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Abstract: Since the Morfey-Howell Q/S was introduced as a single-point frequency-
domain nonlinearity indicator for propagation of intense broadband noise [AIAA J. 19,
986–992 (1981)], there has been debate about its validity, utility, and interpretation. In
this Letter, the generalized Burgers equation is recast in terms of specific acoustic imped-
ance along with linear absorption and dispersion coefficients, normalized quadspectral
density (Q/S), and newly proposed normalized cospectral density (C/S). The formulation
leads to a rather straightforward interpretation in which Q/S and C/S, respectively, repre-
sent the additional absorption and dispersion at a locale, produced by the passage of a
finite-amplitude wave. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0002030
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1. Introduction

A nonlinearity indicator is a measure by which the strength of nonlinearity in a wave process is
quantified. Examples of nonlinearity indicators include the Gol’dberg number,1–4 the average
steepening factor,5,6 the derivative skewness,7 the bispectrum,8 and the Morfey-Howell Q/S.9

Nonlinearity indicators have been widely used to identify cumulative finite-amplitude propaga-
tion effects in jet10–13 and rocket14–16 noise analysis. However, the use of these indicators has
often been qualitative, which has sometimes resulted in debate regarding their validity, utility,
and interpretation.11,17

To improve physical understanding and interpretation, Reichman et al.18 reformulated
the Q/S spectrum by expressing the frequency-domain Burgers equation in terms of the change in
sound level with respect to range. In this context, the Q/S spectrum at a given location in the
sound field is interpreted as the local spatial rate of change in level of a spectral component due
to nonlinearity. In addition to absorptive and geometric spreading losses, a spectral component
can experience extra loss (or gain) in level through the nonlinear energy exchange with other
spectral components, the extent of which is quantified by Q/S.

In this Letter, we provide an alternative, but equally intuitive interpretation of Q/S based
on the familiar concept of specific acoustic impedance. Both the prior level and the current
impedance-based formulations of this indicator demonstrate that its interpretation is rather
straightforward, and thus they would serve to promote the wider use of Q/S in nonlinear acous-
tics pedagogy and systems analysis.

2. Impedance-based formulation of nonlinearity indicators

The formulation here follows from recognizing that (a) for a progressive sound wave, impedance
encapsulates how the waveform is modified locally via changes in amplitude (absorption) and
phase (dispersion) of its Fourier components, and hence (b) nonlinearity, being one of waveform
distortion mechanisms, could be cast within the framework of impedance, specifically in the form
of effective absorption and dispersion.

We start with the generalized Burgers equation for plane progressive waves,19

@p
@x
þ LsðpÞ ¼

b

2q0c3
0

@p2

@s
; (1)
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where p is the acoustic pressure, x is the propagation distance, s is the retarded time, q0 is the
density, c0 is the small-signal sound speed, b is the coefficient of nonlinearity, and LsðpÞ is a lin-
ear, retarded time operator that describes the absorption and dispersion properties of the
medium. The corresponding spectral version of Eq. (1) is

@~p
@x
þ Lxð~pÞ ¼

jkb

2q0c2
0

~q; (2)

where ~p and ~q are the Fourier transforms of the acoustic pressure and the squared acoustic pres-
sure, respectively, x is the angular frequency, and k ¼ x=c0 is the wave number. Here, the
Fourier equivalent of the absorption/dispersion operator can be written as

Lxð~pÞ ¼ ðaþ jdÞ~p; (3)

where a and d are frequency-dependent absorption and dispersion coefficients, respectively. The
generalized spectral Burgers equation then becomes

@~p
@x
¼ �ðaþ jdÞ~p þ jkb

2q0c2
0

~q: (4)

Within the second-order approximation theory,20,21 absorption and dispersion are assumed
weak on the scale of wavelength such that a=k � Oð~eÞ and d=k � Oð~eÞ, where ~e is a small,
generic ordering parameter. Given ~p � Oð~eÞ, the absorption/dispersion term �ðaþ jdÞ~p
is Oð~e2Þ. Equation (4) is thus a consistent Oð~e2Þ wave equation, in which all the terms, includ-
ing @~p=@x, are Oð~e2Þ small. This Oð~e2Þ consistency ought to be maintained while manipulating
Eq. (4).

Recasting the generalized spectral Burgers equation [Eq. (4)] in terms of specific acoustic
impedance

Z ¼ ~p
~u

(5)

requires the spectral version of the momentum equation that connects the pressure gradient
@~p=@x and the particle velocity ~u. We begin with the following one-dimensional momentum
equation for Newtonian fluids in nonretarded time t, which is exact up to Oð~e2Þ,20

q0
@u
@t
þ @p
@x
¼ lB þ

4
3

l

� �
@2u
@x2 �

@L
@x

; (6)

where u is the particle velocity, lB is the bulk viscosity, l is the shear viscosity, and
L ¼ 1

2 q0u2 � p2=2q0c2
0 is the Lagrangian density. To rewrite Eq. (6) in retarded time s for plane

progressive waves [for which L ¼ 0 at Oð~e2Þ upon substitution of the Oð~eÞ relation
p ¼ q0c0uþOð~e2Þ], consider the coordinate transformation22

x1 ¼ ~ex; s ¼ t� x=c0; (7)

where x1 is the slow scale corresponding to the retarded time frame s. Partial derivatives in the
transformed coordinates ðx1; sÞ are then

@

@t
¼ @

@s
;

@

@x
¼ ~e

@

@x1
� 1

c0

@

@s
;

@2

@x2 ¼ ~e2 @
2

@x2
1

� ~e
2
c0

@2

@x1@s
þ 1

c2
0

@2

@s2 : (8)

Substituting Eq. (8) into Eq. (6) and retaining terms up to Oð~e2Þ yields

~e
@p
@x1
¼ 1

c0

@p
@s
� q0

@u
@s
þ lB þ

4
3

l

� �
1
c2

0

@2u
@s2 : (9)

By replacing ~eð@p=@x1Þ in Eq. (9) with @p=@x,22 the momentum equation in retarded time s is
obtained,

@p
@x
¼ 1

c0

@p
@s
� q0

@u
@s
þ lB þ

4
3

l

� �
1
c2

0

@2u
@s2 : (10)

Equation (10) is a consistent Oð~e2Þ momentum equation for plane progressive waves, in which

@p=@x � Oð~e2Þ, c�1
0 @p=@sð Þ � q0 @u=@sð Þ

� �
� Oð~e2Þ, and lB þ 4

3 l
� �

c�2
0 @2u=@s2
� �

� Oð~e2Þ,
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respectively. [To see this, consider that p ¼ q0c0uþOð~e2Þ for plane progressive waves, and coefficients
lB and l are assumed Oð~eÞ.] The Fourier transform of Eq. (10) gives the spectral version of the
momentum equation

@~p
@x
¼ jk~p � jxq0~u � lB þ

4
3

l

� �
k2~u: (11)

Manipulation of Eq. (11) leads to an expression containing the dimensionless impedance
�Z ¼ Z=q0c0:

@~p
@x
¼ jk~p 1� jxq0~u

jk~p
�

lB þ
4
3

l

� �
k2~u

jk~p

8><
>:

9>=
>;

¼ jk~p 1� q0c0

~p=~u
þ j

lB þ
4
3

l

� �
k

q0c0

q0c0

~p=~u

8><
>:

9>=
>;

¼ jk~p 1� 1� j
2av

k

� �
1
�Z

� 	
; (12)

where av ¼ ðlB þ 4
3 lÞk2=2q0c0 is the absorption coefficient due to viscosity.23 Furthermore, the

term within the braces in Eq. (12) can be expressed as, via binomial expansion in D�Z ¼ �Z � 1,

1� 1� j
2av

k

� �
1
�Z
¼ 1� 1� j

2av

k

� �
1þ D�Zð Þ�1

¼ 1� 1� j
2av

k

� �
1� D�Z þOð~e2Þ

 �

¼ D�Z þ j
2av

k
þOð~e2Þ: (13)

Here, expansion to leading order would suffice, because terms of Oð~e2Þ in Eq. (13) produce Oð~e3Þ
terms upon substitution to Eq. (12). Therefore, the final form of the spectral momentum equation
at Oð~e2Þ is given by

@~p
@x
¼ jk~p �Z � 1þ j

2av

k

� �
: (14)

Now substitute Eq. (14) into the generalized spectral Burgers equation [Eq. (4)] to obtain

jk~p �Z � 1þ j
2av

k

� �
¼ �ðaþ jdÞ~p þ jkb

2q0c2
0

~q: (15)

Multiplying Eq. (15) by ~p� (the complex conjugate of ~p) gives

j~pj2 �Z � 1þ j
2av

k

� �
¼ j

a
k
j~pj2 � d

k
j~pj2 þ b

2q0c2
0

~p�~q: (16)

Ensemble-averaging Eq. (16) leads to

Spp �Z � 1þ j
2av

k

� �
¼ j

a
k

Spp �
d
k

Spp þ
b

2q0c2
0

jQpp2 þ Cpp2

� �
; (17)

where Spp ¼ E½j~pj2�, Qpp2 ¼ ImðE½~p�~q�Þ, and Cpp2 ¼ ReðE½~p�~q�Þ are referred to as the autospectral
density (or power spectral density), quadspectral density, and cospectral density, respectively,24

and the symbol E½ � denotes ensemble averaging. Finally, dividing Eq. (17) by Spp and rearrang-
ing terms yield the desired impedance form of the generalized Burgers equation

ð�Z � 1Þ ¼ j
a� 2avð Þ

k
� d

k
þ b

2q0c2
0

j
Qpp2

Spp
þ

Cpp2

Spp

 !
: (18)

A few observations about Eq. (18) are noteworthy at this juncture. First, Eq. (18) is a consistent
Oð~eÞ equivalent to the Oð~e2Þ, generalized Burgers equation [Eq. (4)]. The reduction in order
[Oð~e2Þ ! Oð~eÞ] is simply brought by the successive multiplication and division by ~p� and Spp,
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respectively. Second, for a typical medium in which more than one loss mechanism is present,
viscous absorption av is much smaller than absorption due to other accompanying loss mecha-
nisms such as molecular relaxation, at relatively low frequencies.23,25 Because av makes up only a
small fraction of the total absorption a, it can be ignored (i.e., a� 2av � a) in Eq. (18) for a
wide frequency range of practical interest. Splitting Eq. (18) into the imaginary and real parts
(with av ignored) gives

Imð�ZÞ ¼ a
k
þ 1

2
be

Q
S

(19)

and

Reð�ZÞ � 1 ¼ � d
k
þ 1

2
be

C
S
; (20)

where e ¼ pc=q0c2
0 � Oð~eÞ is the acoustic Mach number based on the characteristic amplitude pc

of the pressure-time waveform. The two dimensionless Oð1Þ quantities Q/S and C/S are defined
by

Q
S
¼

Qpp2

Spppc
;

C
S
¼

Cpp2

Spppc
: (21)

The choice of pc depends on the type of waveform. For a transient pulse, the peak pressure
amplitude is a convenient choice, whereas the root-mean-square pressure prms may be more
appropriate for continuous random noise. With pc ¼ prms, the Q/S in Eq. (21) reduces to the
Morfey-Howell Q/S.9

3. Interpretation of Q/S and C/S

For plane progressive waves in linear acoustics, the specific acoustic impedance [Eq. (5)] can be
construed as a medium property that a wave sees at any given point. For instance, a wave propa-
gating in an ideal, lossless medium would see the specific acoustic impedance given by the char-
acteristic impedance q0c0 (or unity in dimensionless impedance),

Imð�ZÞ ¼ 0; Reð�ZÞ � 1 ¼ 0: (22)

Any deviation of the dimensionless impedance from unity then signifies the presence of
loss mechanisms such as absorption and dispersion. If the medium is lossy, a progressive wave
sees the dimensionless impedance different from unity by the amount commensurate with the
strength of linear absorption and dispersion. This is immediately apparent from Eqs. (19) and
(20) without the Q/S and C/S terms,

Imð�ZÞ ¼ a
k
; Reð�ZÞ � 1 ¼ � d

k
: (23)

Note that absorption (a=k) is associated with the imaginary part of impedance [Imð�ZÞ], which
represents the overall spatial rate of change in power spectral density, or

Imð�ZÞ ¼ � 1
2Spp

dSpp

dðkxÞ : (24)

[Equation (24) is obtained by combining ~p�d~p=dðkxÞ þ c:c: ¼ dð~p~p�Þ=dðkxÞ ¼ dSpp=dðkxÞ and
Eq. (14) with the av term ignored, where the symbol c.c. stands for complex conjugate.]
Dispersion (�d=k) is then related to the real part of impedance [Reð�ZÞ � 1], which denotes the
overall spatial rate of change in phase, or

Reð�ZÞ � 1 ¼ d/
dðkxÞ ; (25)

where / is defined by ~p ¼ j~pjej/ with respect to dimensionless retarded time xs. [To arrive at Eq.
(25) combine ~p�d~p=dðkxÞ � c:c: ¼ 2jj~pj2d/=dðkxÞ with Eq. (14).]

Now what if the finite-amplitude effects are taken into account? The significance of Eqs.
(19) and (20) is that they provide a framework within which the quantities Q/S and C/S can be
interpreted as the additional change in impedance due to nonlinearity. It follows from Eqs. (19)
and (20) that Q/S and C/S represent the parametrically induced change in impedance in the form
of additional absorption and dispersion. Here, the passage of a finite-amplitude wave alters the
apparent medium property (i.e., absorption and dispersion), the extent of which can be used to
quantify the strength of nonlinearity.
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A caveat: in light of Eqs. (19)–(21), one must exercise caution when using Q/S and C/S
to judge “nonlinearity” of a wave. The way in which Q/S and C/S are defined [i.e., they are
nondimensionalized by the characteristic amplitude pc in Eq. (21)] renders these nonlinearity
indicators dependent on the “shape” of the wave only. For example, two waves with the same
waveform but at different levels, say 40 dB and 120 dB, would be equally nonlinear under Q/S
and C/S. Nonlinearity due to the “size” of the wave is instead reflected by the acoustic Mach
number e as shown in Eqs. (19) and (20), the values of which for the two waves are many orders of
magnitude different from each other, and so are their contributions to the parametrically induced
change in impedance. Ultimately, Q/S and C/S are statements about the temporal shape of the wave,
in which some waveforms, regardless of the amplitude, are more nonlinear than others.

Finally, a companion nonlinearity indicator C/S is introduced for the first time.
Examination of Eqs. (19) and (20) indicates that Q/S and C/S are complementary (i.e., C/S is to
dispersion as Q/S is to absorption), and together, they constitute a complete set of nonlinearity
indicators for finite-amplitude waves in fluids with general absorption and dispersion laws. Note
that only absorption is considered in the original derivation of the Morfey-Howell Q/S.9

For dispersion-dominant systems, it is recommended that C/S be used in place of Q/S as
a nonlinearity indicator. For example, consider a wave system governed by the Korteweg-de
Vries (KdV) equation26

@p
@x
¼ d

@3p
@s3 þ

b

2q0c3
0

@p2

@s
; (26)

where d is the dispersion parameter. In Eq. (26) absorption is assumed to be zero (a ¼ 0), and
dispersion exhibits a cubic dependence on frequency (d / x3). Wave systems with KdV-type dis-
persion include incompressible waves on the liquid surface26 and sounds in bubbly liquids.27,28

To demonstrate a potential problem with Q/S and the utility of C/S in a dispersion-dominant
system, we consider the bubbly liquid of Kuznetsov et al.28 with parameters q0 ¼ 1167 kg=m3,
c0 ¼ 107 m=s, d ¼ 2:5� 10�11 s3=m, and b ¼ 111. When applied to a soliton solution [Fig. 1(a)]
for which there is no change in power spectrum [Imð�ZÞ ¼ 0; recall Eq. (24)], Q/S ought to be
identically zero [dashed line in Fig. 1(b)] in the absence of linear absorption (a=k ¼ 0), according
to Eq. (19). It would nonetheless be wrong to suggest from Q=S ¼ 0 that there is no nonlinearity.
The corresponding C/S, which is a quadratic function of frequency [solid line in Fig. 1(b)], can
indeed capture the interplay between nonlinearity and dispersion through Eq. (20), where nonlin-
earity (C=S / x2) offsets the innate dispersion of the medium (�d=k / x2) to result in a wave of
permanent form traveling at a constant speed [Reð�ZÞ � 1 ¼ constant; see Eq. (25)].

4. Conclusions

In an attempt to further demystify the Morfey-Howell nonlinearity indicator Q/S, the generalized
spectral Burgers equation is recast in terms of specific acoustic impedance, which is comprised of
the normalized quadspectral and cospectral densities Q/S and C/S in addition to linear absorp-
tion and dispersion coefficients. This allows an impedance-based interpretation in which Q/S and
C/S signify nonlinearity-induced absorption and dispersion, respectively.

Fig. 1. (Color online) Utility of nonlinearity indicator C/S: (a) the waveform of a soliton solution to the KdV system of Ref.
28, plotted in retarded time, and (b) the corresponding Q/S and C/S computed using Eq. (21) without ensemble averaging.
Note that the soliton in (a) translates to the left in retarded time with slowness ds=dx ¼ �7:77� 10�4 s=m (equivalent to
propagation speed of 116 m/s).
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“Blessed be Fourier,”29 for an arbitrary wave can be represented as a sum of sinusoidal
waves. Then there are in effect only two ways to modify a wave at any given location: via
changes in amplitude (absorption) and phase (dispersion) of each sinusoidal component.
Therefore, any complex wave process, be it finite-amplitude wave motion, refraction, or diffrac-
tion, could simply be couched in extra absorption and/or dispersion, adding to the inherent
medium property.
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