten instances of this training-validation split led to ten different net-
works that were then applied to the IVAR SBCEX2017 data. The predictions from these ten dif-
ferent networks are shown and discussed in Sec. 3.
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3. Results and discussion

This section has been divided into two sections: results from a single trained network applied to
the IVAR SBCEX2017 data and results from multiple trained networks. The division of the
results is to illustrate how different random initializations and splits of training data can lead to
different predictions. The network, in all cases, attempts to make predictions via regression and
outputs two values for each sample: the range (in km) and a number representing the seabed
type.

3.1 Individual network results

After training the CNN on the simulated data, the 37 IVAR SBCEX2017 data samples were
passed through the network to obtain predictions of range and seabed type. The predictions of
the CNN from two separate networks are shown in Fig. 2. The predicted ranges are compared
to the measured IVAR-to-SUS ranges spanning 2–12 km. If the network predictions matched the
true ranges, the points would lie exactly on the diagonal line. In both cases, the signals of range
7 km and closer are overpredicted by the network, and those farther away are closer to the truth
or slightly underpredicted. In these cases, the root mean squared error for all range predictions is
0.84 km.

For each data sample, the CNN also yields a number corresponding to a prediction of
the seabed type. The predicted seabed type is a decimal number, which is rounded to the nearest
integer to easily display the results. In Fig. 2, the different symbols/colors indicate which seabed
type is predicted. For the two cases shown, the CNN predicts that the signals farther than 5 km
from IVAR are identified as being from the mud over sand seabed (green squares), which most
closely resembles the New England Mudpatch area. However, the network is predicting environ-
ments that are more reflective: the sandy silt environment (blue triangles), the “sandy” environ-
ment (red pluses), and even a “5th” environment (black crosses) which does not exist for the
closer ranges. This variability likely ties to the physics of the sound propagation. One potential
explanation is the variation in propagation paths. Another potential explanation is that the lon-
ger ranges sense primarily the upper portion of the seafloor, and, when the range is shorter,
deeper features of the seafloor have more impact on the propagation. Thus, the mud over sand
seafloor represents what influences propagation to ranges greater than 6 km, while the tendency
toward a seafloor with less bottom loss at short ranges indicates that the deeper features of the
mud over sand seafloor are likely too absorptive.

3.2 Multiple network results

After training and applying the network that produced the predictions shown in Fig. 2, nine
more networks were trained to test how well the network architecture generalizes with multiple
initializations. The number of networks (ten) was selected because adding more instances did not
significantly change the distribution of the results, which are displayed using violin plots. Violin
plots show the median (white dot), inter-quartile range (black rectangle), and the full distribution
of the data (in color). The violin plots for results from the ten trained networks are shown in
Fig. 3, where Fig. 3(a) shows the distribution of ranges and Fig. 3(b) shows the same for envi-
ronment number.

Fig. 2. (Color online) Predictions from one training instance of the CNN on the 37 data samples of SUS signals recorded on
IVAR. The “True Range” corresponds to the measured distance; the diagonal dashed line indicates where the “ideal” predic-
tions should lie. The symbol indicates the predicted seabed type. The pluses indicate the sandy seabed, the diamonds indicate
the sandy-silt seabed, and the squares indicate the mud over sand seabed while the crosses indicate an environment out of
scope.
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The violin plots for range [Fig. 3(a)] show how well the network learned to predict
IVAR-to-SUS ranges using the simulated training dataset. The median ranges (white dots) follow
the same trend as the expected values. For several of the stations, the centers of the distributions
are close to the expected values (S54, S41, S42, and S37), while the other centers are off by
1–2 km, with closer ranges (S60 and S40) being overpredicted and longer ranges (S36 and S44)
being underpredicted. These results show that the network is learning how to predict ranges,
though there is certainly room for improvement.

The violin plots for seabed type [Fig. 3(b)] reflect the trend seen in Fig. 2. For the two
closest stations (Stations S54 and S60 at approximately 2.4 and 3.3 km), the network never pre-
dicts a seabed below three. The next two stations (S41 and S40 at 5.3 and 5.2 km, as well as
some results from S42 at 6.2 km) also predict seabeds closer to three than the expected two.
However, the results for the remaining stations show the majority of their distributions approach
the mud over sand environment with some extension to the sandy silt environment. In addition,
the distribution of the seabed type predictions becomes narrower as the range increases. These
plots suggest that the network learns how to predict the seabed type, but some additional infor-
mation needs to be included in the training dataset to increase the efficacy of the network at
close ranges.

4. Conclusion

This paper has shown that a CNN can be trained on simulated data to make seabed type and
range predictions simultaneously on real-world data. As the IVAR-to-SUS range increases, the
mean distribution of range predictions tends to be underpredicted as the environmental predic-
tions tend toward the correct seabed. At ranges less than 5 km, a more correct answer for range
tends to be coupled with a prediction of a more reflective seabed type. Although predictions
from this network are not perfect, these results show the potential for machine learning models
to make range and seabed predictions simultaneously if the training dataset represents the vari-
ability of the real world data. The violin plots shown here also provide one way of tracking
uncertainty due to random initialization of the network.

Future work will seek to improve the results by refining the simulated dataset to include
more variation in the environment and range to allow for further generalization. For example,
only downward refracting sound speeds were used in this study, though some measurements also
show that at some locations an isovelocity profile was observed. This variation was not included
in these simulations, so a larger dataset that takes varying ocean sound speeds could prove bene-
ficial. As with all applications of machine learning, there is also the possibility of developing
deeper and more advanced networks to improve results.
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